slotmap/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
#![doc(html_root_url = "https://docs.rs/slotmap/1.0.7")]
#![crate_name = "slotmap"]
#![cfg_attr(all(nightly, feature = "unstable"), feature(try_reserve))]
#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
#![cfg_attr(all(nightly, doc), feature(doc_cfg))]
#![warn(
    missing_debug_implementations,
    trivial_casts,
    trivial_numeric_casts,
    unused_lifetimes,
    unused_import_braces
)]
#![deny(missing_docs, unaligned_references)]
#![cfg_attr(feature = "cargo-clippy", allow(renamed_and_removed_lints))]
#![cfg_attr(feature = "cargo-clippy", deny(clippy, clippy_pedantic))]
#![cfg_attr(
    feature = "cargo-clippy",
    allow(
        // Style differences.
        module_name_repetitions,
        redundant_closure_for_method_calls,
        unseparated_literal_suffix,

        // I know what I'm doing and want these.
        wildcard_imports,
        inline_always,
        cast_possible_truncation,
        needless_pass_by_value,

        // Very noisy.
        missing_errors_doc,
        must_use_candidate
    ))]

//! # slotmap
//!
//! This library provides a container with persistent unique keys to access
//! stored values, [`SlotMap`]. Upon insertion a key is returned that can be
//! used to later access or remove the values. Insertion, removal and access all
//! take O(1) time with low overhead. Great for storing collections of objects
//! that need stable, safe references but have no clear ownership otherwise,
//! such as game entities or graph nodes.
//!
//! The difference between a [`BTreeMap`] or [`HashMap`] and a slot map is
//! that the slot map generates and returns the key when inserting a value. A
//! key is always unique and will only refer to the value that was inserted.
//! A slot map's main purpose is to simply own things in a safe and efficient
//! manner.
//!
//! You can also create (multiple) secondary maps that can map the keys returned
//! by [`SlotMap`] to other values, to associate arbitrary data with objects
//! stored in slot maps, without hashing required - it's direct indexing under
//! the hood.
//!
//! The minimum required stable Rust version for this crate is 1.49.
//!
//! # Examples
//!
//! ```
//! # use slotmap::*;
//! let mut sm = SlotMap::new();
//! let foo = sm.insert("foo");  // Key generated on insert.
//! let bar = sm.insert("bar");
//! assert_eq!(sm[foo], "foo");
//! assert_eq!(sm[bar], "bar");
//!
//! sm.remove(bar);
//! let reuse = sm.insert("reuse");  // Space from bar reused.
//! assert_eq!(sm.contains_key(bar), false);  // After deletion a key stays invalid.
//!
//! let mut sec = SecondaryMap::new();
//! sec.insert(foo, "noun");  // We provide the key for secondary maps.
//! sec.insert(reuse, "verb");
//!
//! for (key, val) in sm {
//!     println!("{} is a {}", val, sec[key]);
//! }
//! ```
//!
//! # Serialization through [`serde`], [`no_std`] support and unstable features
//!
//! Both keys and the slot maps have full (de)seralization support through
//! the [`serde`] library. A key remains valid for a slot map even after one or
//! both have been serialized and deserialized! This makes storing or
//! transferring complicated referential structures and graphs a breeze. Care has
//! been taken such that deserializing keys and slot maps from untrusted sources
//! is safe. If you wish to use these features you must enable the `serde`
//! feature flag for `slotmap` in your `Cargo.toml`.
//!
//! ```text
//! slotmap = { version = "1.0", features = ["serde"] }
//! ```
//!
//! This crate also supports [`no_std`] environments, but does require the
//! [`alloc`] crate to be available. To enable this you have to disable the
//! `std` feature that is enabled by default:
//!
//! ```text
//! slotmap = { version = "1.0", default-features = false }
//! ```
//!
//! Unfortunately [`SparseSecondaryMap`] is not available in [`no_std`], because
//! it relies on [`HashMap`]. Finally the `unstable` feature can be defined to
//! enable the parts of `slotmap` that only work on nightly Rust.
//!
//! # Why not index a [`Vec`], or use [`slab`], [`stable-vec`], etc?
//!
//! Those solutions either can not reclaim memory from deleted elements or
//! suffer from the ABA problem. The keys returned by `slotmap` are versioned.
//! This means that once a key is removed, it stays removed, even if the
//! physical storage inside the slotmap is reused for new elements. The key is a
//! permanently unique<sup>*</sup> reference to the inserted value. Despite
//! supporting versioning, a [`SlotMap`] is often not (much) slower than the
//! alternative, by internally using carefully checked unsafe code. Finally,
//! `slotmap` simply has a lot of features that make your life easy.
//!
//! # Performance characteristics and implementation details
//!
//! Insertion, access and deletion is all O(1) with low overhead by storing the
//! elements inside a [`Vec`]. Unlike references or indices into a vector,
//! unless you remove a key it is never invalidated. Behind the scenes each
//! slot in the vector is a `(value, version)` tuple. After insertion the
//! returned key also contains a version. Only when the stored version and
//! version in a key match is a key valid. This allows us to reuse space in the
//! vector after deletion without letting removed keys point to spurious new
//! elements. <sup>*</sup>After 2<sup>31</sup> deletions and insertions to the
//! same underlying slot the version wraps around and such a spurious reference
//! could potentially occur. It is incredibly unlikely however, and in all
//! circumstances is the behavior safe. A slot map can hold up to
//! 2<sup>32</sup> - 2 elements at a time.
//!
//! The memory usage for each slot in [`SlotMap`] is `4 + max(sizeof(T), 4)`
//! rounded up to the alignment of `T`. Similarly it is `4 + max(sizeof(T), 12)`
//! for [`HopSlotMap`]. [`DenseSlotMap`] has an overhead of 8 bytes per element
//! and 8 bytes per slot.
//!
//! # Choosing [`SlotMap`], [`HopSlotMap`] or [`DenseSlotMap`]
//!
//! A [`SlotMap`] is the fastest for most operations, except iteration. It can
//! never shrink the size of its underlying storage, because it must remember
//! for each storage slot what the latest stored version was, even if the slot
//! is empty now. This means that iteration can be slow as it must iterate over
//! potentially a lot of empty slots.
//!
//! [`HopSlotMap`] solves this by maintaining more information on
//! insertion/removal, allowing it to iterate only over filled slots by 'hopping
//! over' contiguous blocks of vacant slots. This can give it significantly
//! better iteration speed.  If you expect to iterate over all elements in a
//! [`SlotMap`] a lot, and potentially have a lot of deleted elements, choose
//! [`HopSlotMap`]. The downside is that insertion and removal is roughly twice
//! as slow. Random access is the same speed for both.
//!
//! [`DenseSlotMap`] goes even further and stores all elements on a contiguous
//! block of memory. It uses two indirections per random access; the slots
//! contain indices used to access the contiguous memory. This means random
//! access is slower than both [`SlotMap`] and [`HopSlotMap`], but iteration is
//! significantly faster, as fast as a normal [`Vec`].
//!
//! # Choosing [`SecondaryMap`] or [`SparseSecondaryMap`]
//!
//! You want to associate extra data with objects stored in a slot map, so you
//! use (multiple) secondary maps to map keys to that data.
//!
//! A [`SecondaryMap`] is simply a [`Vec`] of slots like slot map is, and
//! essentially provides all the same guarantees as [`SlotMap`] does for its
//! operations (with the exception that you provide the keys as produced by the
//! primary slot map). This does mean that even if you associate data to only
//! a single element from the primary slot map, you could need and have to
//! initialize as much memory as the original.
//!
//! A [`SparseSecondaryMap`] is like a [`HashMap`] from keys to objects, however
//! it automatically removes outdated keys for slots that had their space
//! reused. You should use this variant if you expect to store some associated
//! data for only a small portion of the primary slot map.
//!
//! # Custom key types
//!
//! If you have multiple slot maps it's an error to use the key of one slot map
//! on another slot map. The result is safe, but unspecified, and can not be
//! detected at runtime, so it can lead to a hard to find bug.
//!
//! To prevent this, slot maps allow you to specify what the type is of the key
//! they return. You can construct new key types using the [`new_key_type!`]
//! macro. The resulting type behaves exactly like [`DefaultKey`], but is a
//! distinct type. So instead of simply using `SlotMap<DefaultKey, Player>` you
//! would use:
//!
//! ```
//! # use slotmap::*;
//! # #[derive(Copy, Clone)]
//! # struct Player;
//! new_key_type! { struct PlayerKey; }
//! let sm: SlotMap<PlayerKey, Player> = SlotMap::with_key();
//! ```
//!
//! You can write code generic over any key type using the [`Key`] trait.
//!
//! [`Vec`]: std::vec::Vec
//! [`BTreeMap`]: std::collections::BTreeMap
//! [`HashMap`]: std::collections::HashMap
//! [`serde`]: https://github.com/serde-rs/serde
//! [`slab`]: https://crates.io/crates/slab
//! [`stable-vec`]: https://crates.io/crates/stable-vec
//! [`no_std`]: https://doc.rust-lang.org/1.7.0/book/no-stdlib.html

extern crate alloc;

// So our macros can refer to these.
#[doc(hidden)]
pub mod __impl {
    #[cfg(feature = "serde")]
    pub use serde::{Deserialize, Deserializer, Serialize, Serializer};
    pub use core::convert::From;
    pub use core::result::Result;
}

pub mod basic;
pub mod dense;
pub mod hop;
pub mod secondary;
#[cfg(feature = "std")]
pub mod sparse_secondary;
pub(crate) mod util;

use core::fmt::{self, Debug, Formatter};
use core::hash::{Hash, Hasher};
use core::num::NonZeroU32;

#[doc(inline)]
pub use crate::basic::SlotMap;
#[doc(inline)]
pub use crate::dense::DenseSlotMap;
#[doc(inline)]
pub use crate::hop::HopSlotMap;
#[doc(inline)]
pub use crate::secondary::SecondaryMap;
#[cfg(feature = "std")]
#[doc(inline)]
pub use crate::sparse_secondary::SparseSecondaryMap;

// Keep Slottable for backwards compatibility, but warn about deprecation
// and hide from documentation.
#[doc(hidden)]
#[deprecated(
    since = "1.0.0",
    note = "Slottable is not necessary anymore, slotmap now supports all types on stable."
)]
pub trait Slottable {}

#[doc(hidden)]
#[allow(deprecated)]
impl<T> Slottable for T {}

/// The actual data stored in a [`Key`].
///
/// This implements [`Ord`](std::cmp::Ord) so keys can be stored in e.g.
/// [`BTreeMap`](std::collections::BTreeMap), but the order of keys is
/// unspecified.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct KeyData {
    idx: u32,
    version: NonZeroU32,
}

impl KeyData {
    fn new(idx: u32, version: u32) -> Self {
        debug_assert!(version > 0);

        Self {
            idx,
            version: unsafe { NonZeroU32::new_unchecked(version | 1) },
        }
    }

    fn null() -> Self {
        Self::new(core::u32::MAX, 1)
    }

    fn is_null(self) -> bool {
        self.idx == core::u32::MAX
    }

    /// Returns the key data as a 64-bit integer. No guarantees about its value
    /// are made other than that passing it to [`from_ffi`](Self::from_ffi)
    /// will return a key equal to the original.
    ///
    /// With this you can easily pass slot map keys as opaque handles to foreign
    /// code. After you get them back you can confidently use them in your slot
    /// map without worrying about unsafe behavior as you would with passing and
    /// receiving back references or pointers.
    ///
    /// This is not a substitute for proper serialization, use [`serde`] for
    /// that. If you are not doing FFI, you almost surely do not need this
    /// function.
    ///
    /// [`serde`]: crate#serialization-through-serde-no_std-support-and-unstable-features
    pub fn as_ffi(self) -> u64 {
        (u64::from(self.version.get()) << 32) | u64::from(self.idx)
    }

    /// Iff `value` is a value received from `k.as_ffi()`, returns a key equal
    /// to `k`. Otherwise the behavior is safe but unspecified.
    pub fn from_ffi(value: u64) -> Self {
        let idx = value & 0xffff_ffff;
        let version = (value >> 32) | 1; // Ensure version is odd.
        Self::new(idx as u32, version as u32)
    }
}

impl Debug for KeyData {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        write!(f, "{}v{}", self.idx, self.version.get())
    }
}

impl Default for KeyData {
    fn default() -> Self {
        Self::null()
    }
}

impl Hash for KeyData
{
    fn hash<H: Hasher>(&self, state: &mut H) {
        // A derived Hash impl would call write_u32 twice. We call write_u64
        // once, which is beneficial if the hasher implements write_u64
        // explicitly.
        state.write_u64(self.as_ffi())
    }
}

/// Key used to access stored values in a slot map.
///
/// Do not use a key from one slot map in another. The behavior is safe but
/// non-sensical (and might panic in case of out-of-bounds).
///
/// To prevent this, it is suggested to have a unique key type for each slot
/// map. You can create new key types using [`new_key_type!`], which makes a
/// new type identical to [`DefaultKey`], just with a different name.
///
/// This trait is intended to be a thin wrapper around [`KeyData`], and all
/// methods must behave exactly as if we're operating on a [`KeyData`] directly.
/// The internal unsafe code relies on this, therefore this trait is `unsafe` to
/// implement. It is strongly suggested to simply use [`new_key_type!`] instead
/// of implementing this trait yourself.
pub unsafe trait Key:
    From<KeyData>
    + Copy
    + Clone
    + Default
    + Eq
    + PartialEq
    + Ord
    + PartialOrd
    + core::hash::Hash
    + core::fmt::Debug
{
    /// Creates a new key that is always invalid and distinct from any non-null
    /// key. A null key can only be created through this method (or default
    /// initialization of keys made with [`new_key_type!`], which calls this
    /// method).
    ///
    /// A null key is always invalid, but an invalid key (that is, a key that
    /// has been removed from the slot map) does not become a null key. A null
    /// is safe to use with any safe method of any slot map instance.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slotmap::*;
    /// let mut sm = SlotMap::new();
    /// let k = sm.insert(42);
    /// let nk = DefaultKey::null();
    /// assert!(nk.is_null());
    /// assert!(k != nk);
    /// assert_eq!(sm.get(nk), None);
    /// ```
    fn null() -> Self {
        KeyData::null().into()
    }

    /// Checks if a key is null. There is only a single null key, that is
    /// `a.is_null() && b.is_null()` implies `a == b`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slotmap::*;
    /// new_key_type! { struct MyKey; }
    /// let a = MyKey::null();
    /// let b = MyKey::default();
    /// assert_eq!(a, b);
    /// assert!(a.is_null());
    /// ```
    fn is_null(&self) -> bool {
        self.data().is_null()
    }

    /// Gets the [`KeyData`] stored in this key.
    ///
    /// # Examples
    ///
    /// ```
    /// # use slotmap::*;
    /// new_key_type! { struct MyKey; }
    /// let dk = DefaultKey::null();
    /// let mk = MyKey::null();
    /// assert_eq!(dk.data(), mk.data());
    /// ```
    fn data(&self) -> KeyData;
}

/// A helper macro to create new key types. If you use a new key type for each
/// slot map you create you can entirely prevent using the wrong key on the
/// wrong slot map.
///
/// The type constructed by this macro is defined exactly as [`DefaultKey`],
/// but is a distinct type for the type checker and does not implicitly convert.
///
/// # Examples
///
/// ```
/// # extern crate slotmap;
/// # use slotmap::*;
/// new_key_type! {
///     // A private key type.
///     struct RocketKey;
///
///     // A public key type with a doc comment.
///     /// Key for the user slot map.
///     pub struct UserKey;
/// }
///
/// fn main() {
///     let mut users = SlotMap::with_key();
///     let mut rockets = SlotMap::with_key();
///     let bob: UserKey = users.insert("bobby");
///     let apollo: RocketKey = rockets.insert("apollo");
///     // Now this is a type error because rockets.get expects an RocketKey:
///     // rockets.get(bob);
///
///     // If for some reason you do end up needing to convert (e.g. storing
///     // keys of multiple slot maps in the same data structure without
///     // boxing), you can use KeyData as an intermediate representation. This
///     // does mean that once again you are responsible for not using the wrong
///     // key on the wrong slot map.
///     let keys = vec![bob.data(), apollo.data()];
///     println!("{} likes rocket {}",
///              users[keys[0].into()], rockets[keys[1].into()]);
/// }
/// ```
#[macro_export(local_inner_macros)]
macro_rules! new_key_type {
    ( $(#[$outer:meta])* $vis:vis struct $name:ident; $($rest:tt)* ) => {
        $(#[$outer])*
        #[derive(Copy, Clone, Default,
                 Eq, PartialEq, Ord, PartialOrd,
                 Hash, Debug)]
        #[repr(transparent)]
        $vis struct $name($crate::KeyData);

        impl $crate::__impl::From<$crate::KeyData> for $name {
            fn from(k: $crate::KeyData) -> Self {
                $name(k)
            }
        }

        unsafe impl $crate::Key for $name {
            fn data(&self) -> $crate::KeyData {
                self.0
            }
        }

        $crate::__serialize_key!($name);

        $crate::new_key_type!($($rest)*);
    };

    () => {}
}

#[cfg(feature = "serde")]
#[doc(hidden)]
#[macro_export]
macro_rules! __serialize_key {
    ( $name:ty ) => {
        impl $crate::__impl::Serialize for $name {
            fn serialize<S>(&self, serializer: S) -> $crate::__impl::Result<S::Ok, S::Error>
            where
                S: $crate::__impl::Serializer,
            {
                $crate::Key::data(self).serialize(serializer)
            }
        }

        impl<'de> $crate::__impl::Deserialize<'de> for $name {
            fn deserialize<D>(deserializer: D) -> $crate::__impl::Result<Self, D::Error>
            where
                D: $crate::__impl::Deserializer<'de>,
            {
                let key_data: $crate::KeyData =
                    $crate::__impl::Deserialize::deserialize(deserializer)?;
                Ok(key_data.into())
            }
        }
    };
}

#[cfg(not(feature = "serde"))]
#[doc(hidden)]
#[macro_export]
macro_rules! __serialize_key {
    ( $name:ty ) => {};
}

new_key_type! {
    /// The default slot map key type.
    pub struct DefaultKey;
}

// Serialization with serde.
#[cfg(feature = "serde")]
mod serialize {
    use serde::{Deserialize, Deserializer, Serialize, Serializer};

    use super::*;

    #[derive(Serialize, Deserialize)]
    pub struct SerKey {
        idx: u32,
        version: u32,
    }

    impl Serialize for KeyData {
        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where
            S: Serializer,
        {
            let ser_key = SerKey {
                idx: self.idx,
                version: self.version.get(),
            };
            ser_key.serialize(serializer)
        }
    }

    impl<'de> Deserialize<'de> for KeyData {
        fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where
            D: Deserializer<'de>,
        {
            let mut ser_key: SerKey = Deserialize::deserialize(deserializer)?;

            // Ensure a.is_null() && b.is_null() implies a == b.
            if ser_key.idx == core::u32::MAX {
                ser_key.version = 1;
            }

            ser_key.version |= 1; // Ensure version is odd.
            Ok(Self::new(ser_key.idx, ser_key.version))
        }
    }
}

#[cfg(test)]
mod tests {
    // Intentionally no `use super::*;` because we want to test macro expansion
    // in the *users* scope, which might not have that.
    #[test]
    fn macro_expansion() {
        #![allow(dead_code)]
        use super::new_key_type;

        // Clobber namespace with clashing names - should still work.
        trait Serialize { }
        trait Deserialize { }
        trait Serializer { }
        trait Deserializer { }
        trait Key { }
        trait From { }
        struct Result;
        struct KeyData;

        new_key_type! {
            struct A;
            pub(crate) struct B;
            pub struct C;
        }
    }

    #[test]
    fn check_is_older_version() {
        use super::util::is_older_version;

        let is_older = |a, b| is_older_version(a, b);
        assert!(!is_older(42, 42));
        assert!(is_older(0, 1));
        assert!(is_older(0, 1 << 31));
        assert!(!is_older(0, (1 << 31) + 1));
        assert!(is_older(u32::MAX, 0));
    }

    #[test]
    fn iters_cloneable() {
        use super::*;

        struct NoClone;

        let mut sm = SlotMap::new();
        let mut hsm = HopSlotMap::new();
        let mut dsm = DenseSlotMap::new();
        let mut scm = SecondaryMap::new();
        let mut sscm = SparseSecondaryMap::new();
        scm.insert(sm.insert(NoClone), NoClone);
        sscm.insert(hsm.insert(NoClone), NoClone);
        dsm.insert(NoClone);

        let _ = sm.keys().clone();
        let _ = sm.values().clone();
        let _ = sm.iter().clone();
        let _ = hsm.keys().clone();
        let _ = hsm.values().clone();
        let _ = hsm.iter().clone();
        let _ = dsm.keys().clone();
        let _ = dsm.values().clone();
        let _ = dsm.iter().clone();
        let _ = scm.keys().clone();
        let _ = scm.values().clone();
        let _ = scm.iter().clone();
        let _ = sscm.keys().clone();
        let _ = sscm.values().clone();
        let _ = sscm.iter().clone();
    }

    #[cfg(feature = "serde")]
    #[test]
    fn key_serde() {
        use super::*;

        // Check round-trip through serde.
        let mut sm = SlotMap::new();
        let k = sm.insert(42);
        let ser = serde_json::to_string(&k).unwrap();
        let de: DefaultKey = serde_json::from_str(&ser).unwrap();
        assert_eq!(k, de);

        // Even if a malicious entity sends up even (unoccupied) versions in the
        // key, we make the version point to the occupied version.
        let malicious: KeyData = serde_json::from_str(&r#"{"idx":0,"version":4}"#).unwrap();
        assert_eq!(malicious.version.get(), 5);
    }
}