skrifa/color/
transform.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
//! Contains a [`Transform`] object holding values of an affine transformation matrix.
use std::ops::{Mul, MulAssign};

use read_fonts::ReadError;

use super::instance::ResolvedPaint;

#[cfg(feature = "libm")]
#[allow(unused_imports)]
use core_maths::*;

#[cfg(test)]
use serde::{Deserialize, Serialize};

#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(test, derive(Serialize, Deserialize))]
/// A transformation matrix to be applied to the drawing canvas.
///
/// Factors are specified in column-order, meaning that
/// for a vector `(x,y)` the transformed position `x'` of the vector
/// is calculated by
/// `x' = xx * x + xy * y + dx`,
/// and the transformed position y' is calculated by
/// `y' = yx * x + yy * y + dy`.
#[derive(Copy)]
pub struct Transform {
    pub xx: f32,
    pub yx: f32,
    pub xy: f32,
    pub yy: f32,
    pub dx: f32,
    pub dy: f32,
}

impl MulAssign for Transform {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl Mul for Transform {
    type Output = Self;

    fn mul(self, rhs: Self) -> Self::Output {
        fn muladdmul(a: f32, b: f32, c: f32, d: f32) -> f32 {
            a * b + c * d
        }
        Self {
            xx: muladdmul(self.xx, rhs.xx, self.xy, rhs.yx),
            xy: muladdmul(self.xx, rhs.xy, self.xy, rhs.yy),
            dx: muladdmul(self.xx, rhs.dx, self.xy, rhs.dy) + self.dx,
            yx: muladdmul(self.yx, rhs.xx, self.yy, rhs.yx),
            yy: muladdmul(self.yx, rhs.xy, self.yy, rhs.yy),
            dy: muladdmul(self.yx, rhs.dx, self.yy, rhs.dy) + self.dy,
        }
    }
}

impl Default for Transform {
    fn default() -> Self {
        Transform {
            xx: 1.0,
            yx: 0.0,
            xy: 0.0,
            yy: 1.0,
            dx: 0.0,
            dy: 0.0,
        }
    }
}

impl TryFrom<&ResolvedPaint<'_>> for Transform {
    type Error = ReadError;

    fn try_from(paint: &ResolvedPaint<'_>) -> Result<Self, Self::Error> {
        match paint {
            ResolvedPaint::Rotate {
                angle,
                around_center,
                ..
            } => {
                let sin_v = (angle * 180.0).to_radians().sin();
                let cos_v = (angle * 180.0).to_radians().cos();
                let mut out_transform = Transform {
                    xx: cos_v,
                    xy: -sin_v,
                    yx: sin_v,
                    yy: cos_v,
                    ..Default::default()
                };

                fn scalar_dot_product(a: f32, b: f32, c: f32, d: f32) -> f32 {
                    a * b + c * d
                }

                if let Some(center) = around_center {
                    out_transform.dx = scalar_dot_product(sin_v, center.y, 1.0 - cos_v, center.x);
                    out_transform.dy = scalar_dot_product(-sin_v, center.x, 1.0 - cos_v, center.y);
                }
                Ok(out_transform)
            }
            ResolvedPaint::Scale {
                scale_x,
                scale_y,
                around_center,
                paint: _,
            } => {
                let mut out_transform = Transform {
                    xx: *scale_x,
                    yy: *scale_y,
                    ..Transform::default()
                };

                if let Some(center) = around_center {
                    out_transform.dx = center.x - scale_x * center.x;
                    out_transform.dy = center.y - scale_y * center.y;
                }
                Ok(out_transform)
            }
            ResolvedPaint::Skew {
                x_skew_angle,
                y_skew_angle,
                around_center,
                paint: _,
            } => {
                let tan_x = (x_skew_angle * 180.0).to_radians().tan();
                let tan_y = (y_skew_angle * 180.0).to_radians().tan();
                let mut out_transform = Transform {
                    xy: -tan_x,
                    yx: tan_y,
                    ..Transform::default()
                };

                if let Some(center) = around_center {
                    out_transform.dx = tan_x * center.y;
                    out_transform.dy = -tan_y * center.x;
                }
                Ok(out_transform)
            }
            ResolvedPaint::Transform {
                xx,
                yx,
                xy,
                yy,
                dx,
                dy,
                paint: _,
            } => Ok(Transform {
                xx: *xx,
                yx: *yx,
                xy: *xy,
                yy: *yy,
                dx: *dx,
                dy: *dy,
            }),
            ResolvedPaint::Translate { dx, dy, .. } => Ok(Transform {
                dx: *dx,
                dy: *dy,
                ..Default::default()
            }),
            _ => Err(ReadError::MalformedData(
                "ResolvedPaint cannot be converted into a transform.",
            )),
        }
    }
}