skrifa/outline/glyf/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
//! Scaling support for TrueType outlines.

mod deltas;
mod hint;
mod memory;
mod outline;

#[cfg(feature = "libm")]
#[allow(unused_imports)]
use core_maths::CoreFloat;

pub use hint::{HintError, HintInstance, HintOutline};
pub use outline::{Outline, ScaledOutline};

use super::{common::OutlinesCommon, DrawError, Hinting};
use crate::GLYF_COMPOSITE_RECURSION_LIMIT;
use memory::{FreeTypeOutlineMemory, HarfBuzzOutlineMemory};

use read_fonts::{
    tables::{
        glyf::{
            Anchor, CompositeGlyph, CompositeGlyphFlags, Glyf, Glyph, PointMarker, SimpleGlyph,
        },
        gvar::Gvar,
        hdmx::Hdmx,
        loca::Loca,
    },
    types::{F26Dot6, F2Dot14, Fixed, GlyphId, Point, Tag},
    TableProvider,
};

/// Number of phantom points generated at the end of an outline.
pub const PHANTOM_POINT_COUNT: usize = 4;

/// Scaler state for TrueType outlines.
#[derive(Clone)]
pub struct Outlines<'a> {
    pub(crate) common: OutlinesCommon<'a>,
    loca: Loca<'a>,
    glyf: Glyf<'a>,
    gvar: Option<Gvar<'a>>,
    hdmx: Option<Hdmx<'a>>,
    fpgm: &'a [u8],
    prep: &'a [u8],
    cvt_len: u32,
    max_function_defs: u16,
    max_instruction_defs: u16,
    max_twilight_points: u16,
    max_stack_elements: u16,
    max_storage: u16,
    glyph_count: u16,
    units_per_em: u16,
    os2_vmetrics: [i16; 2],
    has_var_lsb: bool,
    prefer_interpreter: bool,
}

impl<'a> Outlines<'a> {
    pub fn new(common: &OutlinesCommon<'a>) -> Option<Self> {
        let font = &common.font;
        let has_var_lsb = common
            .hvar
            .as_ref()
            .map(|hvar| hvar.lsb_mapping().is_some())
            .unwrap_or_default();
        let (
            glyph_count,
            max_function_defs,
            max_instruction_defs,
            max_twilight_points,
            max_stack_elements,
            max_storage,
            max_instructions,
        ) = font
            .maxp()
            .map(|maxp| {
                (
                    maxp.num_glyphs(),
                    maxp.max_function_defs().unwrap_or_default(),
                    maxp.max_instruction_defs().unwrap_or_default(),
                    // Add 4 for phantom points
                    // See <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttobjs.c#L1188>
                    maxp.max_twilight_points()
                        .unwrap_or_default()
                        .saturating_add(4),
                    // Add 32 to match FreeType's heuristic for buggy fonts
                    // See <https://gitlab.freedesktop.org/freetype/freetype/-/blob/80a507a6b8e3d2906ad2c8ba69329bd2fb2a85ef/src/truetype/ttinterp.c#L356>
                    maxp.max_stack_elements()
                        .unwrap_or_default()
                        .saturating_add(32),
                    maxp.max_storage().unwrap_or_default(),
                    maxp.max_size_of_instructions().unwrap_or_default(),
                )
            })
            .unwrap_or_default();
        let os2_vmetrics = font
            .os2()
            .map(|os2| [os2.s_typo_ascender(), os2.s_typo_descender()])
            .unwrap_or_default();
        let fpgm = font
            .data_for_tag(Tag::new(b"fpgm"))
            .unwrap_or_default()
            .as_bytes();
        let prep = font
            .data_for_tag(Tag::new(b"prep"))
            .unwrap_or_default()
            .as_bytes();
        // Copy FreeType's logic on whether to use the interpreter:
        // <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/base/ftobjs.c#L1001>
        let prefer_interpreter = !(max_instructions == 0 && fpgm.is_empty() && prep.is_empty());
        let cvt_len = common.cvt().len() as u32;
        Some(Self {
            common: common.clone(),
            loca: font.loca(None).ok()?,
            glyf: font.glyf().ok()?,
            gvar: font.gvar().ok(),
            hdmx: font.hdmx().ok(),
            fpgm,
            prep,
            cvt_len,
            max_function_defs,
            max_instruction_defs,
            max_twilight_points,
            max_stack_elements,
            max_storage,
            glyph_count,
            units_per_em: font.head().ok()?.units_per_em(),
            os2_vmetrics,
            has_var_lsb,
            prefer_interpreter,
        })
    }

    pub fn units_per_em(&self) -> u16 {
        self.units_per_em
    }

    pub fn glyph_count(&self) -> usize {
        self.glyph_count as usize
    }

    pub fn prefer_interpreter(&self) -> bool {
        self.prefer_interpreter
    }

    pub fn outline(&self, glyph_id: GlyphId) -> Result<Outline<'a>, DrawError> {
        let mut outline = Outline {
            glyph_id,
            has_variations: self.gvar.is_some(),
            ..Default::default()
        };
        let glyph = self.loca.get_glyf(glyph_id, &self.glyf)?;
        if glyph.is_none() {
            return Ok(outline);
        }
        self.outline_rec(glyph.as_ref().unwrap(), &mut outline, 0, 0)?;
        if outline.points != 0 {
            outline.points += PHANTOM_POINT_COUNT;
        }
        outline.max_stack = self.max_stack_elements as usize;
        outline.cvt_count = self.cvt_len as usize;
        outline.storage_count = self.max_storage as usize;
        outline.max_twilight_points = self.max_twilight_points as usize;
        outline.glyph = glyph;
        Ok(outline)
    }

    pub fn compute_scale(&self, ppem: Option<f32>) -> (bool, F26Dot6) {
        if let Some(ppem) = ppem {
            if self.units_per_em > 0 {
                return (
                    true,
                    F26Dot6::from_bits((ppem * 64.) as i32)
                        / F26Dot6::from_bits(self.units_per_em as i32),
                );
            }
        }
        (false, F26Dot6::from_bits(0x10000))
    }
}

impl<'a> Outlines<'a> {
    fn outline_rec(
        &self,
        glyph: &Glyph,
        outline: &mut Outline,
        component_depth: usize,
        recurse_depth: usize,
    ) -> Result<(), DrawError> {
        if recurse_depth > GLYF_COMPOSITE_RECURSION_LIMIT {
            return Err(DrawError::RecursionLimitExceeded(outline.glyph_id));
        }
        match glyph {
            Glyph::Simple(simple) => {
                let num_points = simple.num_points();
                let num_points_with_phantom = num_points + PHANTOM_POINT_COUNT;
                outline.max_simple_points = outline.max_simple_points.max(num_points_with_phantom);
                outline.points += num_points;
                outline.contours += simple.end_pts_of_contours().len();
                outline.has_hinting = outline.has_hinting || simple.instruction_length() != 0;
                outline.max_other_points = outline.max_other_points.max(num_points_with_phantom);
                outline.has_overlaps |= simple.has_overlapping_contours();
            }
            Glyph::Composite(composite) => {
                let (mut count, instructions) = composite.count_and_instructions();
                count += PHANTOM_POINT_COUNT;
                let point_base = outline.points;
                for (component, flags) in composite.component_glyphs_and_flags() {
                    outline.has_overlaps |= flags.contains(CompositeGlyphFlags::OVERLAP_COMPOUND);
                    let component_glyph = self.loca.get_glyf(component.into(), &self.glyf)?;
                    let Some(component_glyph) = component_glyph else {
                        continue;
                    };
                    self.outline_rec(
                        &component_glyph,
                        outline,
                        component_depth + count,
                        recurse_depth + 1,
                    )?;
                }
                let has_hinting = !instructions.unwrap_or_default().is_empty();
                if has_hinting {
                    // We only need the "other points" buffers if the
                    // composite glyph has instructions.
                    let num_points_in_composite = outline.points - point_base + PHANTOM_POINT_COUNT;
                    outline.max_other_points =
                        outline.max_other_points.max(num_points_in_composite);
                }
                outline.max_component_delta_stack = outline
                    .max_component_delta_stack
                    .max(component_depth + count);
                outline.has_hinting = outline.has_hinting || has_hinting;
            }
        }
        Ok(())
    }

    fn hdmx_width(&self, ppem: f32, glyph_id: GlyphId) -> Option<u8> {
        let hdmx = self.hdmx.as_ref()?;
        let ppem_u8 = ppem as u8;
        // Make sure our ppem is integral and fits into u8
        if ppem_u8 as f32 == ppem {
            // <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttgload.c#L1996>
            hdmx.record_for_size(ppem_u8)?
                .widths
                .get(glyph_id.to_u32() as usize)
                .copied()
        } else {
            None
        }
    }
}

trait Scaler {
    fn coords(&self) -> &[F2Dot14];
    fn outlines(&self) -> &Outlines;
    fn setup_phantom_points(
        &mut self,
        bounds: [i16; 4],
        lsb: i32,
        advance: i32,
        tsb: i32,
        vadvance: i32,
    );
    fn load_empty(&mut self, glyph_id: GlyphId) -> Result<(), DrawError>;
    fn load_simple(&mut self, glyph: &SimpleGlyph, glyph_id: GlyphId) -> Result<(), DrawError>;
    fn load_composite(
        &mut self,
        glyph: &CompositeGlyph,
        glyph_id: GlyphId,
        recurse_depth: usize,
    ) -> Result<(), DrawError>;

    fn load(
        &mut self,
        glyph: &Option<Glyph>,
        glyph_id: GlyphId,
        recurse_depth: usize,
    ) -> Result<(), DrawError> {
        if recurse_depth > GLYF_COMPOSITE_RECURSION_LIMIT {
            return Err(DrawError::RecursionLimitExceeded(glyph_id));
        }
        let bounds = match &glyph {
            Some(glyph) => [glyph.x_min(), glyph.x_max(), glyph.y_min(), glyph.y_max()],
            _ => [0; 4],
        };
        let outlines = self.outlines();
        let coords: &[F2Dot14] = self.coords();
        let lsb = outlines.common.lsb(glyph_id, coords);
        let advance = outlines.common.advance_width(glyph_id, coords);
        let [ascent, descent] = outlines.os2_vmetrics.map(|x| x as i32);
        let tsb = ascent - bounds[3] as i32;
        let vadvance = ascent - descent;
        self.setup_phantom_points(bounds, lsb, advance, tsb, vadvance);
        match glyph {
            Some(Glyph::Simple(simple)) => self.load_simple(simple, glyph_id),
            Some(Glyph::Composite(composite)) => {
                self.load_composite(composite, glyph_id, recurse_depth)
            }
            None => self.load_empty(glyph_id),
        }
    }
}

/// f32 all the things. Hold your rounding. No hinting.
pub(crate) struct HarfBuzzScaler<'a> {
    outlines: &'a Outlines<'a>,
    memory: HarfBuzzOutlineMemory<'a>,
    coords: &'a [F2Dot14],
    point_count: usize,
    contour_count: usize,
    component_delta_count: usize,
    ppem: f32,
    scale: F26Dot6,
    is_scaled: bool,
    /// Phantom points. These are 4 extra points appended to the end of an
    /// outline that allow the bytecode interpreter to produce hinted
    /// metrics.
    ///
    /// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructing_glyphs#phantom-points>
    phantom: [Point<f32>; PHANTOM_POINT_COUNT],
}

impl<'a> HarfBuzzScaler<'a> {
    pub(crate) fn unhinted(
        outlines: &'a Outlines<'a>,
        outline: &'a Outline,
        buf: &'a mut [u8],
        ppem: Option<f32>,
        coords: &'a [F2Dot14],
    ) -> Result<Self, DrawError> {
        let (is_scaled, scale) = outlines.compute_scale(ppem);
        let memory =
            HarfBuzzOutlineMemory::new(outline, buf).ok_or(DrawError::InsufficientMemory)?;
        Ok(Self {
            outlines,
            memory,
            coords,
            point_count: 0,
            contour_count: 0,
            component_delta_count: 0,
            ppem: ppem.unwrap_or_default(),
            scale,
            is_scaled,
            phantom: Default::default(),
        })
    }

    pub(crate) fn scale(
        mut self,
        glyph: &Option<Glyph>,
        glyph_id: GlyphId,
    ) -> Result<ScaledOutline<'a, f32>, DrawError> {
        self.load(glyph, glyph_id, 0)?;
        Ok(ScaledOutline::new(
            &mut self.memory.points[..self.point_count],
            self.phantom,
            &mut self.memory.flags[..self.point_count],
            &mut self.memory.contours[..self.contour_count],
            self.outlines.hdmx_width(self.ppem, glyph_id),
        ))
    }
}

/// F26Dot6 coords, Fixed deltas, and a penchant for rounding
pub(crate) struct FreeTypeScaler<'a> {
    outlines: &'a Outlines<'a>,
    memory: FreeTypeOutlineMemory<'a>,
    coords: &'a [F2Dot14],
    point_count: usize,
    contour_count: usize,
    component_delta_count: usize,
    ppem: f32,
    scale: F26Dot6,
    is_scaled: bool,
    is_hinted: bool,
    pedantic_hinting: bool,
    /// Phantom points. These are 4 extra points appended to the end of an
    /// outline that allow the bytecode interpreter to produce hinted
    /// metrics.
    ///
    /// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructing_glyphs#phantom-points>
    phantom: [Point<F26Dot6>; PHANTOM_POINT_COUNT],
    hinter: Option<&'a HintInstance>,
}

impl<'a> FreeTypeScaler<'a> {
    pub(crate) fn unhinted(
        outlines: &'a Outlines<'a>,
        outline: &'a Outline,
        buf: &'a mut [u8],
        ppem: Option<f32>,
        coords: &'a [F2Dot14],
    ) -> Result<Self, DrawError> {
        let (is_scaled, scale) = outlines.compute_scale(ppem);
        let memory = FreeTypeOutlineMemory::new(outline, buf, Hinting::None)
            .ok_or(DrawError::InsufficientMemory)?;
        Ok(Self {
            outlines,
            memory,
            coords,
            point_count: 0,
            contour_count: 0,
            component_delta_count: 0,
            ppem: ppem.unwrap_or_default(),
            scale,
            is_scaled,
            is_hinted: false,
            pedantic_hinting: false,
            phantom: Default::default(),
            hinter: None,
        })
    }

    pub(crate) fn hinted(
        outlines: &'a Outlines<'a>,
        outline: &'a Outline,
        buf: &'a mut [u8],
        ppem: Option<f32>,
        coords: &'a [F2Dot14],
        hinter: &'a HintInstance,
        pedantic_hinting: bool,
    ) -> Result<Self, DrawError> {
        let (is_scaled, scale) = outlines.compute_scale(ppem);
        let memory = FreeTypeOutlineMemory::new(outline, buf, Hinting::Embedded)
            .ok_or(DrawError::InsufficientMemory)?;
        Ok(Self {
            outlines,
            memory,
            coords,
            point_count: 0,
            contour_count: 0,
            component_delta_count: 0,
            ppem: ppem.unwrap_or_default(),
            scale,
            is_scaled,
            // We don't hint unscaled outlines
            is_hinted: is_scaled,
            pedantic_hinting,
            phantom: Default::default(),
            hinter: Some(hinter),
        })
    }

    pub(crate) fn scale(
        mut self,
        glyph: &Option<Glyph>,
        glyph_id: GlyphId,
    ) -> Result<ScaledOutline<'a, F26Dot6>, DrawError> {
        self.load(glyph, glyph_id, 0)?;
        Ok(ScaledOutline::new(
            &mut self.memory.scaled[..self.point_count],
            self.phantom,
            &mut self.memory.flags[..self.point_count],
            &mut self.memory.contours[..self.contour_count],
            self.outlines.hdmx_width(self.ppem, glyph_id),
        ))
    }
}

impl<'a> Scaler for FreeTypeScaler<'a> {
    fn setup_phantom_points(
        &mut self,
        bounds: [i16; 4],
        lsb: i32,
        advance: i32,
        tsb: i32,
        vadvance: i32,
    ) {
        // The four "phantom" points as computed by FreeType.
        // See <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttgload.c#L1365>
        // horizontal:
        self.phantom[0].x = F26Dot6::from_bits(bounds[0] as i32 - lsb);
        self.phantom[0].y = F26Dot6::ZERO;
        self.phantom[1].x = self.phantom[0].x + F26Dot6::from_bits(advance);
        self.phantom[1].y = F26Dot6::ZERO;
        // vertical:
        self.phantom[2].x = F26Dot6::ZERO;
        self.phantom[2].y = F26Dot6::from_bits(bounds[3] as i32 + tsb);
        self.phantom[3].x = F26Dot6::ZERO;
        self.phantom[3].y = self.phantom[2].y - F26Dot6::from_bits(vadvance);
    }

    fn coords(&self) -> &[F2Dot14] {
        self.coords
    }

    fn outlines(&self) -> &Outlines {
        self.outlines
    }

    fn load_empty(&mut self, glyph_id: GlyphId) -> Result<(), DrawError> {
        // Roughly corresponds to the FreeType code at
        // <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttgload.c#L1572>
        let scale = self.scale;
        let mut unscaled = self.phantom.map(|point| point.map(|x| x.to_bits()));
        if self.outlines.common.hvar.is_none()
            && self.outlines.gvar.is_some()
            && !self.coords.is_empty()
        {
            if let Ok(deltas) = self.outlines.gvar.as_ref().unwrap().phantom_point_deltas(
                &self.outlines.glyf,
                &self.outlines.loca,
                self.coords,
                glyph_id,
            ) {
                unscaled[0].x += deltas[0].to_i32();
                unscaled[1].x += deltas[1].to_i32();
            }
        }
        if self.is_scaled {
            for (phantom, unscaled) in self.phantom.iter_mut().zip(&unscaled) {
                *phantom = unscaled.map(F26Dot6::from_bits) * scale;
            }
        } else {
            for (phantom, unscaled) in self.phantom.iter_mut().zip(&unscaled) {
                *phantom = unscaled.map(F26Dot6::from_i32);
            }
        }
        Ok(())
    }

    fn load_simple(&mut self, glyph: &SimpleGlyph, glyph_id: GlyphId) -> Result<(), DrawError> {
        use DrawError::InsufficientMemory;
        // Compute the ranges for our point/flag buffers and slice them.
        let points_start = self.point_count;
        let point_count = glyph.num_points();
        let phantom_start = point_count;
        let points_end = points_start + point_count + PHANTOM_POINT_COUNT;
        let point_range = points_start..points_end;
        let other_points_end = point_count + PHANTOM_POINT_COUNT;
        // Scaled points and flags are accumulated as we load the outline.
        let scaled = self
            .memory
            .scaled
            .get_mut(point_range.clone())
            .ok_or(InsufficientMemory)?;
        let flags = self
            .memory
            .flags
            .get_mut(point_range)
            .ok_or(InsufficientMemory)?;
        // Unscaled points are temporary and are allocated as needed. We only
        // ever need one copy in memory for any simple or composite glyph so
        // allocate from the base of the buffer.
        let unscaled = self
            .memory
            .unscaled
            .get_mut(..other_points_end)
            .ok_or(InsufficientMemory)?;
        // Read our unscaled points and flags (up to point_count which does not
        // include phantom points).
        glyph.read_points_fast(&mut unscaled[..point_count], &mut flags[..point_count])?;
        // Compute the range for our contour end point buffer and slice it.
        let contours_start = self.contour_count;
        let contour_end_pts = glyph.end_pts_of_contours();
        let contour_count = contour_end_pts.len();
        let contours_end = contours_start + contour_count;
        let contours = self
            .memory
            .contours
            .get_mut(contours_start..contours_end)
            .ok_or(InsufficientMemory)?;
        // Read the contour end points.
        for (end_pt, contour) in contour_end_pts.iter().zip(contours.iter_mut()) {
            *contour = end_pt.get();
        }
        // Adjust the running point/contour total counts
        self.point_count += point_count;
        self.contour_count += contour_count;
        // Append phantom points to the outline.
        for (i, phantom) in self.phantom.iter().enumerate() {
            unscaled[phantom_start + i] = phantom.map(|x| x.to_bits());
            flags[phantom_start + i] = Default::default();
        }
        let mut have_deltas = false;
        if self.outlines.gvar.is_some() && !self.coords.is_empty() {
            let gvar = self.outlines.gvar.as_ref().unwrap();
            let glyph = deltas::SimpleGlyph {
                points: &mut unscaled[..],
                flags: &mut flags[..],
                contours,
            };
            let deltas = self
                .memory
                .deltas
                .get_mut(..point_count + PHANTOM_POINT_COUNT)
                .ok_or(InsufficientMemory)?;
            let iup_buffer = self
                .memory
                .iup_buffer
                .get_mut(..point_count + PHANTOM_POINT_COUNT)
                .ok_or(InsufficientMemory)?;
            if deltas::simple_glyph(
                gvar,
                glyph_id,
                self.coords,
                self.outlines.has_var_lsb,
                glyph,
                iup_buffer,
                deltas,
            )
            .is_ok()
            {
                have_deltas = true;
            }
        }
        let ins = glyph.instructions();
        let is_hinted = self.is_hinted;
        if self.is_scaled {
            let scale = self.scale;
            if have_deltas {
                for ((point, unscaled), delta) in scaled
                    .iter_mut()
                    .zip(unscaled.iter_mut())
                    .zip(self.memory.deltas.iter())
                {
                    let delta = delta.map(Fixed::to_f26dot6);
                    let scaled = (unscaled.map(F26Dot6::from_i32) + delta) * scale;
                    // The computed scale factor has an i32 -> 26.26 conversion built in. This undoes the
                    // extra shift.
                    *point = scaled.map(|v| F26Dot6::from_bits(v.to_i32()));
                }
                if is_hinted {
                    // For hinting, we need to adjust the unscaled points as well.
                    // Round off deltas for unscaled outlines.
                    for (unscaled, delta) in unscaled.iter_mut().zip(self.memory.deltas.iter()) {
                        *unscaled += delta.map(Fixed::to_i32);
                    }
                }
            } else {
                for (point, unscaled) in scaled.iter_mut().zip(unscaled.iter_mut()) {
                    *point = unscaled.map(|v| F26Dot6::from_bits(v) * scale);
                }
            }
        } else {
            if have_deltas {
                // Round off deltas for unscaled outlines.
                for (unscaled, delta) in unscaled.iter_mut().zip(self.memory.deltas.iter()) {
                    *unscaled += delta.map(Fixed::to_i32);
                }
            }
            // Unlike FreeType, we also store unscaled outlines in 26.6.
            for (point, unscaled) in scaled.iter_mut().zip(unscaled.iter()) {
                *point = unscaled.map(F26Dot6::from_i32);
            }
        }
        // Commit our potentially modified phantom points.
        if self.outlines.common.hvar.is_some() && self.is_hinted {
            self.phantom[0] *= self.scale;
            self.phantom[1] *= self.scale;
        } else {
            for (i, point) in scaled[phantom_start..]
                .iter()
                .enumerate()
                .take(PHANTOM_POINT_COUNT)
            {
                self.phantom[i] = *point;
            }
        }
        if let (Some(hinter), true) = (self.hinter.as_ref(), is_hinted) {
            if !ins.is_empty() {
                // Create a copy of our scaled points in original_scaled.
                let original_scaled = self
                    .memory
                    .original_scaled
                    .get_mut(..other_points_end)
                    .ok_or(InsufficientMemory)?;
                original_scaled.copy_from_slice(scaled);
                // When hinting, round the phantom points.
                for point in &mut scaled[phantom_start..] {
                    point.x = point.x.round();
                    point.y = point.y.round();
                }
                let mut input = HintOutline {
                    glyph_id,
                    unscaled,
                    scaled,
                    original_scaled,
                    flags,
                    contours,
                    bytecode: ins,
                    phantom: &mut self.phantom,
                    stack: self.memory.stack,
                    cvt: self.memory.cvt,
                    storage: self.memory.storage,
                    twilight_scaled: self.memory.twilight_scaled,
                    twilight_original_scaled: self.memory.twilight_original_scaled,
                    twilight_flags: self.memory.twilight_flags,
                    is_composite: false,
                    coords: self.coords,
                };
                let hint_res = hinter.hint(self.outlines, &mut input, self.pedantic_hinting);
                if let (Err(e), true) = (hint_res, self.pedantic_hinting) {
                    return Err(e)?;
                }
            } else if !hinter.backward_compatibility() {
                // Even when missing instructions, FreeType uses rounded
                // phantom points when hinting is requested and backward
                // compatibility mode is disabled.
                // See <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttgload.c#L823>
                // Notably, FreeType never calls TT_Hint_Glyph for composite
                // glyphs when instructions are missing so this only applies
                // to simple glyphs.
                for (scaled, phantom) in scaled[phantom_start..].iter().zip(&mut self.phantom) {
                    *phantom = scaled.map(|x| x.round());
                }
            }
        }
        if points_start != 0 {
            // If we're not the first component, shift our contour end points.
            for contour_end in contours.iter_mut() {
                *contour_end += points_start as u16;
            }
        }
        Ok(())
    }

    fn load_composite(
        &mut self,
        glyph: &CompositeGlyph,
        glyph_id: GlyphId,
        recurse_depth: usize,
    ) -> Result<(), DrawError> {
        use DrawError::InsufficientMemory;
        let scale = self.scale;
        // The base indices of the points and contours for the current glyph.
        let point_base = self.point_count;
        let contour_base = self.contour_count;
        // Compute the per component deltas. Since composites can be nested, we
        // use a stack and keep track of the base.
        let mut have_deltas = false;
        let delta_base = self.component_delta_count;
        if self.outlines.gvar.is_some() && !self.coords.is_empty() {
            let gvar = self.outlines.gvar.as_ref().unwrap();
            let count = glyph.components().count() + PHANTOM_POINT_COUNT;
            let deltas = self
                .memory
                .composite_deltas
                .get_mut(delta_base..delta_base + count)
                .ok_or(InsufficientMemory)?;
            if deltas::composite_glyph(gvar, glyph_id, self.coords, &mut deltas[..]).is_ok() {
                // If the font is missing variation data for LSBs in HVAR then we
                // apply the delta to the first phantom point.
                if !self.outlines.has_var_lsb {
                    self.phantom[0].x += F26Dot6::from_bits(deltas[count - 4].x.to_i32());
                }
                have_deltas = true;
            }
            self.component_delta_count += count;
        }
        if self.is_scaled {
            for point in self.phantom.iter_mut() {
                *point *= scale;
            }
        } else {
            for point in self.phantom.iter_mut() {
                *point = point.map(|x| F26Dot6::from_i32(x.to_bits()));
            }
        }
        for (i, component) in glyph.components().enumerate() {
            // Loading a component glyph will override phantom points so save a copy. We'll
            // restore them unless the USE_MY_METRICS flag is set.
            let phantom = self.phantom;
            // Load the component glyph and keep track of the points range.
            let start_point = self.point_count;
            let component_glyph = self
                .outlines
                .loca
                .get_glyf(component.glyph.into(), &self.outlines.glyf)?;
            self.load(&component_glyph, component.glyph.into(), recurse_depth + 1)?;
            let end_point = self.point_count;
            if !component
                .flags
                .contains(CompositeGlyphFlags::USE_MY_METRICS)
            {
                // If the USE_MY_METRICS flag is missing, we restore the phantom points we
                // saved at the start of the loop.
                self.phantom = phantom;
            }
            // Prepares the transform components for our conversion math below.
            fn scale_component(x: F2Dot14) -> F26Dot6 {
                F26Dot6::from_bits(x.to_bits() as i32 * 4)
            }
            let xform = &component.transform;
            let xx = scale_component(xform.xx);
            let yx = scale_component(xform.yx);
            let xy = scale_component(xform.xy);
            let yy = scale_component(xform.yy);
            let have_xform = component.flags.intersects(
                CompositeGlyphFlags::WE_HAVE_A_SCALE
                    | CompositeGlyphFlags::WE_HAVE_AN_X_AND_Y_SCALE
                    | CompositeGlyphFlags::WE_HAVE_A_TWO_BY_TWO,
            );
            if have_xform {
                let scaled = &mut self.memory.scaled[start_point..end_point];
                if self.is_scaled {
                    for point in scaled {
                        let x = point.x * xx + point.y * xy;
                        let y = point.x * yx + point.y * yy;
                        point.x = x;
                        point.y = y;
                    }
                } else {
                    for point in scaled {
                        // This juggling is necessary because, unlike FreeType, we also
                        // return unscaled outlines in 26.6 format for a consistent interface.
                        let unscaled = point.map(|c| F26Dot6::from_bits(c.to_i32()));
                        let x = unscaled.x * xx + unscaled.y * xy;
                        let y = unscaled.x * yx + unscaled.y * yy;
                        *point = Point::new(x, y).map(|c| F26Dot6::from_i32(c.to_bits()));
                    }
                }
            }
            let anchor_offset = match component.anchor {
                Anchor::Offset { x, y } => {
                    let (mut x, mut y) = (x as i32, y as i32);
                    if have_xform
                        && component.flags
                            & (CompositeGlyphFlags::SCALED_COMPONENT_OFFSET
                                | CompositeGlyphFlags::UNSCALED_COMPONENT_OFFSET)
                            == CompositeGlyphFlags::SCALED_COMPONENT_OFFSET
                    {
                        // According to FreeType, this algorithm is a "guess"
                        // and works better than the one documented by Apple.
                        // https://github.com/freetype/freetype/blob/b1c90733ee6a04882b133101d61b12e352eeb290/src/truetype/ttgload.c#L1259
                        fn hypot(a: F26Dot6, b: F26Dot6) -> Fixed {
                            let a = a.to_bits().abs();
                            let b = b.to_bits().abs();
                            Fixed::from_bits(if a > b {
                                a + ((3 * b) >> 3)
                            } else {
                                b + ((3 * a) >> 3)
                            })
                        }
                        // FreeType uses a fixed point multiplication here.
                        x = (Fixed::from_bits(x) * hypot(xx, xy)).to_bits();
                        y = (Fixed::from_bits(y) * hypot(yy, yx)).to_bits();
                    }
                    if have_deltas {
                        let delta = self
                            .memory
                            .composite_deltas
                            .get(delta_base + i)
                            .copied()
                            .unwrap_or_default();
                        // For composite glyphs, we copy FreeType and round off
                        // the fractional parts of deltas.
                        x += delta.x.to_i32();
                        y += delta.y.to_i32();
                    }
                    if self.is_scaled {
                        let mut offset = Point::new(x, y).map(F26Dot6::from_bits) * scale;
                        if self.is_hinted
                            && component
                                .flags
                                .contains(CompositeGlyphFlags::ROUND_XY_TO_GRID)
                        {
                            // Only round the y-coordinate, per FreeType.
                            offset.y = offset.y.round();
                        }
                        offset
                    } else {
                        Point::new(x, y).map(F26Dot6::from_i32)
                    }
                }
                Anchor::Point { base, component } => {
                    let (base_offset, component_offset) = (base as usize, component as usize);
                    let base_point = self
                        .memory
                        .scaled
                        .get(point_base + base_offset)
                        .ok_or(DrawError::InvalidAnchorPoint(glyph_id, base))?;
                    let component_point = self
                        .memory
                        .scaled
                        .get(start_point + component_offset)
                        .ok_or(DrawError::InvalidAnchorPoint(glyph_id, component))?;
                    *base_point - *component_point
                }
            };
            if anchor_offset.x != F26Dot6::ZERO || anchor_offset.y != F26Dot6::ZERO {
                for point in &mut self.memory.scaled[start_point..end_point] {
                    *point += anchor_offset;
                }
            }
        }
        if have_deltas {
            self.component_delta_count = delta_base;
        }
        if let (Some(hinter), true) = (self.hinter.as_ref(), self.is_hinted) {
            let ins = glyph.instructions().unwrap_or_default();
            if !ins.is_empty() {
                // For composite glyphs, the unscaled and original points are
                // simply copies of the current point set.
                let start_point = point_base;
                let end_point = self.point_count + PHANTOM_POINT_COUNT;
                let point_range = start_point..end_point;
                let phantom_start = point_range.len() - PHANTOM_POINT_COUNT;
                let scaled = &mut self.memory.scaled[point_range.clone()];
                let flags = self
                    .memory
                    .flags
                    .get_mut(point_range.clone())
                    .ok_or(InsufficientMemory)?;
                // Append the current phantom points to the outline.
                for (i, phantom) in self.phantom.iter().enumerate() {
                    scaled[phantom_start + i] = *phantom;
                    flags[phantom_start + i] = Default::default();
                }
                let other_points_end = point_range.len();
                let unscaled = self
                    .memory
                    .unscaled
                    .get_mut(..other_points_end)
                    .ok_or(InsufficientMemory)?;
                for (scaled, unscaled) in scaled.iter().zip(unscaled.iter_mut()) {
                    *unscaled = scaled.map(|x| x.to_bits());
                }
                let original_scaled = self
                    .memory
                    .original_scaled
                    .get_mut(..other_points_end)
                    .ok_or(InsufficientMemory)?;
                original_scaled.copy_from_slice(scaled);
                let contours = self
                    .memory
                    .contours
                    .get_mut(contour_base..self.contour_count)
                    .ok_or(InsufficientMemory)?;
                // Round the phantom points.
                for p in &mut scaled[phantom_start..] {
                    p.x = p.x.round();
                    p.y = p.y.round();
                }
                // Clear the "touched" flags that are used during IUP processing.
                for flag in flags.iter_mut() {
                    flag.clear_marker(PointMarker::TOUCHED);
                }
                // Make sure our contour end points accurately reflect the
                // outline slices.
                if point_base != 0 {
                    let delta = point_base as u16;
                    for contour in contours.iter_mut() {
                        *contour -= delta;
                    }
                }
                let mut input = HintOutline {
                    glyph_id,
                    unscaled,
                    scaled,
                    original_scaled,
                    flags,
                    contours,
                    bytecode: ins,
                    phantom: &mut self.phantom,
                    stack: self.memory.stack,
                    cvt: self.memory.cvt,
                    storage: self.memory.storage,
                    twilight_scaled: self.memory.twilight_scaled,
                    twilight_original_scaled: self.memory.twilight_original_scaled,
                    twilight_flags: self.memory.twilight_flags,
                    is_composite: true,
                    coords: self.coords,
                };
                let hint_res = hinter.hint(self.outlines, &mut input, self.pedantic_hinting);
                if let (Err(e), true) = (hint_res, self.pedantic_hinting) {
                    return Err(e)?;
                }
                // Undo the contour shifts if we applied them above.
                if point_base != 0 {
                    let delta = point_base as u16;
                    for contour in contours.iter_mut() {
                        *contour += delta;
                    }
                }
            }
        }
        Ok(())
    }
}

impl<'a> Scaler for HarfBuzzScaler<'a> {
    fn setup_phantom_points(
        &mut self,
        bounds: [i16; 4],
        lsb: i32,
        advance: i32,
        tsb: i32,
        vadvance: i32,
    ) {
        // Same pattern as FreeType, just f32
        // horizontal:
        self.phantom[0].x = bounds[0] as f32 - lsb as f32;
        self.phantom[0].y = 0.0;
        self.phantom[1].x = self.phantom[0].x + advance as f32;
        self.phantom[1].y = 0.0;
        // vertical:
        self.phantom[2].x = 0.0;
        self.phantom[2].y = bounds[3] as f32 + tsb as f32;
        self.phantom[3].x = 0.0;
        self.phantom[3].y = self.phantom[2].y - vadvance as f32;
    }

    fn coords(&self) -> &[F2Dot14] {
        self.coords
    }

    fn outlines(&self) -> &Outlines {
        self.outlines
    }

    fn load_empty(&mut self, glyph_id: GlyphId) -> Result<(), DrawError> {
        // HB doesn't have an equivalent so this version just copies the
        // FreeType version above but changed to use floating point
        let scale = self.scale.to_f32();
        let mut unscaled = self.phantom;
        if self.outlines.common.hvar.is_none()
            && self.outlines.gvar.is_some()
            && !self.coords.is_empty()
        {
            if let Ok(deltas) = self.outlines.gvar.as_ref().unwrap().phantom_point_deltas(
                &self.outlines.glyf,
                &self.outlines.loca,
                self.coords,
                glyph_id,
            ) {
                unscaled[0].x += deltas[0].to_f32();
                unscaled[1].x += deltas[1].to_f32();
            }
        }
        if self.is_scaled {
            for (phantom, unscaled) in self.phantom.iter_mut().zip(&unscaled) {
                *phantom = *unscaled * scale;
            }
        } else {
            for (phantom, unscaled) in self.phantom.iter_mut().zip(&unscaled) {
                *phantom = *unscaled;
            }
        }
        Ok(())
    }

    fn load_simple(&mut self, glyph: &SimpleGlyph, glyph_id: GlyphId) -> Result<(), DrawError> {
        use DrawError::InsufficientMemory;
        // Compute the ranges for our point/flag buffers and slice them.
        let points_start = self.point_count;
        let point_count = glyph.num_points();
        let phantom_start = point_count;
        let points_end = points_start + point_count + PHANTOM_POINT_COUNT;
        let point_range = points_start..points_end;
        // Points and flags are accumulated as we load the outline.
        let points = self
            .memory
            .points
            .get_mut(point_range.clone())
            .ok_or(InsufficientMemory)?;
        let flags = self
            .memory
            .flags
            .get_mut(point_range)
            .ok_or(InsufficientMemory)?;
        glyph.read_points_fast(&mut points[..point_count], &mut flags[..point_count])?;
        // Compute the range for our contour end point buffer and slice it.
        let contours_start = self.contour_count;
        let contour_end_pts = glyph.end_pts_of_contours();
        let contour_count = contour_end_pts.len();
        let contours_end = contours_start + contour_count;
        let contours = self
            .memory
            .contours
            .get_mut(contours_start..contours_end)
            .ok_or(InsufficientMemory)?;
        // Read the contour end points.
        for (end_pt, contour) in contour_end_pts.iter().zip(contours.iter_mut()) {
            *contour = end_pt.get();
        }
        // Adjust the running point/contour total counts
        self.point_count += point_count;
        self.contour_count += contour_count;
        // Append phantom points to the outline.
        for (i, phantom) in self.phantom.iter().enumerate() {
            points[phantom_start + i] = *phantom;
            flags[phantom_start + i] = Default::default();
        }
        // Acquire deltas
        if self.outlines.gvar.is_some() && !self.coords.is_empty() {
            let gvar = self.outlines.gvar.as_ref().unwrap();
            let glyph = deltas::SimpleGlyph {
                points: &mut points[..],
                flags: &mut flags[..],
                contours,
            };
            let deltas = self
                .memory
                .deltas
                .get_mut(..point_count + PHANTOM_POINT_COUNT)
                .ok_or(InsufficientMemory)?;
            let iup_buffer = self
                .memory
                .iup_buffer
                .get_mut(..point_count + PHANTOM_POINT_COUNT)
                .ok_or(InsufficientMemory)?;
            if deltas::simple_glyph(
                gvar,
                glyph_id,
                self.coords,
                self.outlines.has_var_lsb,
                glyph,
                iup_buffer,
                deltas,
            )
            .is_ok()
            {
                for (point, delta) in points.iter_mut().zip(deltas) {
                    *point += *delta;
                }
            }
        }
        // Apply scaling
        if self.is_scaled {
            let scale = self.scale.to_f32();
            for point in points.iter_mut() {
                *point = point.map(|c| c * scale);
            }
        }

        if points_start != 0 {
            // If we're not the first component, shift our contour end points.
            for contour_end in contours.iter_mut() {
                *contour_end += points_start as u16;
            }
        }
        Ok(())
    }

    fn load_composite(
        &mut self,
        glyph: &CompositeGlyph,
        glyph_id: GlyphId,
        recurse_depth: usize,
    ) -> Result<(), DrawError> {
        use DrawError::InsufficientMemory;
        let scale = self.scale.to_f32();
        // The base indices of the points for the current glyph.
        let point_base = self.point_count;
        // Compute the per component deltas. Since composites can be nested, we
        // use a stack and keep track of the base.
        let mut have_deltas = false;
        let delta_base = self.component_delta_count;
        if self.outlines.gvar.is_some() && !self.coords.is_empty() {
            let gvar = self.outlines.gvar.as_ref().unwrap();
            let count = glyph.components().count() + PHANTOM_POINT_COUNT;
            let deltas = self
                .memory
                .composite_deltas
                .get_mut(delta_base..delta_base + count)
                .ok_or(InsufficientMemory)?;
            if deltas::composite_glyph(gvar, glyph_id, self.coords, &mut deltas[..]).is_ok() {
                // If the font is missing variation data for LSBs in HVAR then we
                // apply the delta to the first phantom point.
                if !self.outlines.has_var_lsb {
                    self.phantom[0].x += deltas[count - 4].x;
                }
                have_deltas = true;
            }
            self.component_delta_count += count;
        }
        if self.is_scaled {
            for point in self.phantom.iter_mut() {
                *point *= scale;
            }
        }
        for (i, component) in glyph.components().enumerate() {
            // Loading a component glyph will override phantom points so save a copy. We'll
            // restore them unless the USE_MY_METRICS flag is set.
            let phantom = self.phantom;
            // Load the component glyph and keep track of the points range.
            let start_point = self.point_count;
            let component_glyph = self
                .outlines
                .loca
                .get_glyf(component.glyph.into(), &self.outlines.glyf)?;
            self.load(&component_glyph, component.glyph.into(), recurse_depth + 1)?;
            let end_point = self.point_count;
            if !component
                .flags
                .contains(CompositeGlyphFlags::USE_MY_METRICS)
            {
                // If the USE_MY_METRICS flag is missing, we restore the phantom points we
                // saved at the start of the loop.
                self.phantom = phantom;
            }
            let have_xform = component.flags.intersects(
                CompositeGlyphFlags::WE_HAVE_A_SCALE
                    | CompositeGlyphFlags::WE_HAVE_AN_X_AND_Y_SCALE
                    | CompositeGlyphFlags::WE_HAVE_A_TWO_BY_TWO,
            );
            let mut transform = if have_xform {
                let xform = &component.transform;
                [
                    xform.xx,
                    xform.yx,
                    xform.xy,
                    xform.yy,
                    F2Dot14::ZERO,
                    F2Dot14::ZERO,
                ]
                .map(|x| x.to_f32())
            } else {
                [1.0, 0.0, 0.0, 1.0, 0.0, 0.0] // identity
            };

            let anchor_offset = match component.anchor {
                Anchor::Offset { x, y } => {
                    let (mut x, mut y) = (x as f32, y as f32);
                    if have_xform
                        && component.flags
                            & (CompositeGlyphFlags::SCALED_COMPONENT_OFFSET
                                | CompositeGlyphFlags::UNSCALED_COMPONENT_OFFSET)
                            == CompositeGlyphFlags::SCALED_COMPONENT_OFFSET
                    {
                        // Scale x by the magnitude of the x-basis, y by the y-basis
                        // FreeType implements hypot, we can just use the provided implementation
                        x *= hypot(transform[0], transform[2]);
                        y *= hypot(transform[1], transform[3]);
                    }
                    Point::new(x, y)
                        + self
                            .memory
                            .composite_deltas
                            .get(delta_base + i)
                            .copied()
                            .unwrap_or_default()
                }
                Anchor::Point { base, component } => {
                    let (base_offset, component_offset) = (base as usize, component as usize);
                    let base_point = self
                        .memory
                        .points
                        .get(point_base + base_offset)
                        .ok_or(DrawError::InvalidAnchorPoint(glyph_id, base))?;
                    let component_point = self
                        .memory
                        .points
                        .get(start_point + component_offset)
                        .ok_or(DrawError::InvalidAnchorPoint(glyph_id, component))?;
                    *base_point - *component_point
                }
            };
            transform[4] = anchor_offset.x;
            transform[5] = anchor_offset.y;

            let points = &mut self.memory.points[start_point..end_point];
            for point in points.iter_mut() {
                *point = map_point(transform, *point);
            }
        }
        if have_deltas {
            self.component_delta_count = delta_base;
        }
        Ok(())
    }
}

/// Magnitude of the vector (x, y)
fn hypot(x: f32, y: f32) -> f32 {
    x.hypot(y)
}

fn map_point(transform: [f32; 6], p: Point<f32>) -> Point<f32> {
    Point {
        x: transform[0] * p.x + transform[2] * p.y + transform[4],
        y: transform[1] * p.x + transform[3] * p.y + transform[5],
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::MetadataProvider;
    use read_fonts::{FontRef, TableProvider};

    #[test]
    fn overlap_flags() {
        let font = FontRef::new(font_test_data::VAZIRMATN_VAR).unwrap();
        let scaler = Outlines::new(&OutlinesCommon::new(&font).unwrap()).unwrap();
        let glyph_count = font.maxp().unwrap().num_glyphs();
        // GID 2 is a composite glyph with the overlap bit on a component
        // GID 3 is a simple glyph with the overlap bit on the first flag
        let expected_gids_with_overlap = vec![2, 3];
        assert_eq!(
            expected_gids_with_overlap,
            (0..glyph_count)
                .filter(|gid| scaler.outline(GlyphId::from(*gid)).unwrap().has_overlaps)
                .collect::<Vec<_>>()
        );
    }

    #[test]
    fn interpreter_preference() {
        // no instructions in this font...
        let font = FontRef::new(font_test_data::COLRV0V1).unwrap();
        let outlines = Outlines::new(&OutlinesCommon::new(&font).unwrap()).unwrap();
        // thus no preference for the interpreter
        assert!(!outlines.prefer_interpreter());
        // but this one has instructions...
        let font = FontRef::new(font_test_data::TTHINT_SUBSET).unwrap();
        let outlines = Outlines::new(&OutlinesCommon::new(&font).unwrap()).unwrap();
        // so let's use it
        assert!(outlines.prefer_interpreter());
    }

    #[test]
    fn empty_glyph_advance() {
        let font = FontRef::new(font_test_data::HVAR_WITH_TRUNCATED_ADVANCE_INDEX_MAP).unwrap();
        let mut outlines = Outlines::new(&OutlinesCommon::new(&font).unwrap()).unwrap();
        let coords = [F2Dot14::from_f32(0.5)];
        let ppem = Some(24.0);
        let gid = font.charmap().map(' ').unwrap();
        let outline = outlines.outline(gid).unwrap();
        // Make sure this is an empty outline since that's what we're testing
        assert_eq!(outline.points, 0);
        let scaler = FreeTypeScaler::unhinted(&outlines, &outline, &mut [], ppem, &coords).unwrap();
        let scaled = scaler.scale(&outline.glyph, gid).unwrap();
        let advance_hvar = scaled.adjusted_advance_width();
        // Set HVAR table to None to force loading metrics from gvar
        outlines.common.hvar = None;
        let scaler = FreeTypeScaler::unhinted(&outlines, &outline, &mut [], ppem, &coords).unwrap();
        let scaled = scaler.scale(&outline.glyph, gid).unwrap();
        let advance_gvar = scaled.adjusted_advance_width();
        // Make sure we have an advance and that the two are the same
        assert!(advance_hvar != F26Dot6::ZERO);
        assert_eq!(advance_hvar, advance_gvar);
    }
}