rustix/backend/linux_raw/vdso.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
//! Parse the Linux vDSO.
//!
//! The following code is transliterated from
//! tools/testing/selftests/vDSO/parse_vdso.c in Linux 5.11, which is licensed
//! with Creative Commons Zero License, version 1.0,
//! available at <https://creativecommons.org/publicdomain/zero/1.0/legalcode>
//!
//! # Safety
//!
//! Parsing the vDSO involves a lot of raw pointer manipulation. This
//! implementation follows Linux's reference implementation, and adds several
//! additional safety checks.
#![allow(unsafe_code)]
use super::c;
use crate::ffi::CStr;
use crate::utils::check_raw_pointer;
use core::ffi::c_void;
use core::mem::size_of;
use core::ptr::{null, null_mut};
use linux_raw_sys::elf::*;
pub(super) struct Vdso {
// Load information
load_addr: *const Elf_Ehdr,
load_end: *const c_void, // the end of the `PT_LOAD` segment
pv_offset: usize, // recorded paddr - recorded vaddr
// Symbol table
symtab: *const Elf_Sym,
symstrings: *const u8,
bucket: *const u32,
chain: *const u32,
nbucket: u32,
//nchain: u32,
// Version table
versym: *const u16,
verdef: *const Elf_Verdef,
}
// Straight from the ELF specification.
fn elf_hash(name: &CStr) -> u32 {
let mut h: u32 = 0;
for b in name.to_bytes() {
h = (h << 4).wrapping_add(u32::from(*b));
let g = h & 0xf000_0000;
if g != 0 {
h ^= g >> 24;
}
h &= !g;
}
h
}
/// Create a `Vdso` value by parsing the vDSO at the `sysinfo_ehdr` address.
fn init_from_sysinfo_ehdr() -> Option<Vdso> {
// SAFETY: The auxv initialization code does extensive checks to ensure
// that the value we get really is an `AT_SYSINFO_EHDR` value from the
// kernel.
unsafe {
let hdr = super::param::auxv::sysinfo_ehdr();
// If the platform doesn't provide a `AT_SYSINFO_EHDR`, we can't locate
// the vDSO.
if hdr.is_null() {
return None;
}
let mut vdso = Vdso {
load_addr: hdr,
load_end: hdr.cast(),
pv_offset: 0,
symtab: null(),
symstrings: null(),
bucket: null(),
chain: null(),
nbucket: 0,
//nchain: 0,
versym: null(),
verdef: null(),
};
let hdr = &*hdr;
let pt = check_raw_pointer::<Elf_Phdr>(vdso.base_plus(hdr.e_phoff)? as *mut _)?.as_ptr();
let mut dyn_: *const Elf_Dyn = null();
let mut num_dyn = 0;
// We need two things from the segment table: the load offset
// and the dynamic table.
let mut found_vaddr = false;
for i in 0..hdr.e_phnum {
let phdr = &*pt.add(i as usize);
if phdr.p_flags & PF_W != 0 {
// Don't trust any vDSO that claims to be loading writable
// segments into memory.
return None;
}
if phdr.p_type == PT_LOAD && !found_vaddr {
// The segment should be readable and executable, because it
// contains the symbol table and the function bodies.
if phdr.p_flags & (PF_R | PF_X) != (PF_R | PF_X) {
return None;
}
found_vaddr = true;
vdso.load_end = vdso.base_plus(phdr.p_offset.checked_add(phdr.p_memsz)?)?;
vdso.pv_offset = phdr.p_offset.wrapping_sub(phdr.p_vaddr);
} else if phdr.p_type == PT_DYNAMIC {
// If `p_offset` is zero, it's more likely that we're looking
// at memory that has been zeroed than that the kernel has
// somehow aliased the `Ehdr` and the `Elf_Dyn` array.
if phdr.p_offset < size_of::<Elf_Ehdr>() {
return None;
}
dyn_ = check_raw_pointer::<Elf_Dyn>(vdso.base_plus(phdr.p_offset)? as *mut _)?
.as_ptr();
num_dyn = phdr.p_memsz / size_of::<Elf_Dyn>();
} else if phdr.p_type == PT_INTERP || phdr.p_type == PT_GNU_RELRO {
// Don't trust any ELF image that has an “interpreter” or
// that uses RELRO, which is likely to be a user ELF image
// rather and not the kernel vDSO.
return None;
}
}
if !found_vaddr || dyn_.is_null() {
return None; // Failed
}
// Fish out the useful bits of the dynamic table.
let mut hash: *const u32 = null();
vdso.symstrings = null();
vdso.symtab = null();
vdso.versym = null();
vdso.verdef = null();
let mut i = 0;
loop {
if i == num_dyn {
return None;
}
let d = &*dyn_.add(i);
match d.d_tag {
DT_STRTAB => {
vdso.symstrings =
check_raw_pointer::<u8>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)?
.as_ptr();
}
DT_SYMTAB => {
vdso.symtab =
check_raw_pointer::<Elf_Sym>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)?
.as_ptr();
}
DT_HASH => {
hash = check_raw_pointer::<u32>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)?
.as_ptr();
}
DT_VERSYM => {
vdso.versym =
check_raw_pointer::<u16>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)?
.as_ptr();
}
DT_VERDEF => {
vdso.verdef = check_raw_pointer::<Elf_Verdef>(
vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _,
)?
.as_ptr();
}
DT_SYMENT => {
if d.d_un.d_ptr != size_of::<Elf_Sym>() {
return None; // Failed
}
}
DT_NULL => break,
_ => {}
}
i = i.checked_add(1)?;
}
// The upstream code checks `symstrings`, `symtab`, and `hash` for
// null; here, `check_raw_pointer` has already done that.
if vdso.verdef.is_null() {
vdso.versym = null();
}
// Parse the hash table header.
vdso.nbucket = *hash.add(0);
//vdso.nchain = *hash.add(1);
vdso.bucket = hash.add(2);
vdso.chain = hash.add(vdso.nbucket as usize + 2);
// That's all we need.
Some(vdso)
}
}
impl Vdso {
/// Parse the vDSO.
///
/// Returns `None` if the vDSO can't be located or if it doesn't conform to
/// our expectations.
#[inline]
pub(super) fn new() -> Option<Self> {
init_from_sysinfo_ehdr()
}
/// Check the version for a symbol.
///
/// # Safety
///
/// The raw pointers inside `self` must be valid.
unsafe fn match_version(&self, mut ver: u16, name: &CStr, hash: u32) -> bool {
// This is a helper function to check if the version indexed by
// ver matches name (which hashes to hash).
//
// The version definition table is a mess, and I don't know how
// to do this in better than linear time without allocating memory
// to build an index. I also don't know why the table has
// variable size entries in the first place.
//
// For added fun, I can't find a comprehensible specification of how
// to parse all the weird flags in the table.
//
// So I just parse the whole table every time.
// First step: find the version definition
ver &= 0x7fff; // Apparently bit 15 means "hidden"
let mut def = self.verdef;
loop {
if (*def).vd_version != VER_DEF_CURRENT {
return false; // Failed
}
if ((*def).vd_flags & VER_FLG_BASE) == 0 && ((*def).vd_ndx & 0x7fff) == ver {
break;
}
if (*def).vd_next == 0 {
return false; // No definition.
}
def = def
.cast::<u8>()
.add((*def).vd_next as usize)
.cast::<Elf_Verdef>();
}
// Now figure out whether it matches.
let aux = &*(def.cast::<u8>())
.add((*def).vd_aux as usize)
.cast::<Elf_Verdaux>();
(*def).vd_hash == hash
&& (name == CStr::from_ptr(self.symstrings.add(aux.vda_name as usize).cast()))
}
/// Look up a symbol in the vDSO.
pub(super) fn sym(&self, version: &CStr, name: &CStr) -> *mut c::c_void {
let ver_hash = elf_hash(version);
let name_hash = elf_hash(name);
// SAFETY: The pointers in `self` must be valid.
unsafe {
let mut chain = *self.bucket.add((name_hash % self.nbucket) as usize);
while chain != STN_UNDEF {
let sym = &*self.symtab.add(chain as usize);
// Check for a defined global or weak function w/ right name.
//
// The reference parser in Linux's parse_vdso.c requires
// symbols to have type `STT_FUNC`, but on powerpc64, the vDSO
// uses `STT_NOTYPE`, so allow that too.
if (ELF_ST_TYPE(sym.st_info) != STT_FUNC &&
ELF_ST_TYPE(sym.st_info) != STT_NOTYPE)
|| (ELF_ST_BIND(sym.st_info) != STB_GLOBAL
&& ELF_ST_BIND(sym.st_info) != STB_WEAK)
|| sym.st_shndx == SHN_UNDEF
|| sym.st_shndx == SHN_ABS
|| ELF_ST_VISIBILITY(sym.st_other) != STV_DEFAULT
|| (name != CStr::from_ptr(self.symstrings.add(sym.st_name as usize).cast()))
// Check symbol version.
|| (!self.versym.is_null()
&& !self.match_version(*self.versym.add(chain as usize), version, ver_hash))
{
chain = *self.chain.add(chain as usize);
continue;
}
let sum = self.addr_from_elf(sym.st_value).unwrap();
assert!(
sum as usize >= self.load_addr as usize
&& sum as usize <= self.load_end as usize
);
return sum as *mut c::c_void;
}
}
null_mut()
}
/// Add the given address to the vDSO base address.
unsafe fn base_plus(&self, offset: usize) -> Option<*const c_void> {
// Check for overflow.
let _ = (self.load_addr as usize).checked_add(offset)?;
// Add the offset to the base.
Some(self.load_addr.cast::<u8>().add(offset).cast())
}
/// Translate an ELF-address-space address into a usable virtual address.
unsafe fn addr_from_elf(&self, elf_addr: usize) -> Option<*const c_void> {
self.base_plus(elf_addr.wrapping_add(self.pv_offset))
}
}