slotmap/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
#![doc(html_root_url = "https://docs.rs/slotmap/1.0.7")]
#![crate_name = "slotmap"]
#![cfg_attr(all(nightly, feature = "unstable"), feature(try_reserve))]
#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
#![cfg_attr(all(nightly, doc), feature(doc_cfg))]
#![warn(
missing_debug_implementations,
trivial_casts,
trivial_numeric_casts,
unused_lifetimes,
unused_import_braces
)]
#![deny(missing_docs, unaligned_references)]
#![cfg_attr(feature = "cargo-clippy", allow(renamed_and_removed_lints))]
#![cfg_attr(feature = "cargo-clippy", deny(clippy, clippy_pedantic))]
#![cfg_attr(
feature = "cargo-clippy",
allow(
// Style differences.
module_name_repetitions,
redundant_closure_for_method_calls,
unseparated_literal_suffix,
// I know what I'm doing and want these.
wildcard_imports,
inline_always,
cast_possible_truncation,
needless_pass_by_value,
// Very noisy.
missing_errors_doc,
must_use_candidate
))]
//! # slotmap
//!
//! This library provides a container with persistent unique keys to access
//! stored values, [`SlotMap`]. Upon insertion a key is returned that can be
//! used to later access or remove the values. Insertion, removal and access all
//! take O(1) time with low overhead. Great for storing collections of objects
//! that need stable, safe references but have no clear ownership otherwise,
//! such as game entities or graph nodes.
//!
//! The difference between a [`BTreeMap`] or [`HashMap`] and a slot map is
//! that the slot map generates and returns the key when inserting a value. A
//! key is always unique and will only refer to the value that was inserted.
//! A slot map's main purpose is to simply own things in a safe and efficient
//! manner.
//!
//! You can also create (multiple) secondary maps that can map the keys returned
//! by [`SlotMap`] to other values, to associate arbitrary data with objects
//! stored in slot maps, without hashing required - it's direct indexing under
//! the hood.
//!
//! The minimum required stable Rust version for this crate is 1.49.
//!
//! # Examples
//!
//! ```
//! # use slotmap::*;
//! let mut sm = SlotMap::new();
//! let foo = sm.insert("foo"); // Key generated on insert.
//! let bar = sm.insert("bar");
//! assert_eq!(sm[foo], "foo");
//! assert_eq!(sm[bar], "bar");
//!
//! sm.remove(bar);
//! let reuse = sm.insert("reuse"); // Space from bar reused.
//! assert_eq!(sm.contains_key(bar), false); // After deletion a key stays invalid.
//!
//! let mut sec = SecondaryMap::new();
//! sec.insert(foo, "noun"); // We provide the key for secondary maps.
//! sec.insert(reuse, "verb");
//!
//! for (key, val) in sm {
//! println!("{} is a {}", val, sec[key]);
//! }
//! ```
//!
//! # Serialization through [`serde`], [`no_std`] support and unstable features
//!
//! Both keys and the slot maps have full (de)seralization support through
//! the [`serde`] library. A key remains valid for a slot map even after one or
//! both have been serialized and deserialized! This makes storing or
//! transferring complicated referential structures and graphs a breeze. Care has
//! been taken such that deserializing keys and slot maps from untrusted sources
//! is safe. If you wish to use these features you must enable the `serde`
//! feature flag for `slotmap` in your `Cargo.toml`.
//!
//! ```text
//! slotmap = { version = "1.0", features = ["serde"] }
//! ```
//!
//! This crate also supports [`no_std`] environments, but does require the
//! [`alloc`] crate to be available. To enable this you have to disable the
//! `std` feature that is enabled by default:
//!
//! ```text
//! slotmap = { version = "1.0", default-features = false }
//! ```
//!
//! Unfortunately [`SparseSecondaryMap`] is not available in [`no_std`], because
//! it relies on [`HashMap`]. Finally the `unstable` feature can be defined to
//! enable the parts of `slotmap` that only work on nightly Rust.
//!
//! # Why not index a [`Vec`], or use [`slab`], [`stable-vec`], etc?
//!
//! Those solutions either can not reclaim memory from deleted elements or
//! suffer from the ABA problem. The keys returned by `slotmap` are versioned.
//! This means that once a key is removed, it stays removed, even if the
//! physical storage inside the slotmap is reused for new elements. The key is a
//! permanently unique<sup>*</sup> reference to the inserted value. Despite
//! supporting versioning, a [`SlotMap`] is often not (much) slower than the
//! alternative, by internally using carefully checked unsafe code. Finally,
//! `slotmap` simply has a lot of features that make your life easy.
//!
//! # Performance characteristics and implementation details
//!
//! Insertion, access and deletion is all O(1) with low overhead by storing the
//! elements inside a [`Vec`]. Unlike references or indices into a vector,
//! unless you remove a key it is never invalidated. Behind the scenes each
//! slot in the vector is a `(value, version)` tuple. After insertion the
//! returned key also contains a version. Only when the stored version and
//! version in a key match is a key valid. This allows us to reuse space in the
//! vector after deletion without letting removed keys point to spurious new
//! elements. <sup>*</sup>After 2<sup>31</sup> deletions and insertions to the
//! same underlying slot the version wraps around and such a spurious reference
//! could potentially occur. It is incredibly unlikely however, and in all
//! circumstances is the behavior safe. A slot map can hold up to
//! 2<sup>32</sup> - 2 elements at a time.
//!
//! The memory usage for each slot in [`SlotMap`] is `4 + max(sizeof(T), 4)`
//! rounded up to the alignment of `T`. Similarly it is `4 + max(sizeof(T), 12)`
//! for [`HopSlotMap`]. [`DenseSlotMap`] has an overhead of 8 bytes per element
//! and 8 bytes per slot.
//!
//! # Choosing [`SlotMap`], [`HopSlotMap`] or [`DenseSlotMap`]
//!
//! A [`SlotMap`] is the fastest for most operations, except iteration. It can
//! never shrink the size of its underlying storage, because it must remember
//! for each storage slot what the latest stored version was, even if the slot
//! is empty now. This means that iteration can be slow as it must iterate over
//! potentially a lot of empty slots.
//!
//! [`HopSlotMap`] solves this by maintaining more information on
//! insertion/removal, allowing it to iterate only over filled slots by 'hopping
//! over' contiguous blocks of vacant slots. This can give it significantly
//! better iteration speed. If you expect to iterate over all elements in a
//! [`SlotMap`] a lot, and potentially have a lot of deleted elements, choose
//! [`HopSlotMap`]. The downside is that insertion and removal is roughly twice
//! as slow. Random access is the same speed for both.
//!
//! [`DenseSlotMap`] goes even further and stores all elements on a contiguous
//! block of memory. It uses two indirections per random access; the slots
//! contain indices used to access the contiguous memory. This means random
//! access is slower than both [`SlotMap`] and [`HopSlotMap`], but iteration is
//! significantly faster, as fast as a normal [`Vec`].
//!
//! # Choosing [`SecondaryMap`] or [`SparseSecondaryMap`]
//!
//! You want to associate extra data with objects stored in a slot map, so you
//! use (multiple) secondary maps to map keys to that data.
//!
//! A [`SecondaryMap`] is simply a [`Vec`] of slots like slot map is, and
//! essentially provides all the same guarantees as [`SlotMap`] does for its
//! operations (with the exception that you provide the keys as produced by the
//! primary slot map). This does mean that even if you associate data to only
//! a single element from the primary slot map, you could need and have to
//! initialize as much memory as the original.
//!
//! A [`SparseSecondaryMap`] is like a [`HashMap`] from keys to objects, however
//! it automatically removes outdated keys for slots that had their space
//! reused. You should use this variant if you expect to store some associated
//! data for only a small portion of the primary slot map.
//!
//! # Custom key types
//!
//! If you have multiple slot maps it's an error to use the key of one slot map
//! on another slot map. The result is safe, but unspecified, and can not be
//! detected at runtime, so it can lead to a hard to find bug.
//!
//! To prevent this, slot maps allow you to specify what the type is of the key
//! they return. You can construct new key types using the [`new_key_type!`]
//! macro. The resulting type behaves exactly like [`DefaultKey`], but is a
//! distinct type. So instead of simply using `SlotMap<DefaultKey, Player>` you
//! would use:
//!
//! ```
//! # use slotmap::*;
//! # #[derive(Copy, Clone)]
//! # struct Player;
//! new_key_type! { struct PlayerKey; }
//! let sm: SlotMap<PlayerKey, Player> = SlotMap::with_key();
//! ```
//!
//! You can write code generic over any key type using the [`Key`] trait.
//!
//! [`Vec`]: std::vec::Vec
//! [`BTreeMap`]: std::collections::BTreeMap
//! [`HashMap`]: std::collections::HashMap
//! [`serde`]: https://github.com/serde-rs/serde
//! [`slab`]: https://crates.io/crates/slab
//! [`stable-vec`]: https://crates.io/crates/stable-vec
//! [`no_std`]: https://doc.rust-lang.org/1.7.0/book/no-stdlib.html
extern crate alloc;
// So our macros can refer to these.
#[doc(hidden)]
pub mod __impl {
#[cfg(feature = "serde")]
pub use serde::{Deserialize, Deserializer, Serialize, Serializer};
pub use core::convert::From;
pub use core::result::Result;
}
pub mod basic;
pub mod dense;
pub mod hop;
pub mod secondary;
#[cfg(feature = "std")]
pub mod sparse_secondary;
pub(crate) mod util;
use core::fmt::{self, Debug, Formatter};
use core::hash::{Hash, Hasher};
use core::num::NonZeroU32;
#[doc(inline)]
pub use crate::basic::SlotMap;
#[doc(inline)]
pub use crate::dense::DenseSlotMap;
#[doc(inline)]
pub use crate::hop::HopSlotMap;
#[doc(inline)]
pub use crate::secondary::SecondaryMap;
#[cfg(feature = "std")]
#[doc(inline)]
pub use crate::sparse_secondary::SparseSecondaryMap;
// Keep Slottable for backwards compatibility, but warn about deprecation
// and hide from documentation.
#[doc(hidden)]
#[deprecated(
since = "1.0.0",
note = "Slottable is not necessary anymore, slotmap now supports all types on stable."
)]
pub trait Slottable {}
#[doc(hidden)]
#[allow(deprecated)]
impl<T> Slottable for T {}
/// The actual data stored in a [`Key`].
///
/// This implements [`Ord`](std::cmp::Ord) so keys can be stored in e.g.
/// [`BTreeMap`](std::collections::BTreeMap), but the order of keys is
/// unspecified.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct KeyData {
idx: u32,
version: NonZeroU32,
}
impl KeyData {
fn new(idx: u32, version: u32) -> Self {
debug_assert!(version > 0);
Self {
idx,
version: unsafe { NonZeroU32::new_unchecked(version | 1) },
}
}
fn null() -> Self {
Self::new(core::u32::MAX, 1)
}
fn is_null(self) -> bool {
self.idx == core::u32::MAX
}
/// Returns the key data as a 64-bit integer. No guarantees about its value
/// are made other than that passing it to [`from_ffi`](Self::from_ffi)
/// will return a key equal to the original.
///
/// With this you can easily pass slot map keys as opaque handles to foreign
/// code. After you get them back you can confidently use them in your slot
/// map without worrying about unsafe behavior as you would with passing and
/// receiving back references or pointers.
///
/// This is not a substitute for proper serialization, use [`serde`] for
/// that. If you are not doing FFI, you almost surely do not need this
/// function.
///
/// [`serde`]: crate#serialization-through-serde-no_std-support-and-unstable-features
pub fn as_ffi(self) -> u64 {
(u64::from(self.version.get()) << 32) | u64::from(self.idx)
}
/// Iff `value` is a value received from `k.as_ffi()`, returns a key equal
/// to `k`. Otherwise the behavior is safe but unspecified.
pub fn from_ffi(value: u64) -> Self {
let idx = value & 0xffff_ffff;
let version = (value >> 32) | 1; // Ensure version is odd.
Self::new(idx as u32, version as u32)
}
}
impl Debug for KeyData {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}v{}", self.idx, self.version.get())
}
}
impl Default for KeyData {
fn default() -> Self {
Self::null()
}
}
impl Hash for KeyData
{
fn hash<H: Hasher>(&self, state: &mut H) {
// A derived Hash impl would call write_u32 twice. We call write_u64
// once, which is beneficial if the hasher implements write_u64
// explicitly.
state.write_u64(self.as_ffi())
}
}
/// Key used to access stored values in a slot map.
///
/// Do not use a key from one slot map in another. The behavior is safe but
/// non-sensical (and might panic in case of out-of-bounds).
///
/// To prevent this, it is suggested to have a unique key type for each slot
/// map. You can create new key types using [`new_key_type!`], which makes a
/// new type identical to [`DefaultKey`], just with a different name.
///
/// This trait is intended to be a thin wrapper around [`KeyData`], and all
/// methods must behave exactly as if we're operating on a [`KeyData`] directly.
/// The internal unsafe code relies on this, therefore this trait is `unsafe` to
/// implement. It is strongly suggested to simply use [`new_key_type!`] instead
/// of implementing this trait yourself.
pub unsafe trait Key:
From<KeyData>
+ Copy
+ Clone
+ Default
+ Eq
+ PartialEq
+ Ord
+ PartialOrd
+ core::hash::Hash
+ core::fmt::Debug
{
/// Creates a new key that is always invalid and distinct from any non-null
/// key. A null key can only be created through this method (or default
/// initialization of keys made with [`new_key_type!`], which calls this
/// method).
///
/// A null key is always invalid, but an invalid key (that is, a key that
/// has been removed from the slot map) does not become a null key. A null
/// is safe to use with any safe method of any slot map instance.
///
/// # Examples
///
/// ```
/// # use slotmap::*;
/// let mut sm = SlotMap::new();
/// let k = sm.insert(42);
/// let nk = DefaultKey::null();
/// assert!(nk.is_null());
/// assert!(k != nk);
/// assert_eq!(sm.get(nk), None);
/// ```
fn null() -> Self {
KeyData::null().into()
}
/// Checks if a key is null. There is only a single null key, that is
/// `a.is_null() && b.is_null()` implies `a == b`.
///
/// # Examples
///
/// ```
/// # use slotmap::*;
/// new_key_type! { struct MyKey; }
/// let a = MyKey::null();
/// let b = MyKey::default();
/// assert_eq!(a, b);
/// assert!(a.is_null());
/// ```
fn is_null(&self) -> bool {
self.data().is_null()
}
/// Gets the [`KeyData`] stored in this key.
///
/// # Examples
///
/// ```
/// # use slotmap::*;
/// new_key_type! { struct MyKey; }
/// let dk = DefaultKey::null();
/// let mk = MyKey::null();
/// assert_eq!(dk.data(), mk.data());
/// ```
fn data(&self) -> KeyData;
}
/// A helper macro to create new key types. If you use a new key type for each
/// slot map you create you can entirely prevent using the wrong key on the
/// wrong slot map.
///
/// The type constructed by this macro is defined exactly as [`DefaultKey`],
/// but is a distinct type for the type checker and does not implicitly convert.
///
/// # Examples
///
/// ```
/// # extern crate slotmap;
/// # use slotmap::*;
/// new_key_type! {
/// // A private key type.
/// struct RocketKey;
///
/// // A public key type with a doc comment.
/// /// Key for the user slot map.
/// pub struct UserKey;
/// }
///
/// fn main() {
/// let mut users = SlotMap::with_key();
/// let mut rockets = SlotMap::with_key();
/// let bob: UserKey = users.insert("bobby");
/// let apollo: RocketKey = rockets.insert("apollo");
/// // Now this is a type error because rockets.get expects an RocketKey:
/// // rockets.get(bob);
///
/// // If for some reason you do end up needing to convert (e.g. storing
/// // keys of multiple slot maps in the same data structure without
/// // boxing), you can use KeyData as an intermediate representation. This
/// // does mean that once again you are responsible for not using the wrong
/// // key on the wrong slot map.
/// let keys = vec![bob.data(), apollo.data()];
/// println!("{} likes rocket {}",
/// users[keys[0].into()], rockets[keys[1].into()]);
/// }
/// ```
#[macro_export(local_inner_macros)]
macro_rules! new_key_type {
( $(#[$outer:meta])* $vis:vis struct $name:ident; $($rest:tt)* ) => {
$(#[$outer])*
#[derive(Copy, Clone, Default,
Eq, PartialEq, Ord, PartialOrd,
Hash, Debug)]
#[repr(transparent)]
$vis struct $name($crate::KeyData);
impl $crate::__impl::From<$crate::KeyData> for $name {
fn from(k: $crate::KeyData) -> Self {
$name(k)
}
}
unsafe impl $crate::Key for $name {
fn data(&self) -> $crate::KeyData {
self.0
}
}
$crate::__serialize_key!($name);
$crate::new_key_type!($($rest)*);
};
() => {}
}
#[cfg(feature = "serde")]
#[doc(hidden)]
#[macro_export]
macro_rules! __serialize_key {
( $name:ty ) => {
impl $crate::__impl::Serialize for $name {
fn serialize<S>(&self, serializer: S) -> $crate::__impl::Result<S::Ok, S::Error>
where
S: $crate::__impl::Serializer,
{
$crate::Key::data(self).serialize(serializer)
}
}
impl<'de> $crate::__impl::Deserialize<'de> for $name {
fn deserialize<D>(deserializer: D) -> $crate::__impl::Result<Self, D::Error>
where
D: $crate::__impl::Deserializer<'de>,
{
let key_data: $crate::KeyData =
$crate::__impl::Deserialize::deserialize(deserializer)?;
Ok(key_data.into())
}
}
};
}
#[cfg(not(feature = "serde"))]
#[doc(hidden)]
#[macro_export]
macro_rules! __serialize_key {
( $name:ty ) => {};
}
new_key_type! {
/// The default slot map key type.
pub struct DefaultKey;
}
// Serialization with serde.
#[cfg(feature = "serde")]
mod serialize {
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use super::*;
#[derive(Serialize, Deserialize)]
pub struct SerKey {
idx: u32,
version: u32,
}
impl Serialize for KeyData {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let ser_key = SerKey {
idx: self.idx,
version: self.version.get(),
};
ser_key.serialize(serializer)
}
}
impl<'de> Deserialize<'de> for KeyData {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
let mut ser_key: SerKey = Deserialize::deserialize(deserializer)?;
// Ensure a.is_null() && b.is_null() implies a == b.
if ser_key.idx == core::u32::MAX {
ser_key.version = 1;
}
ser_key.version |= 1; // Ensure version is odd.
Ok(Self::new(ser_key.idx, ser_key.version))
}
}
}
#[cfg(test)]
mod tests {
// Intentionally no `use super::*;` because we want to test macro expansion
// in the *users* scope, which might not have that.
#[test]
fn macro_expansion() {
#![allow(dead_code)]
use super::new_key_type;
// Clobber namespace with clashing names - should still work.
trait Serialize { }
trait Deserialize { }
trait Serializer { }
trait Deserializer { }
trait Key { }
trait From { }
struct Result;
struct KeyData;
new_key_type! {
struct A;
pub(crate) struct B;
pub struct C;
}
}
#[test]
fn check_is_older_version() {
use super::util::is_older_version;
let is_older = |a, b| is_older_version(a, b);
assert!(!is_older(42, 42));
assert!(is_older(0, 1));
assert!(is_older(0, 1 << 31));
assert!(!is_older(0, (1 << 31) + 1));
assert!(is_older(u32::MAX, 0));
}
#[test]
fn iters_cloneable() {
use super::*;
struct NoClone;
let mut sm = SlotMap::new();
let mut hsm = HopSlotMap::new();
let mut dsm = DenseSlotMap::new();
let mut scm = SecondaryMap::new();
let mut sscm = SparseSecondaryMap::new();
scm.insert(sm.insert(NoClone), NoClone);
sscm.insert(hsm.insert(NoClone), NoClone);
dsm.insert(NoClone);
let _ = sm.keys().clone();
let _ = sm.values().clone();
let _ = sm.iter().clone();
let _ = hsm.keys().clone();
let _ = hsm.values().clone();
let _ = hsm.iter().clone();
let _ = dsm.keys().clone();
let _ = dsm.values().clone();
let _ = dsm.iter().clone();
let _ = scm.keys().clone();
let _ = scm.values().clone();
let _ = scm.iter().clone();
let _ = sscm.keys().clone();
let _ = sscm.values().clone();
let _ = sscm.iter().clone();
}
#[cfg(feature = "serde")]
#[test]
fn key_serde() {
use super::*;
// Check round-trip through serde.
let mut sm = SlotMap::new();
let k = sm.insert(42);
let ser = serde_json::to_string(&k).unwrap();
let de: DefaultKey = serde_json::from_str(&ser).unwrap();
assert_eq!(k, de);
// Even if a malicious entity sends up even (unoccupied) versions in the
// key, we make the version point to the occupied version.
let malicious: KeyData = serde_json::from_str(&r#"{"idx":0,"version":4}"#).unwrap();
assert_eq!(malicious.version.get(), 5);
}
}