1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
//! OpenType font variations common tables.

include!("../../generated/generated_variations.rs");

use super::gvar::SharedTuples;

use std::iter::Skip;

pub const NO_VARIATION_INDEX: u32 = 0xFFFFFFFF;
/// Outer and inner indices for reading from an [ItemVariationStore].
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct DeltaSetIndex {
    /// Outer delta set index.
    pub outer: u16,
    /// Inner delta set index.
    pub inner: u16,
}

#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct TupleIndex(u16);

impl TupleIndex {
    /// Flag indicating that this tuple variation header includes an embedded
    /// peak tuple record, immediately after the tupleIndex field.
    ///
    /// If set, the low 12 bits of the tupleIndex value are ignored.
    ///
    /// Note that this must always be set within the 'cvar' table.
    pub const EMBEDDED_PEAK_TUPLE: u16 = 0x8000;

    /// Flag indicating that this tuple variation table applies to an
    /// intermediate region within the variation space.
    ///
    /// If set, the header includes the two intermediate-region, start and end
    /// tuple records, immediately after the peak tuple record (if present).
    pub const INTERMEDIATE_REGION: u16 = 0x4000;
    /// Flag indicating that the serialized data for this tuple variation table
    /// includes packed “point” number data.
    ///
    /// If set, this tuple variation table uses that number data; if clear,
    /// this tuple variation table uses shared number data found at the start
    /// of the serialized data for this glyph variation data or 'cvar' table.
    pub const PRIVATE_POINT_NUMBERS: u16 = 0x2000;
    //0x1000	Reserved	Reserved for future use — set to 0.
    //
    /// Mask for the low 12 bits to give the shared tuple records index.
    pub const TUPLE_INDEX_MASK: u16 = 0x0FFF;

    fn tuple_len(self, axis_count: u16, flag: usize) -> usize {
        match flag {
            0 => self.embedded_peak_tuple(),
            1 => self.intermediate_region(),
            _ => panic!("only 0 or 1 allowed here"),
        }
        .then_some(axis_count as usize)
        .unwrap_or_default()
    }

    pub fn bits(self) -> u16 {
        self.0
    }

    pub fn from_bits(bits: u16) -> Self {
        TupleIndex(bits)
    }

    /// `true` if the header includes an embedded peak tuple.
    pub fn embedded_peak_tuple(self) -> bool {
        (self.0 & Self::EMBEDDED_PEAK_TUPLE) != 0
    }

    /// `true` if the header includes the two intermediate region tuple records.
    pub fn intermediate_region(self) -> bool {
        (self.0 & Self::INTERMEDIATE_REGION) != 0
    }

    /// `true` if the data for this table includes packed point number data.
    pub fn private_point_numbers(self) -> bool {
        (self.0 & Self::PRIVATE_POINT_NUMBERS) != 0
    }

    pub fn tuple_records_index(self) -> Option<u16> {
        (!self.embedded_peak_tuple()).then_some(self.0 & Self::TUPLE_INDEX_MASK)
    }
}

impl types::Scalar for TupleIndex {
    type Raw = <u16 as types::Scalar>::Raw;
    fn to_raw(self) -> Self::Raw {
        self.0.to_raw()
    }
    fn from_raw(raw: Self::Raw) -> Self {
        let t = <u16>::from_raw(raw);
        Self(t)
    }
}

/// The 'tupleVariationCount' field of the [Tuple Variation Store Header][header]
///
/// The high 4 bits are flags, and the low 12 bits are the number of tuple
/// variation tables for this glyph. The count can be any number between 1 and 4095.
///
/// [header]: https://learn.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#tuple-variation-store-header
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct TupleVariationCount(u16);

impl TupleVariationCount {
    /// Flag indicating that some or all tuple variation tables reference a
    /// shared set of “point” numbers.
    ///
    /// These shared numbers are represented as packed point number data at the
    /// start of the serialized data.
    pub const SHARED_POINT_NUMBERS: u16 = 0x8000;

    /// Mask for the low 12 bits to give the shared tuple records index.
    pub const COUNT_MASK: u16 = 0x0FFF;

    pub fn bits(self) -> u16 {
        self.0
    }

    pub fn from_bits(bits: u16) -> Self {
        Self(bits)
    }

    /// `true` if any tables reference a shared set of point numbers
    pub fn shared_point_numbers(self) -> bool {
        (self.0 & Self::SHARED_POINT_NUMBERS) != 0
    }

    pub fn count(self) -> u16 {
        self.0 & Self::COUNT_MASK
    }
}

impl types::Scalar for TupleVariationCount {
    type Raw = <u16 as types::Scalar>::Raw;
    fn to_raw(self) -> Self::Raw {
        self.0.to_raw()
    }
    fn from_raw(raw: Self::Raw) -> Self {
        let t = <u16>::from_raw(raw);
        Self(t)
    }
}

impl<'a> TupleVariationHeader<'a> {
    #[cfg(feature = "experimental_traverse")]
    fn traverse_tuple_index(&self) -> traversal::FieldType<'a> {
        self.tuple_index().0.into()
    }

    /// Peak tuple record for this tuple variation table — optional,
    /// determined by flags in the tupleIndex value.  Note that this
    /// must always be included in the 'cvar' table.
    pub fn peak_tuple(&self) -> Option<Tuple<'a>> {
        self.tuple_index().embedded_peak_tuple().then(|| {
            let range = self.shape.peak_tuple_byte_range();
            Tuple {
                values: self.data.read_array(range).unwrap(),
            }
        })
    }

    /// Intermediate start tuple record for this tuple variation table
    /// — optional, determined by flags in the tupleIndex value.
    pub fn intermediate_start_tuple(&self) -> Option<Tuple<'a>> {
        self.tuple_index().intermediate_region().then(|| {
            let range = self.shape.intermediate_start_tuple_byte_range();
            Tuple {
                values: self.data.read_array(range).unwrap(),
            }
        })
    }

    /// Intermediate end tuple record for this tuple variation table
    /// — optional, determined by flags in the tupleIndex value.
    pub fn intermediate_end_tuple(&self) -> Option<Tuple<'a>> {
        self.tuple_index().intermediate_region().then(|| {
            let range = self.shape.intermediate_end_tuple_byte_range();
            Tuple {
                values: self.data.read_array(range).unwrap(),
            }
        })
    }

    /// Compute the actual length of this table in bytes
    fn byte_len(&self, axis_count: u16) -> usize {
        const FIXED_LEN: usize = u16::RAW_BYTE_LEN + TupleIndex::RAW_BYTE_LEN;
        let tuple_byte_len = F2Dot14::RAW_BYTE_LEN * axis_count as usize;
        let index = self.tuple_index();
        FIXED_LEN
            + index
                .embedded_peak_tuple()
                .then_some(tuple_byte_len)
                .unwrap_or_default()
            + index
                .intermediate_region()
                .then_some(tuple_byte_len * 2)
                .unwrap_or_default()
    }
}

impl<'a> Tuple<'a> {
    pub fn len(&self) -> usize {
        self.values().len()
    }

    pub fn is_empty(&self) -> bool {
        self.values.is_empty()
    }

    pub fn get(&self, idx: usize) -> Option<F2Dot14> {
        self.values.get(idx).map(BigEndian::get)
    }
}

//FIXME: add an #[extra_traits(..)] attribute!
#[allow(clippy::derivable_impls)]
impl Default for Tuple<'_> {
    fn default() -> Self {
        Self {
            values: Default::default(),
        }
    }
}

/// [Packed "Point" Numbers](https://learn.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#packed-point-numbers)
#[derive(Clone, Debug)]
pub struct PackedPointNumbers<'a> {
    data: FontData<'a>,
}

impl<'a> PackedPointNumbers<'a> {
    /// read point numbers off the front of this data, returning the remaining data
    pub fn split_off_front(data: FontData<'a>) -> (Self, FontData<'a>) {
        let this = PackedPointNumbers { data };
        let total_len = this.total_len();
        let remainder = data.split_off(total_len).unwrap_or_default();
        (this, remainder)
    }

    /// The number of points in this set
    pub fn count(&self) -> u16 {
        self.count_and_count_bytes().0
    }

    /// compute the count, and the number of bytes used to store it
    fn count_and_count_bytes(&self) -> (u16, usize) {
        match self.data.read_at::<u8>(0).unwrap_or(0) {
            0 => (0, 1),
            count @ 1..=127 => (count as u16, 1),
            _ => {
                // "If the high bit of the first byte is set, then a second byte is used.
                // The count is read from interpreting the two bytes as a big-endian
                // uint16 value with the high-order bit masked out."

                let count = self.data.read_at::<u16>(0).unwrap_or_default() & 0x7FFF;
                // a weird case where I'm following fonttools: if the 'use words' bit
                // is set, but the total count is still 0, treat it like 0 first byte
                if count == 0 {
                    (0, 2)
                } else {
                    (count & 0x7FFF, 2)
                }
            }
        }
    }

    /// the number of bytes to encode the packed point numbers
    fn total_len(&self) -> usize {
        let (n_points, mut n_bytes) = self.count_and_count_bytes();
        if n_points == 0 {
            return n_bytes;
        }
        let mut cursor = self.data.cursor();
        cursor.advance_by(n_bytes);

        let mut n_seen = 0;
        while n_seen < n_points {
            let Some((count, two_bytes)) = read_control_byte(&mut cursor) else {
                return n_bytes;
            };
            let word_size = 1 + usize::from(two_bytes);
            let run_size = word_size * count as usize;
            n_bytes += run_size + 1; // plus the control byte;
            cursor.advance_by(run_size);
            n_seen += count as u16;
        }

        n_bytes
    }

    /// Iterate over the packed points
    pub fn iter(&self) -> PackedPointNumbersIter<'a> {
        let (count, n_bytes) = self.count_and_count_bytes();
        let mut cursor = self.data.cursor();
        cursor.advance_by(n_bytes);
        PackedPointNumbersIter::new(count, cursor)
    }
}

/// An iterator over the packed point numbers data.
#[derive(Clone, Debug)]
pub struct PackedPointNumbersIter<'a> {
    count: u16,
    seen: u16,
    last_val: u16,
    current_run: PointRunIter<'a>,
}

impl<'a> PackedPointNumbersIter<'a> {
    fn new(count: u16, cursor: Cursor<'a>) -> Self {
        PackedPointNumbersIter {
            count,
            seen: 0,
            last_val: 0,
            current_run: PointRunIter {
                remaining: 0,
                two_bytes: false,
                cursor,
            },
        }
    }
}

/// Implements the logic for iterating over the individual runs
#[derive(Clone, Debug)]
struct PointRunIter<'a> {
    remaining: u8,
    two_bytes: bool,
    cursor: Cursor<'a>,
}

impl Iterator for PointRunIter<'_> {
    type Item = u16;

    fn next(&mut self) -> Option<Self::Item> {
        // if no items remain in this run, start the next one.
        while self.remaining == 0 {
            (self.remaining, self.two_bytes) = read_control_byte(&mut self.cursor)?;
        }

        self.remaining -= 1;
        if self.two_bytes {
            self.cursor.read().ok()
        } else {
            self.cursor.read::<u8>().ok().map(|v| v as u16)
        }
    }
}

/// returns the count and the 'uses_two_bytes' flag from the control byte
fn read_control_byte(cursor: &mut Cursor) -> Option<(u8, bool)> {
    let control: u8 = cursor.read().ok()?;
    let two_bytes = (control & 0x80) != 0;
    let count = (control & 0x7F) + 1;
    Some((count, two_bytes))
}

impl Iterator for PackedPointNumbersIter<'_> {
    type Item = u16;

    fn next(&mut self) -> Option<Self::Item> {
        // if our count is zero, we keep incrementing forever
        if self.count == 0 {
            let result = self.last_val;
            self.last_val = self.last_val.checked_add(1)?;
            return Some(result);
        }

        if self.count == self.seen {
            return None;
        }
        self.seen += 1;
        self.last_val += self.current_run.next()?;
        Some(self.last_val)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.count as usize, Some(self.count as usize))
    }
}

// completely unnecessary?
impl<'a> ExactSizeIterator for PackedPointNumbersIter<'a> {}

/// [Packed Deltas](https://learn.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#packed-deltas)
#[derive(Clone, Debug)]
pub struct PackedDeltas<'a> {
    data: FontData<'a>,
    // How many values we expect
    count: usize,
}

impl<'a> PackedDeltas<'a> {
    pub(crate) fn new(data: FontData<'a>, count: usize) -> Self {
        Self { data, count }
    }

    /// NOTE: this is unbounded, and assumes all of data is deltas.
    #[doc(hidden)] // used by tests in write-fonts
    pub fn consume_all(data: FontData<'a>) -> Self {
        let count = DeltaRunIter::new(data.cursor(), None).count();
        Self { data, count }
    }

    pub(crate) fn count(&self) -> usize {
        self.count
    }

    pub fn iter(&self) -> DeltaRunIter<'a> {
        DeltaRunIter::new(self.data.cursor(), Some(self.count))
    }
}

/// Flag indicating that this run contains no data,
/// and that the deltas for this run are all zero.
const DELTAS_ARE_ZERO: u8 = 0x80;
/// Flag indicating the data type for delta values in the run.
const DELTAS_ARE_WORDS: u8 = 0x40;
/// Mask for the low 6 bits to provide the number of delta values in the run, minus one.
const DELTA_RUN_COUNT_MASK: u8 = 0x3F;

/// The type of values for a given delta run (influences the number of bytes per delta)
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum DeltaRunType {
    Zero,
    I8,
    I16,
    I32,
}

impl DeltaRunType {
    /// The run type for a given control byte
    pub fn new(control: u8) -> Self {
        // if the top two bits of the control byte (DELTAS_ARE_ZERO and DELTAS_ARE_WORDS) are both set,
        // then the following values are 32-bit.
        // <https://github.com/harfbuzz/boring-expansion-spec/blob/main/VARC.md#tuplevalues>
        let are_zero = (control & DELTAS_ARE_ZERO) != 0;
        let are_words = (control & DELTAS_ARE_WORDS) != 0;
        match (are_zero, are_words) {
            (false, false) => Self::I8,
            (false, true) => Self::I16,
            (true, false) => Self::Zero,
            (true, true) => Self::I32,
        }
    }
}

/// Implements the logic for iterating over the individual runs
#[derive(Clone, Debug)]
pub struct DeltaRunIter<'a> {
    limit: Option<usize>, // when None, consume all available data
    remaining_in_run: u8,
    value_type: DeltaRunType,
    cursor: Cursor<'a>,
}

impl<'a> DeltaRunIter<'a> {
    fn new(cursor: Cursor<'a>, limit: Option<usize>) -> Self {
        DeltaRunIter {
            limit,
            remaining_in_run: 0,
            value_type: DeltaRunType::I8,
            cursor,
        }
    }

    pub(crate) fn end(mut self) -> Cursor<'a> {
        while self.next().is_some() {}
        self.cursor
    }
}

impl Iterator for DeltaRunIter<'_> {
    type Item = i32;

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(limit) = self.limit {
            if limit == 0 {
                return None;
            }
            self.limit = Some(limit - 1);
        }
        // if no items remain in this run, start the next one.
        // NOTE: we use `while` so we can sanely handle the case where some
        // run in the middle of the data has an explicit zero length
        //TODO: create a font with data of this shape and go crash some font parsers
        while self.remaining_in_run == 0 {
            let control: u8 = self.cursor.read().ok()?;
            self.value_type = DeltaRunType::new(control);
            self.remaining_in_run = (control & DELTA_RUN_COUNT_MASK) + 1;
        }

        self.remaining_in_run -= 1;
        match self.value_type {
            DeltaRunType::Zero => Some(0),
            DeltaRunType::I8 => self.cursor.read::<i8>().ok().map(|v| v as i32),
            DeltaRunType::I16 => self.cursor.read::<i16>().ok().map(|v| v as i32),
            DeltaRunType::I32 => self.cursor.read().ok(),
        }
    }
}

/// A helper type for iterating over [`TupleVariationHeader`]s.
pub struct TupleVariationHeaderIter<'a> {
    data: FontData<'a>,
    n_headers: usize,
    current: usize,
    axis_count: u16,
}

impl<'a> TupleVariationHeaderIter<'a> {
    pub(crate) fn new(data: FontData<'a>, n_headers: usize, axis_count: u16) -> Self {
        Self {
            data,
            n_headers,
            current: 0,
            axis_count,
        }
    }
}

impl<'a> Iterator for TupleVariationHeaderIter<'a> {
    type Item = Result<TupleVariationHeader<'a>, ReadError>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.current == self.n_headers {
            return None;
        }
        self.current += 1;
        let next = TupleVariationHeader::read(self.data, self.axis_count);
        let next_len = next
            .as_ref()
            .map(|table| table.byte_len(self.axis_count))
            .unwrap_or(0);
        self.data = self.data.split_off(next_len)?;
        Some(next)
    }
}

#[derive(Clone)]
pub struct TupleVariationData<'a, T> {
    pub(crate) axis_count: u16,
    pub(crate) shared_tuples: Option<SharedTuples<'a>>,
    pub(crate) shared_point_numbers: Option<PackedPointNumbers<'a>>,
    pub(crate) tuple_count: TupleVariationCount,
    // the data for all the tuple variation headers
    pub(crate) header_data: FontData<'a>,
    // the data for all the tuple bodies
    pub(crate) serialized_data: FontData<'a>,
    pub(crate) _marker: std::marker::PhantomData<fn() -> T>,
}

impl<'a, T> TupleVariationData<'a, T>
where
    T: TupleDelta + 'a,
{
    pub fn tuples(&self) -> TupleVariationIter<'a, T> {
        TupleVariationIter {
            current: 0,
            parent: self.clone(),
            header_iter: TupleVariationHeaderIter::new(
                self.header_data,
                self.tuple_count.count() as usize,
                self.axis_count,
            ),
            serialized_data: self.serialized_data,
            _marker: std::marker::PhantomData,
        }
    }

    /// Returns an iterator over all of the pairs of (variation tuple, scalar)
    /// for this glyph that are active for the given set of normalized
    /// coordinates.
    pub fn active_tuples_at(
        &self,
        coords: &'a [F2Dot14],
    ) -> impl Iterator<Item = (TupleVariation<'a, T>, Fixed)> + 'a {
        self.tuples().filter_map(|tuple| {
            let scaler = tuple.compute_scalar(coords)?;
            Some((tuple, scaler))
        })
    }

    pub(crate) fn tuple_count(&self) -> usize {
        self.tuple_count.count() as usize
    }
}

/// An iterator over the [`TupleVariation`]s for a specific glyph.
pub struct TupleVariationIter<'a, T> {
    current: usize,
    parent: TupleVariationData<'a, T>,
    header_iter: TupleVariationHeaderIter<'a>,
    serialized_data: FontData<'a>,
    _marker: std::marker::PhantomData<fn() -> T>,
}

impl<'a, T> TupleVariationIter<'a, T>
where
    T: TupleDelta,
{
    fn next_tuple(&mut self) -> Option<TupleVariation<'a, T>> {
        if self.parent.tuple_count() == self.current {
            return None;
        }
        self.current += 1;

        // FIXME: is it okay to discard an error here?
        let header = self.header_iter.next()?.ok()?;
        let data_len = header.variation_data_size() as usize;
        let var_data = self.serialized_data.take_up_to(data_len)?;

        let (point_numbers, packed_deltas) = if header.tuple_index().private_point_numbers() {
            PackedPointNumbers::split_off_front(var_data)
        } else {
            (self.parent.shared_point_numbers.clone()?, var_data)
        };
        Some(TupleVariation {
            axis_count: self.parent.axis_count,
            header,
            shared_tuples: self.parent.shared_tuples.clone(),
            packed_deltas: PackedDeltas::consume_all(packed_deltas),
            point_numbers,
            _marker: std::marker::PhantomData,
        })
    }
}

impl<'a, T> Iterator for TupleVariationIter<'a, T>
where
    T: TupleDelta,
{
    type Item = TupleVariation<'a, T>;

    fn next(&mut self) -> Option<Self::Item> {
        self.next_tuple()
    }
}

/// A single set of tuple variation data
#[derive(Clone)]
pub struct TupleVariation<'a, T> {
    axis_count: u16,
    header: TupleVariationHeader<'a>,
    shared_tuples: Option<SharedTuples<'a>>,
    packed_deltas: PackedDeltas<'a>,
    point_numbers: PackedPointNumbers<'a>,
    _marker: std::marker::PhantomData<fn() -> T>,
}

impl<'a, T> TupleVariation<'a, T>
where
    T: TupleDelta,
{
    /// Returns true if this tuple provides deltas for all points in a glyph.
    pub fn has_deltas_for_all_points(&self) -> bool {
        self.point_numbers.count() == 0
    }

    pub fn point_numbers(&'a self) -> PackedPointNumbersIter<'a> {
        self.point_numbers.iter()
    }

    /// Returns the 'peak' tuple for this variation
    pub fn peak(&self) -> Tuple<'a> {
        self.header
            .tuple_index()
            .tuple_records_index()
            .and_then(|idx| self.shared_tuples.as_ref()?.tuples().get(idx as usize).ok())
            .or_else(|| self.header.peak_tuple())
            .unwrap_or_default()
    }

    pub fn intermediate_start(&self) -> Option<Tuple<'a>> {
        self.header.intermediate_start_tuple()
    }

    pub fn intermediate_end(&self) -> Option<Tuple<'a>> {
        self.header.intermediate_end_tuple()
    }

    /// Compute the fixed point scalar for this tuple at the given location in
    /// variation space.
    ///
    /// The `coords` slice must be of lesser or equal length to the number of
    /// axes. If it is less, missing (trailing) axes will be assumed to have
    /// zero values.
    ///
    /// Returns `None` if this tuple is not applicable at the provided
    /// coordinates (e.g. if the resulting scalar is zero).
    pub fn compute_scalar(&self, coords: &[F2Dot14]) -> Option<Fixed> {
        const ZERO: Fixed = Fixed::ZERO;
        let mut scalar = Fixed::ONE;
        let peak = self.peak();
        let inter_start = self.header.intermediate_start_tuple();
        let inter_end = self.header.intermediate_end_tuple();
        if peak.len() != self.axis_count as usize {
            return None;
        }

        for i in 0..self.axis_count {
            let i = i as usize;
            let coord = coords.get(i).copied().unwrap_or_default().to_fixed();
            let peak = peak.get(i).unwrap_or_default().to_fixed();
            if peak == ZERO || peak == coord {
                continue;
            }

            if coord == ZERO {
                return None;
            }

            if let (Some(inter_start), Some(inter_end)) = (&inter_start, &inter_end) {
                let start = inter_start.get(i).unwrap_or_default().to_fixed();
                let end = inter_end.get(i).unwrap_or_default().to_fixed();
                if coord <= start || coord >= end {
                    return None;
                }
                if coord < peak {
                    scalar = scalar.mul_div(coord - start, peak - start);
                } else {
                    scalar = scalar.mul_div(end - coord, end - peak);
                }
            } else {
                if coord < peak.min(ZERO) || coord > peak.max(ZERO) {
                    return None;
                }
                scalar = scalar.mul_div(coord, peak);
            }
        }
        Some(scalar)
    }

    /// Compute the floating point scalar for this tuple at the given location
    /// in variation space.
    ///
    /// The `coords` slice must be of lesser or equal length to the number of
    /// axes. If it is less, missing (trailing) axes will be assumed to have
    /// zero values.
    ///
    /// Returns `None` if this tuple is not applicable at the provided
    /// coordinates (e.g. if the resulting scalar is zero).
    pub fn compute_scalar_f32(&self, coords: &[F2Dot14]) -> Option<f32> {
        let mut scalar = 1.0;
        let peak = self.peak();
        let inter_start = self.header.intermediate_start_tuple();
        let inter_end = self.header.intermediate_end_tuple();
        if peak.len() != self.axis_count as usize {
            return None;
        }
        for i in 0..self.axis_count {
            let i = i as usize;
            let coord = coords.get(i).copied().unwrap_or_default().to_bits() as i32;
            let peak = peak.get(i).unwrap_or_default().to_bits() as i32;
            if peak == 0 || peak == coord {
                continue;
            }
            if coord == 0 {
                return None;
            }
            if let (Some(inter_start), Some(inter_end)) = (&inter_start, &inter_end) {
                let start = inter_start.get(i).unwrap_or_default().to_bits() as i32;
                let end = inter_end.get(i).unwrap_or_default().to_bits() as i32;
                if start > peak || peak > end || (start < 0 && end > 0 && peak != 0) {
                    continue;
                }
                if coord < start || coord > end {
                    return None;
                }
                if coord < peak {
                    if peak != start {
                        scalar *= (coord - start) as f32 / (peak - start) as f32;
                    }
                } else if peak != end {
                    scalar *= (end - coord) as f32 / (end - peak) as f32;
                }
            } else {
                if coord < peak.min(0) || coord > peak.max(0) {
                    return None;
                }
                scalar *= coord as f32 / peak as f32;
            }
        }
        Some(scalar)
    }

    /// Iterate over the deltas for this tuple.
    ///
    /// This does not account for scaling. Returns only explicitly encoded
    /// deltas, e.g. an omission by IUP will not be present.
    pub fn deltas(&'a self) -> TupleDeltaIter<'a, T> {
        TupleDeltaIter::new(&self.point_numbers, &self.packed_deltas)
    }
}

/// An iterator over the deltas for a glyph.
#[derive(Clone, Debug)]
pub struct TupleDeltaIter<'a, T> {
    pub cur: usize,
    // if None all points get deltas, if Some specifies subset of points that do
    points: Option<PackedPointNumbersIter<'a>>,
    next_point: usize,
    x_iter: DeltaRunIter<'a>,
    y_iter: Option<Skip<DeltaRunIter<'a>>>,
    _marker: std::marker::PhantomData<fn() -> T>,
}

impl<'a, T> TupleDeltaIter<'a, T>
where
    T: TupleDelta,
{
    fn new(points: &'a PackedPointNumbers, deltas: &'a PackedDeltas) -> TupleDeltaIter<'a, T> {
        let mut points = points.iter();
        let next_point = points.next();
        let num_encoded_points = deltas.count() / 2; // x and y encoded independently
        let y_iter = T::is_point().then(|| deltas.iter().skip(num_encoded_points));
        TupleDeltaIter {
            cur: 0,
            points: next_point.map(|_| points),
            next_point: next_point.unwrap_or_default() as usize,
            x_iter: deltas.iter(),
            y_iter,
            _marker: std::marker::PhantomData,
        }
    }
}

/// Trait for deltas that are computed in a tuple variation store.
pub trait TupleDelta: Sized + Copy {
    /// Returns true if the delta is a point and requires reading two values
    /// from the packed delta stream.
    fn is_point() -> bool;

    /// Creates a new delta for the given position and coordinates. If
    /// the delta is not a point, the y value will always be zero.
    fn new(position: u16, x: i32, y: i32) -> Self;
}

impl<'a, T> Iterator for TupleDeltaIter<'a, T>
where
    T: TupleDelta,
{
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        let (position, dx, dy) = loop {
            let position = if let Some(points) = &mut self.points {
                // if we have points then result is sparse; only some points have deltas
                if self.cur > self.next_point {
                    self.next_point = points.next()? as usize;
                }
                self.next_point
            } else {
                // no points, every point has a delta. Just take the next one.
                self.cur
            };
            if position == self.cur {
                let dx = self.x_iter.next()?;
                let dy = if let Some(y_iter) = self.y_iter.as_mut() {
                    y_iter.next()?
                } else {
                    0
                };
                break (position, dx, dy);
            }
            self.cur += 1;
        };
        self.cur += 1;
        Some(T::new(position as u16, dx, dy))
    }
}

impl EntryFormat {
    pub fn entry_size(self) -> u8 {
        ((self.bits() & Self::MAP_ENTRY_SIZE_MASK.bits()) >> 4) + 1
    }

    pub fn bit_count(self) -> u8 {
        (self.bits() & Self::INNER_INDEX_BIT_COUNT_MASK.bits()) + 1
    }

    // called from codegen
    pub(crate) fn map_size(self, map_count: impl Into<u32>) -> usize {
        self.entry_size() as usize * map_count.into() as usize
    }
}

impl<'a> DeltaSetIndexMap<'a> {
    /// Returns the delta set index for the specified value.
    pub fn get(&self, index: u32) -> Result<DeltaSetIndex, ReadError> {
        let (entry_format, map_count, data) = match self {
            Self::Format0(fmt) => (fmt.entry_format(), fmt.map_count() as u32, fmt.map_data()),
            Self::Format1(fmt) => (fmt.entry_format(), fmt.map_count(), fmt.map_data()),
        };
        let entry_size = entry_format.entry_size();
        let data = FontData::new(data);
        // "if an index into the mapping array is used that is greater than or equal to
        // mapCount, then the last logical entry of the mapping array is used."
        // https://learn.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats
        // #associating-target-items-to-variation-data
        let index = index.min(map_count.saturating_sub(1));
        let offset = index as usize * entry_size as usize;
        let entry = match entry_size {
            1 => data.read_at::<u8>(offset)? as u32,
            2 => data.read_at::<u16>(offset)? as u32,
            3 => data.read_at::<Uint24>(offset)?.into(),
            4 => data.read_at::<u32>(offset)?,
            _ => {
                return Err(ReadError::MalformedData(
                    "invalid entry size in DeltaSetIndexMap",
                ))
            }
        };
        let bit_count = entry_format.bit_count();
        Ok(DeltaSetIndex {
            outer: (entry >> bit_count) as u16,
            inner: (entry & ((1 << bit_count) - 1)) as u16,
        })
    }
}

impl<'a> ItemVariationStore<'a> {
    /// Computes the delta value for the specified index and set of normalized
    /// variation coordinates.
    pub fn compute_delta(
        &self,
        index: DeltaSetIndex,
        coords: &[F2Dot14],
    ) -> Result<i32, ReadError> {
        let data = match self.item_variation_data().get(index.outer as usize) {
            Some(data) => data?,
            None => return Ok(0),
        };
        let regions = self.variation_region_list()?.variation_regions();
        let region_indices = data.region_indexes();
        // Compute deltas with 64-bit precision.
        // See <https://gitlab.freedesktop.org/freetype/freetype/-/blob/7ab541a2/src/truetype/ttgxvar.c#L1094>
        let mut accum = 0i64;
        for (i, region_delta) in data.delta_set(index.inner).enumerate() {
            let region_index = region_indices
                .get(i)
                .ok_or(ReadError::MalformedData(
                    "invalid delta sets in ItemVariationStore",
                ))?
                .get() as usize;
            let region = regions.get(region_index)?;
            let scalar = region.compute_scalar(coords);
            accum += region_delta as i64 * scalar.to_bits() as i64;
        }
        Ok(((accum + 0x8000) >> 16) as i32)
    }

    /// Computes the delta value in floating point for the specified index and set
    /// of normalized variation coordinates.
    pub fn compute_float_delta(
        &self,
        index: DeltaSetIndex,
        coords: &[F2Dot14],
    ) -> Result<FloatItemDelta, ReadError> {
        let data = match self.item_variation_data().get(index.outer as usize) {
            Some(data) => data?,
            None => return Ok(FloatItemDelta::ZERO),
        };
        let regions = self.variation_region_list()?.variation_regions();
        let region_indices = data.region_indexes();
        // Compute deltas in 64-bit floating point.
        let mut accum = 0f64;
        for (i, region_delta) in data.delta_set(index.inner).enumerate() {
            let region_index = region_indices
                .get(i)
                .ok_or(ReadError::MalformedData(
                    "invalid delta sets in ItemVariationStore",
                ))?
                .get() as usize;
            let region = regions.get(region_index)?;
            let scalar = region.compute_scalar_f32(coords);
            accum += region_delta as f64 * scalar as f64;
        }
        Ok(FloatItemDelta(accum))
    }
}

/// Floating point item delta computed by an item variation store.
///
/// These can be applied to types that implement [`FloatItemDeltaTarget`].
#[derive(Copy, Clone, Default, Debug)]
pub struct FloatItemDelta(f64);

impl FloatItemDelta {
    pub const ZERO: Self = Self(0.0);
}

/// Trait for applying floating point item deltas to target values.
pub trait FloatItemDeltaTarget {
    fn apply_float_delta(&self, delta: FloatItemDelta) -> f32;
}

impl FloatItemDeltaTarget for Fixed {
    fn apply_float_delta(&self, delta: FloatItemDelta) -> f32 {
        const FIXED_TO_FLOAT: f64 = 1.0 / 65536.0;
        self.to_f32() + (delta.0 * FIXED_TO_FLOAT) as f32
    }
}

impl FloatItemDeltaTarget for FWord {
    fn apply_float_delta(&self, delta: FloatItemDelta) -> f32 {
        self.to_i16() as f32 + delta.0 as f32
    }
}

impl FloatItemDeltaTarget for UfWord {
    fn apply_float_delta(&self, delta: FloatItemDelta) -> f32 {
        self.to_u16() as f32 + delta.0 as f32
    }
}

impl FloatItemDeltaTarget for F2Dot14 {
    fn apply_float_delta(&self, delta: FloatItemDelta) -> f32 {
        const F2DOT14_TO_FLOAT: f64 = 1.0 / 16384.0;
        self.to_f32() + (delta.0 * F2DOT14_TO_FLOAT) as f32
    }
}

impl<'a> VariationRegion<'a> {
    /// Computes a scalar value for this region and the specified
    /// normalized variation coordinates.
    pub fn compute_scalar(&self, coords: &[F2Dot14]) -> Fixed {
        const ZERO: Fixed = Fixed::ZERO;
        let mut scalar = Fixed::ONE;
        for (i, axis_coords) in self.region_axes().iter().enumerate() {
            let coord = coords.get(i).map(|coord| coord.to_fixed()).unwrap_or(ZERO);
            let start = axis_coords.start_coord.get().to_fixed();
            let end = axis_coords.end_coord.get().to_fixed();
            let peak = axis_coords.peak_coord.get().to_fixed();
            if start > peak || peak > end || peak == ZERO || start < ZERO && end > ZERO {
                continue;
            } else if coord < start || coord > end {
                return ZERO;
            } else if coord == peak {
                continue;
            } else if coord < peak {
                scalar = scalar.mul_div(coord - start, peak - start);
            } else {
                scalar = scalar.mul_div(end - coord, end - peak);
            }
        }
        scalar
    }

    /// Computes a floating point scalar value for this region and the
    /// specified normalized variation coordinates.
    pub fn compute_scalar_f32(&self, coords: &[F2Dot14]) -> f32 {
        let mut scalar = 1.0;
        for (i, axis_coords) in self.region_axes().iter().enumerate() {
            let coord = coords.get(i).map(|coord| coord.to_f32()).unwrap_or(0.0);
            let start = axis_coords.start_coord.get().to_f32();
            let end = axis_coords.end_coord.get().to_f32();
            let peak = axis_coords.peak_coord.get().to_f32();
            if start > peak || peak > end || peak == 0.0 || start < 0.0 && end > 0.0 {
                continue;
            } else if coord < start || coord > end {
                return 0.0;
            } else if coord == peak {
                continue;
            } else if coord < peak {
                scalar = (scalar * (coord - start)) / (peak - start);
            } else {
                scalar = (scalar * (end - coord)) / (end - peak);
            }
        }
        scalar
    }
}

impl<'a> ItemVariationData<'a> {
    /// Returns an iterator over the per-region delta values for the specified
    /// inner index.
    pub fn delta_set(&self, inner_index: u16) -> impl Iterator<Item = i32> + 'a + Clone {
        let word_delta_count = self.word_delta_count();
        let region_count = self.region_index_count();
        let bytes_per_row = Self::delta_row_len(word_delta_count, region_count);
        let long_words = word_delta_count & 0x8000 != 0;
        let word_delta_count = word_delta_count & 0x7FFF;

        let offset = bytes_per_row * inner_index as usize;
        ItemDeltas {
            cursor: FontData::new(self.delta_sets())
                .slice(offset..)
                .unwrap_or_default()
                .cursor(),
            word_delta_count,
            long_words,
            len: region_count,
            pos: 0,
        }
    }

    /// the length of one delta set
    fn delta_row_len(word_delta_count: u16, region_index_count: u16) -> usize {
        let region_count = region_index_count as usize;
        let long_words = word_delta_count & 0x8000 != 0;
        let (word_size, small_size) = if long_words { (4, 2) } else { (2, 1) };
        let long_delta_count = (word_delta_count & 0x7FFF) as usize;
        let short_delta_count = region_count.saturating_sub(long_delta_count);
        long_delta_count * word_size + short_delta_count * small_size
    }

    // called from generated code: compute the length in bytes of the delta_sets data
    fn delta_sets_len(item_count: u16, word_delta_count: u16, region_index_count: u16) -> usize {
        let bytes_per_row = Self::delta_row_len(word_delta_count, region_index_count);
        bytes_per_row * item_count as usize
    }
}

#[derive(Clone)]
struct ItemDeltas<'a> {
    cursor: Cursor<'a>,
    word_delta_count: u16,
    long_words: bool,
    len: u16,
    pos: u16,
}

impl<'a> Iterator for ItemDeltas<'a> {
    type Item = i32;

    fn next(&mut self) -> Option<Self::Item> {
        if self.pos >= self.len {
            return None;
        }
        let pos = self.pos;
        self.pos += 1;
        let value = match (pos >= self.word_delta_count, self.long_words) {
            (true, true) | (false, false) => self.cursor.read::<i16>().ok()? as i32,
            (true, false) => self.cursor.read::<i8>().ok()? as i32,
            (false, true) => self.cursor.read::<i32>().ok()?,
        };
        Some(value)
    }
}

pub(crate) fn advance_delta(
    dsim: Option<Result<DeltaSetIndexMap, ReadError>>,
    ivs: Result<ItemVariationStore, ReadError>,
    glyph_id: GlyphId,
    coords: &[F2Dot14],
) -> Result<Fixed, ReadError> {
    let gid = glyph_id.to_u32();
    let ix = match dsim {
        Some(Ok(dsim)) => dsim.get(gid)?,
        _ => DeltaSetIndex {
            outer: 0,
            inner: gid as _,
        },
    };
    Ok(Fixed::from_i32(ivs?.compute_delta(ix, coords)?))
}

pub(crate) fn item_delta(
    dsim: Option<Result<DeltaSetIndexMap, ReadError>>,
    ivs: Result<ItemVariationStore, ReadError>,
    glyph_id: GlyphId,
    coords: &[F2Dot14],
) -> Result<Fixed, ReadError> {
    let gid = glyph_id.to_u32();
    let ix = match dsim {
        Some(Ok(dsim)) => dsim.get(gid)?,
        _ => return Err(ReadError::NullOffset),
    };
    Ok(Fixed::from_i32(ivs?.compute_delta(ix, coords)?))
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{test_helpers::BeBuffer, FontRef, TableProvider};

    #[test]
    fn ivs_regions() {
        let font = FontRef::new(font_test_data::VAZIRMATN_VAR).unwrap();
        let hvar = font.hvar().expect("missing HVAR table");
        let ivs = hvar
            .item_variation_store()
            .expect("missing item variation store in HVAR");
        let region_list = ivs.variation_region_list().expect("missing region list!");
        let regions = region_list.variation_regions();
        let expected = &[
            // start_coord, peak_coord, end_coord
            vec![[-1.0f32, -1.0, 0.0]],
            vec![[0.0, 1.0, 1.0]],
        ][..];
        let region_coords = regions
            .iter()
            .map(|region| {
                region
                    .unwrap()
                    .region_axes()
                    .iter()
                    .map(|coords| {
                        [
                            coords.start_coord().to_f32(),
                            coords.peak_coord().to_f32(),
                            coords.end_coord().to_f32(),
                        ]
                    })
                    .collect::<Vec<_>>()
            })
            .collect::<Vec<_>>();
        assert_eq!(expected, &region_coords);
    }

    // adapted from https://github.com/fonttools/fonttools/blob/f73220816264fc383b8a75f2146e8d69e455d398/Tests/ttLib/tables/TupleVariation_test.py#L492
    #[test]
    fn packed_points() {
        fn decode_points(bytes: &[u8]) -> Option<Vec<u16>> {
            let data = FontData::new(bytes);
            let packed = PackedPointNumbers { data };
            if packed.count() == 0 {
                None
            } else {
                Some(packed.iter().collect())
            }
        }

        assert_eq!(decode_points(&[0]), None);
        // all points in glyph (in overly verbose encoding, not explicitly prohibited by spec)
        assert_eq!(decode_points(&[0x80, 0]), None);
        // 2 points; first run: [9, 9+6]
        assert_eq!(decode_points(&[0x02, 0x01, 0x09, 0x06]), Some(vec![9, 15]));
        // 2 points; first run: [0xBEEF, 0xCAFE]. (0x0C0F = 0xCAFE - 0xBEEF)
        assert_eq!(
            decode_points(&[0x02, 0x81, 0xbe, 0xef, 0x0c, 0x0f]),
            Some(vec![0xbeef, 0xcafe])
        );
        // 1 point; first run: [7]
        assert_eq!(decode_points(&[0x01, 0, 0x07]), Some(vec![7]));
        // 1 point; first run: [7] in overly verbose encoding
        assert_eq!(decode_points(&[0x01, 0x80, 0, 0x07]), Some(vec![7]));
        // 1 point; first run: [65535]; requires words to be treated as unsigned numbers
        assert_eq!(decode_points(&[0x01, 0x80, 0xff, 0xff]), Some(vec![65535]));
        // 4 points; first run: [7, 8]; second run: [255, 257]. 257 is stored in delta-encoded bytes (0xFF + 2).
        assert_eq!(
            decode_points(&[0x04, 1, 7, 1, 1, 0xff, 2]),
            Some(vec![7, 8, 263, 265])
        );
    }

    #[test]
    fn packed_point_byte_len() {
        fn count_bytes(bytes: &[u8]) -> usize {
            let packed = PackedPointNumbers {
                data: FontData::new(bytes),
            };
            packed.total_len()
        }

        static CASES: &[&[u8]] = &[
            &[0],
            &[0x80, 0],
            &[0x02, 0x01, 0x09, 0x06],
            &[0x02, 0x81, 0xbe, 0xef, 0x0c, 0x0f],
            &[0x01, 0, 0x07],
            &[0x01, 0x80, 0, 0x07],
            &[0x01, 0x80, 0xff, 0xff],
            &[0x04, 1, 7, 1, 1, 0xff, 2],
        ];

        for case in CASES {
            assert_eq!(count_bytes(case), case.len(), "{case:?}");
        }
    }

    // https://github.com/fonttools/fonttools/blob/c30a6355ffdf7f09d31e7719975b4b59bac410af/Tests/ttLib/tables/TupleVariation_test.py#L670
    #[test]
    fn packed_deltas() {
        static INPUT: FontData = FontData::new(&[0x83, 0x40, 0x01, 0x02, 0x01, 0x81, 0x80]);

        let deltas = PackedDeltas::consume_all(INPUT);
        assert_eq!(deltas.count, 7);
        assert_eq!(
            deltas.iter().collect::<Vec<_>>(),
            &[0, 0, 0, 0, 258, -127, -128]
        );

        assert_eq!(
            PackedDeltas::consume_all(FontData::new(&[0x81]))
                .iter()
                .collect::<Vec<_>>(),
            &[0, 0,]
        );
    }

    // https://learn.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#packed-deltas
    #[test]
    fn packed_deltas_spec() {
        static INPUT: FontData = FontData::new(&[
            0x03, 0x0A, 0x97, 0x00, 0xC6, 0x87, 0x41, 0x10, 0x22, 0xFB, 0x34,
        ]);
        static EXPECTED: &[i32] = &[10, -105, 0, -58, 0, 0, 0, 0, 0, 0, 0, 0, 4130, -1228];

        let deltas = PackedDeltas::consume_all(INPUT);
        assert_eq!(deltas.count, EXPECTED.len());
        assert_eq!(deltas.iter().collect::<Vec<_>>(), EXPECTED);
    }

    #[test]
    fn packed_point_split() {
        static INPUT: FontData =
            FontData::new(&[2, 1, 1, 2, 1, 205, 143, 1, 8, 0, 1, 202, 59, 1, 255, 0]);
        let (points, data) = PackedPointNumbers::split_off_front(INPUT);
        assert_eq!(points.count(), 2);
        assert_eq!(points.iter().collect::<Vec<_>>(), &[1, 3]);
        assert_eq!(points.total_len(), 4);
        assert_eq!(data.len(), INPUT.len() - 4);
    }

    #[test]
    fn packed_points_dont_panic() {
        // a single '0' byte means that there are deltas for all points
        static ALL_POINTS: FontData = FontData::new(&[0]);
        let (all_points, _) = PackedPointNumbers::split_off_front(ALL_POINTS);
        // in which case the iterator just keeps incrementing until u16::MAX
        assert_eq!(all_points.iter().count(), u16::MAX as _);
    }

    /// We don't have a reference for our float delta computation, so this is
    /// a sanity test to ensure that floating point deltas are within a
    /// reasonable margin of the same in fixed point.
    #[test]
    fn ivs_float_deltas_nearly_match_fixed_deltas() {
        let font = FontRef::new(font_test_data::COLRV0V1_VARIABLE).unwrap();
        let axis_count = font.fvar().unwrap().axis_count() as usize;
        let colr = font.colr().unwrap();
        let ivs = colr.item_variation_store().unwrap().unwrap();
        // Generate a set of coords from -1 to 1 in 0.1 increments
        for coord in (0..=20).map(|x| F2Dot14::from_f32((x as f32) / 10.0 - 1.0)) {
            // For testing purposes, just splat the coord to all axes
            let coords = vec![coord; axis_count];
            for (outer_ix, data) in ivs.item_variation_data().iter().enumerate() {
                let outer_ix = outer_ix as u16;
                let Some(Ok(data)) = data else {
                    continue;
                };
                for inner_ix in 0..data.item_count() {
                    let delta_ix = DeltaSetIndex {
                        outer: outer_ix,
                        inner: inner_ix,
                    };
                    // Check the deltas against all possible target values
                    let orig_delta = ivs.compute_delta(delta_ix, &coords).unwrap();
                    let float_delta = ivs.compute_float_delta(delta_ix, &coords).unwrap();
                    // For font unit types, we need to accept both rounding and
                    // truncation to account for the additional accumulation of
                    // fractional bits in floating point
                    assert!(
                        orig_delta == float_delta.0.round() as i32
                            || orig_delta == float_delta.0.trunc() as i32
                    );
                    // For the fixed point types, check with an epsilon
                    const EPSILON: f32 = 1e12;
                    let fixed_delta = Fixed::ZERO.apply_float_delta(float_delta);
                    assert!((Fixed::from_bits(orig_delta).to_f32() - fixed_delta).abs() < EPSILON);
                    let f2dot14_delta = F2Dot14::ZERO.apply_float_delta(float_delta);
                    assert!(
                        (F2Dot14::from_bits(orig_delta as i16).to_f32() - f2dot14_delta).abs()
                            < EPSILON
                    );
                }
            }
        }
    }

    #[test]
    fn ivs_data_len_short() {
        let data = BeBuffer::new()
            .push(2u16) // item_count
            .push(3u16) // word_delta_count
            .push(5u16) // region_index_count
            .extend([0u16, 1, 2, 3, 4]) // region_indices
            .extend([1u8; 128]); // this is much more data than we need!

        let ivs = ItemVariationData::read(data.font_data()).unwrap();
        let row_len = (3 * u16::RAW_BYTE_LEN) + (2 * u8::RAW_BYTE_LEN); // 3 word deltas, 2 byte deltas
        let expected_len = 2 * row_len;
        assert_eq!(ivs.delta_sets().len(), expected_len);
    }

    #[test]
    fn ivs_data_len_long() {
        let data = BeBuffer::new()
            .push(2u16) // item_count
            .push(2u16 | 0x8000) // word_delta_count, long deltas
            .push(4u16) // region_index_count
            .extend([0u16, 1, 2]) // region_indices
            .extend([1u8; 128]); // this is much more data than we need!

        let ivs = ItemVariationData::read(data.font_data()).unwrap();
        let row_len = (2 * u32::RAW_BYTE_LEN) + (2 * u16::RAW_BYTE_LEN); // 1 word (4-byte) delta, 2 short (2-byte)
        let expected_len = 2 * row_len;
        assert_eq!(ivs.delta_sets().len(), expected_len);
    }
}