strsim/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
//! This library implements string similarity metrics.

#![forbid(unsafe_code)]
#![allow(
    // these casts are sometimes needed. They restrict the length of input iterators
    // but there isn't really any way around this except for always working with
    // 128 bit types
    clippy::cast_possible_wrap,
    clippy::cast_sign_loss,
    clippy::cast_precision_loss,
    // not practical
    clippy::needless_pass_by_value,
    clippy::similar_names,
    // noisy
    clippy::missing_errors_doc,
    clippy::missing_panics_doc,
    clippy::must_use_candidate,
    // todo https://github.com/rapidfuzz/strsim-rs/issues/59
    clippy::range_plus_one
)]

use std::char;
use std::cmp::{max, min};
use std::collections::HashMap;
use std::convert::TryFrom;
use std::error::Error;
use std::fmt::{self, Display, Formatter};
use std::hash::Hash;
use std::mem;
use std::str::Chars;

#[derive(Debug, PartialEq)]
pub enum StrSimError {
    DifferentLengthArgs,
}

impl Display for StrSimError {
    fn fmt(&self, fmt: &mut Formatter) -> Result<(), fmt::Error> {
        let text = match self {
            StrSimError::DifferentLengthArgs => "Differing length arguments provided",
        };

        write!(fmt, "{}", text)
    }
}

impl Error for StrSimError {}

pub type HammingResult = Result<usize, StrSimError>;

/// Calculates the number of positions in the two sequences where the elements
/// differ. Returns an error if the sequences have different lengths.
pub fn generic_hamming<Iter1, Iter2, Elem1, Elem2>(a: Iter1, b: Iter2) -> HammingResult
where
    Iter1: IntoIterator<Item = Elem1>,
    Iter2: IntoIterator<Item = Elem2>,
    Elem1: PartialEq<Elem2>,
{
    let (mut ita, mut itb) = (a.into_iter(), b.into_iter());
    let mut count = 0;
    loop {
        match (ita.next(), itb.next()) {
            (Some(x), Some(y)) => {
                if x != y {
                    count += 1;
                }
            }
            (None, None) => return Ok(count),
            _ => return Err(StrSimError::DifferentLengthArgs),
        }
    }
}

/// Calculates the number of positions in the two strings where the characters
/// differ. Returns an error if the strings have different lengths.
///
/// ```
/// use strsim::{hamming, StrSimError::DifferentLengthArgs};
///
/// assert_eq!(Ok(3), hamming("hamming", "hammers"));
///
/// assert_eq!(Err(DifferentLengthArgs), hamming("hamming", "ham"));
/// ```
pub fn hamming(a: &str, b: &str) -> HammingResult {
    generic_hamming(a.chars(), b.chars())
}

/// Calculates the Jaro similarity between two sequences. The returned value
/// is between 0.0 and 1.0 (higher value means more similar).
pub fn generic_jaro<'a, 'b, Iter1, Iter2, Elem1, Elem2>(a: &'a Iter1, b: &'b Iter2) -> f64
where
    &'a Iter1: IntoIterator<Item = Elem1>,
    &'b Iter2: IntoIterator<Item = Elem2>,
    Elem1: PartialEq<Elem2>,
{
    let a_len = a.into_iter().count();
    let b_len = b.into_iter().count();

    if a_len == 0 && b_len == 0 {
        return 1.0;
    } else if a_len == 0 || b_len == 0 {
        return 0.0;
    }

    let mut search_range = max(a_len, b_len) / 2;
    search_range = search_range.saturating_sub(1);

    // combine memory allocations to reduce runtime
    let mut flags_memory = vec![false; a_len + b_len];
    let (a_flags, b_flags) = flags_memory.split_at_mut(a_len);

    let mut matches = 0_usize;

    for (i, a_elem) in a.into_iter().enumerate() {
        // prevent integer wrapping
        let min_bound = if i > search_range {
            i - search_range
        } else {
            0
        };

        let max_bound = min(b_len, i + search_range + 1);

        for (j, b_elem) in b.into_iter().enumerate().take(max_bound) {
            if min_bound <= j && a_elem == b_elem && !b_flags[j] {
                a_flags[i] = true;
                b_flags[j] = true;
                matches += 1;
                break;
            }
        }
    }

    let mut transpositions = 0_usize;
    if matches != 0 {
        let mut b_iter = b_flags.iter().zip(b);
        for (a_flag, ch1) in a_flags.iter().zip(a) {
            if *a_flag {
                loop {
                    if let Some((b_flag, ch2)) = b_iter.next() {
                        if !*b_flag {
                            continue;
                        }

                        if ch1 != ch2 {
                            transpositions += 1;
                        }
                        break;
                    }
                }
            }
        }
    }
    transpositions /= 2;

    if matches == 0 {
        0.0
    } else {
        ((matches as f64 / a_len as f64)
            + (matches as f64 / b_len as f64)
            + ((matches - transpositions) as f64 / matches as f64))
            / 3.0
    }
}

struct StringWrapper<'a>(&'a str);

impl<'a, 'b> IntoIterator for &'a StringWrapper<'b> {
    type Item = char;
    type IntoIter = Chars<'b>;

    fn into_iter(self) -> Self::IntoIter {
        self.0.chars()
    }
}

/// Calculates the Jaro similarity between two strings. The returned value
/// is between 0.0 and 1.0 (higher value means more similar).
///
/// ```
/// use strsim::jaro;
///
/// assert!((0.392 - jaro("Friedrich Nietzsche", "Jean-Paul Sartre")).abs() <
///         0.001);
/// ```
pub fn jaro(a: &str, b: &str) -> f64 {
    generic_jaro(&StringWrapper(a), &StringWrapper(b))
}

/// Like Jaro but gives a boost to sequences that have a common prefix.
pub fn generic_jaro_winkler<'a, 'b, Iter1, Iter2, Elem1, Elem2>(a: &'a Iter1, b: &'b Iter2) -> f64
where
    &'a Iter1: IntoIterator<Item = Elem1>,
    &'b Iter2: IntoIterator<Item = Elem2>,
    Elem1: PartialEq<Elem2>,
{
    let sim = generic_jaro(a, b);

    if sim > 0.7 {
        let prefix_length = a
            .into_iter()
            .take(4)
            .zip(b)
            .take_while(|(a_elem, b_elem)| a_elem == b_elem)
            .count();

        sim + 0.1 * prefix_length as f64 * (1.0 - sim)
    } else {
        sim
    }
}

/// Like Jaro but gives a boost to strings that have a common prefix.
///
/// ```
/// use strsim::jaro_winkler;
///
/// assert!((0.866 - jaro_winkler("cheeseburger", "cheese fries")).abs() <
///         0.001);
/// ```
pub fn jaro_winkler(a: &str, b: &str) -> f64 {
    generic_jaro_winkler(&StringWrapper(a), &StringWrapper(b))
}

/// Calculates the minimum number of insertions, deletions, and substitutions
/// required to change one sequence into the other.
///
/// ```
/// use strsim::generic_levenshtein;
///
/// assert_eq!(3, generic_levenshtein(&[1,2,3], &[1,2,3,4,5,6]));
/// ```
pub fn generic_levenshtein<'a, 'b, Iter1, Iter2, Elem1, Elem2>(a: &'a Iter1, b: &'b Iter2) -> usize
where
    &'a Iter1: IntoIterator<Item = Elem1>,
    &'b Iter2: IntoIterator<Item = Elem2>,
    Elem1: PartialEq<Elem2>,
{
    let b_len = b.into_iter().count();

    let mut cache: Vec<usize> = (1..b_len + 1).collect();

    let mut result = b_len;

    for (i, a_elem) in a.into_iter().enumerate() {
        result = i + 1;
        let mut distance_b = i;

        for (j, b_elem) in b.into_iter().enumerate() {
            let cost = usize::from(a_elem != b_elem);
            let distance_a = distance_b + cost;
            distance_b = cache[j];
            result = min(result + 1, min(distance_a, distance_b + 1));
            cache[j] = result;
        }
    }

    result
}

/// Calculates the minimum number of insertions, deletions, and substitutions
/// required to change one string into the other.
///
/// ```
/// use strsim::levenshtein;
///
/// assert_eq!(3, levenshtein("kitten", "sitting"));
/// ```
pub fn levenshtein(a: &str, b: &str) -> usize {
    generic_levenshtein(&StringWrapper(a), &StringWrapper(b))
}

/// Calculates a normalized score of the Levenshtein algorithm between 0.0 and
/// 1.0 (inclusive), where 1.0 means the strings are the same.
///
/// ```
/// use strsim::normalized_levenshtein;
///
/// assert!((normalized_levenshtein("kitten", "sitting") - 0.57142).abs() < 0.00001);
/// assert!((normalized_levenshtein("", "") - 1.0).abs() < 0.00001);
/// assert!(normalized_levenshtein("", "second").abs() < 0.00001);
/// assert!(normalized_levenshtein("first", "").abs() < 0.00001);
/// assert!((normalized_levenshtein("string", "string") - 1.0).abs() < 0.00001);
/// ```
pub fn normalized_levenshtein(a: &str, b: &str) -> f64 {
    if a.is_empty() && b.is_empty() {
        return 1.0;
    }
    1.0 - (levenshtein(a, b) as f64) / (a.chars().count().max(b.chars().count()) as f64)
}

/// Like Levenshtein but allows for adjacent transpositions. Each substring can
/// only be edited once.
///
/// ```
/// use strsim::osa_distance;
///
/// assert_eq!(3, osa_distance("ab", "bca"));
/// ```
pub fn osa_distance(a: &str, b: &str) -> usize {
    let b_len = b.chars().count();
    // 0..=b_len behaves like 0..b_len.saturating_add(1) which could be a different size
    // this leads to significantly worse code gen when swapping the vectors below
    let mut prev_two_distances: Vec<usize> = (0..b_len + 1).collect();
    let mut prev_distances: Vec<usize> = (0..b_len + 1).collect();
    let mut curr_distances: Vec<usize> = vec![0; b_len + 1];

    let mut prev_a_char = char::MAX;
    let mut prev_b_char = char::MAX;

    for (i, a_char) in a.chars().enumerate() {
        curr_distances[0] = i + 1;

        for (j, b_char) in b.chars().enumerate() {
            let cost = usize::from(a_char != b_char);
            curr_distances[j + 1] = min(
                curr_distances[j] + 1,
                min(prev_distances[j + 1] + 1, prev_distances[j] + cost),
            );
            if i > 0 && j > 0 && a_char != b_char && a_char == prev_b_char && b_char == prev_a_char
            {
                curr_distances[j + 1] = min(curr_distances[j + 1], prev_two_distances[j - 1] + 1);
            }

            prev_b_char = b_char;
        }

        mem::swap(&mut prev_two_distances, &mut prev_distances);
        mem::swap(&mut prev_distances, &mut curr_distances);
        prev_a_char = a_char;
    }

    // access prev_distances instead of curr_distances since we swapped
    // them above. In case a is empty this would still contain the correct value
    // from initializing the last element to b_len
    prev_distances[b_len]
}

/* Returns the final index for a value in a single vector that represents a fixed
2d grid */
fn flat_index(i: usize, j: usize, width: usize) -> usize {
    j * width + i
}

/// Like optimal string alignment, but substrings can be edited an unlimited
/// number of times, and the triangle inequality holds.
///
/// ```
/// use strsim::generic_damerau_levenshtein;
///
/// assert_eq!(2, generic_damerau_levenshtein(&[1,2], &[2,3,1]));
/// ```
pub fn generic_damerau_levenshtein<Elem>(a_elems: &[Elem], b_elems: &[Elem]) -> usize
where
    Elem: Eq + Hash + Clone,
{
    let a_len = a_elems.len();
    let b_len = b_elems.len();

    if a_len == 0 {
        return b_len;
    }
    if b_len == 0 {
        return a_len;
    }

    let width = a_len + 2;
    let mut distances = vec![0; (a_len + 2) * (b_len + 2)];
    let max_distance = a_len + b_len;
    distances[0] = max_distance;

    for i in 0..(a_len + 1) {
        distances[flat_index(i + 1, 0, width)] = max_distance;
        distances[flat_index(i + 1, 1, width)] = i;
    }

    for j in 0..(b_len + 1) {
        distances[flat_index(0, j + 1, width)] = max_distance;
        distances[flat_index(1, j + 1, width)] = j;
    }

    let mut elems: HashMap<Elem, usize> = HashMap::with_capacity(64);

    for i in 1..(a_len + 1) {
        let mut db = 0;

        for j in 1..(b_len + 1) {
            let k = match elems.get(&b_elems[j - 1]) {
                Some(&value) => value,
                None => 0,
            };

            let insertion_cost = distances[flat_index(i, j + 1, width)] + 1;
            let deletion_cost = distances[flat_index(i + 1, j, width)] + 1;
            let transposition_cost =
                distances[flat_index(k, db, width)] + (i - k - 1) + 1 + (j - db - 1);

            let mut substitution_cost = distances[flat_index(i, j, width)] + 1;
            if a_elems[i - 1] == b_elems[j - 1] {
                db = j;
                substitution_cost -= 1;
            }

            distances[flat_index(i + 1, j + 1, width)] = min(
                substitution_cost,
                min(insertion_cost, min(deletion_cost, transposition_cost)),
            );
        }

        elems.insert(a_elems[i - 1].clone(), i);
    }

    distances[flat_index(a_len + 1, b_len + 1, width)]
}

#[derive(Clone, Copy, PartialEq, Eq)]
struct RowId {
    val: isize,
}

impl Default for RowId {
    fn default() -> Self {
        Self { val: -1 }
    }
}

#[derive(Default, Clone)]
struct GrowingHashmapMapElemChar<ValueType> {
    key: u32,
    value: ValueType,
}

/// specialized hashmap to store user provided types
/// this implementation relies on a couple of base assumptions in order to simplify the implementation
/// - the hashmap does not have an upper limit of included items
/// - the default value for the `ValueType` can be used as a dummy value to indicate an empty cell
/// - elements can't be removed
/// - only allocates memory on first write access.
///   This improves performance for hashmaps that are never written to
struct GrowingHashmapChar<ValueType> {
    used: i32,
    fill: i32,
    mask: i32,
    map: Option<Vec<GrowingHashmapMapElemChar<ValueType>>>,
}

impl<ValueType> Default for GrowingHashmapChar<ValueType>
where
    ValueType: Default + Clone + Eq,
{
    fn default() -> Self {
        Self {
            used: 0,
            fill: 0,
            mask: -1,
            map: None,
        }
    }
}

impl<ValueType> GrowingHashmapChar<ValueType>
where
    ValueType: Default + Clone + Eq + Copy,
{
    fn get(&self, key: u32) -> ValueType {
        self.map
            .as_ref()
            .map_or_else(|| Default::default(), |map| map[self.lookup(key)].value)
    }

    fn get_mut(&mut self, key: u32) -> &mut ValueType {
        if self.map.is_none() {
            self.allocate();
        }

        let mut i = self.lookup(key);
        if self
            .map
            .as_ref()
            .expect("map should have been created above")[i]
            .value
            == Default::default()
        {
            self.fill += 1;
            // resize when 2/3 full
            if self.fill * 3 >= (self.mask + 1) * 2 {
                self.grow((self.used + 1) * 2);
                i = self.lookup(key);
            }

            self.used += 1;
        }

        let elem = &mut self
            .map
            .as_mut()
            .expect("map should have been created above")[i];
        elem.key = key;
        &mut elem.value
    }

    fn allocate(&mut self) {
        self.mask = 8 - 1;
        self.map = Some(vec![GrowingHashmapMapElemChar::default(); 8]);
    }

    /// lookup key inside the hashmap using a similar collision resolution
    /// strategy to `CPython` and `Ruby`
    fn lookup(&self, key: u32) -> usize {
        let hash = key;
        let mut i = hash as usize & self.mask as usize;

        let map = self
            .map
            .as_ref()
            .expect("callers have to ensure map is allocated");

        if map[i].value == Default::default() || map[i].key == key {
            return i;
        }

        let mut perturb = key;
        loop {
            i = (i * 5 + perturb as usize + 1) & self.mask as usize;

            if map[i].value == Default::default() || map[i].key == key {
                return i;
            }

            perturb >>= 5;
        }
    }

    fn grow(&mut self, min_used: i32) {
        let mut new_size = self.mask + 1;
        while new_size <= min_used {
            new_size <<= 1;
        }

        self.fill = self.used;
        self.mask = new_size - 1;

        let old_map = std::mem::replace(
            self.map
                .as_mut()
                .expect("callers have to ensure map is allocated"),
            vec![GrowingHashmapMapElemChar::<ValueType>::default(); new_size as usize],
        );

        for elem in old_map {
            if elem.value != Default::default() {
                let j = self.lookup(elem.key);
                let new_elem = &mut self.map.as_mut().expect("map created above")[j];
                new_elem.key = elem.key;
                new_elem.value = elem.value;
                self.used -= 1;
                if self.used == 0 {
                    break;
                }
            }
        }

        self.used = self.fill;
    }
}

struct HybridGrowingHashmapChar<ValueType> {
    map: GrowingHashmapChar<ValueType>,
    extended_ascii: [ValueType; 256],
}

impl<ValueType> HybridGrowingHashmapChar<ValueType>
where
    ValueType: Default + Clone + Copy + Eq,
{
    fn get(&self, key: char) -> ValueType {
        let value = key as u32;
        if value <= 255 {
            let val_u8 = u8::try_from(value).expect("we check the bounds above");
            self.extended_ascii[usize::from(val_u8)]
        } else {
            self.map.get(value)
        }
    }

    fn get_mut(&mut self, key: char) -> &mut ValueType {
        let value = key as u32;
        if value <= 255 {
            let val_u8 = u8::try_from(value).expect("we check the bounds above");
            &mut self.extended_ascii[usize::from(val_u8)]
        } else {
            self.map.get_mut(value)
        }
    }
}

impl<ValueType> Default for HybridGrowingHashmapChar<ValueType>
where
    ValueType: Default + Clone + Copy + Eq,
{
    fn default() -> Self {
        HybridGrowingHashmapChar {
            map: GrowingHashmapChar::default(),
            extended_ascii: [Default::default(); 256],
        }
    }
}

fn damerau_levenshtein_impl<Iter1, Iter2>(s1: Iter1, len1: usize, s2: Iter2, len2: usize) -> usize
where
    Iter1: Iterator<Item = char> + Clone,
    Iter2: Iterator<Item = char> + Clone,
{
    // The implementations is based on the paper
    // `Linear space string correction algorithm using the Damerau-Levenshtein distance`
    // from Chunchun Zhao and Sartaj Sahni
    //
    // It has a runtime complexity of `O(N*M)` and a memory usage of `O(N+M)`.
    let max_val = max(len1, len2) as isize + 1;

    let mut last_row_id = HybridGrowingHashmapChar::<RowId>::default();

    let size = len2 + 2;
    let mut fr = vec![max_val; size];
    let mut r1 = vec![max_val; size];
    let mut r: Vec<isize> = (max_val..max_val + 1)
        .chain(0..(size - 1) as isize)
        .collect();

    for (i, ch1) in s1.enumerate().map(|(i, ch1)| (i + 1, ch1)) {
        mem::swap(&mut r, &mut r1);
        let mut last_col_id: isize = -1;
        let mut last_i2l1 = r[1];
        r[1] = i as isize;
        let mut t = max_val;

        for (j, ch2) in s2.clone().enumerate().map(|(j, ch2)| (j + 1, ch2)) {
            let diag = r1[j] + isize::from(ch1 != ch2);
            let left = r[j] + 1;
            let up = r1[j + 1] + 1;
            let mut temp = min(diag, min(left, up));

            if ch1 == ch2 {
                last_col_id = j as isize; // last occurence of s1_i
                fr[j + 1] = r1[j - 1]; // save H_k-1,j-2
                t = last_i2l1; // save H_i-2,l-1
            } else {
                let k = last_row_id.get(ch2).val;
                let l = last_col_id;

                if j as isize - l == 1 {
                    let transpose = fr[j + 1] + (i as isize - k);
                    temp = min(temp, transpose);
                } else if i as isize - k == 1 {
                    let transpose = t + (j as isize - l);
                    temp = min(temp, transpose);
                }
            }

            last_i2l1 = r[j + 1];
            r[j + 1] = temp;
        }
        last_row_id.get_mut(ch1).val = i as isize;
    }

    r[len2 + 1] as usize
}

/// Like optimal string alignment, but substrings can be edited an unlimited
/// number of times, and the triangle inequality holds.
///
/// ```
/// use strsim::damerau_levenshtein;
///
/// assert_eq!(2, damerau_levenshtein("ab", "bca"));
/// ```
pub fn damerau_levenshtein(a: &str, b: &str) -> usize {
    damerau_levenshtein_impl(a.chars(), a.chars().count(), b.chars(), b.chars().count())
}

/// Calculates a normalized score of the Damerau–Levenshtein algorithm between
/// 0.0 and 1.0 (inclusive), where 1.0 means the strings are the same.
///
/// ```
/// use strsim::normalized_damerau_levenshtein;
///
/// assert!((normalized_damerau_levenshtein("levenshtein", "löwenbräu") - 0.27272).abs() < 0.00001);
/// assert!((normalized_damerau_levenshtein("", "") - 1.0).abs() < 0.00001);
/// assert!(normalized_damerau_levenshtein("", "flower").abs() < 0.00001);
/// assert!(normalized_damerau_levenshtein("tree", "").abs() < 0.00001);
/// assert!((normalized_damerau_levenshtein("sunglasses", "sunglasses") - 1.0).abs() < 0.00001);
/// ```
pub fn normalized_damerau_levenshtein(a: &str, b: &str) -> f64 {
    if a.is_empty() && b.is_empty() {
        return 1.0;
    }

    let len1 = a.chars().count();
    let len2 = b.chars().count();
    let dist = damerau_levenshtein_impl(a.chars(), len1, b.chars(), len2);
    1.0 - (dist as f64) / (max(len1, len2) as f64)
}

/// Returns an Iterator of char tuples.
fn bigrams(s: &str) -> impl Iterator<Item = (char, char)> + '_ {
    s.chars().zip(s.chars().skip(1))
}

/// Calculates a Sørensen-Dice similarity distance using bigrams.
/// See <https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient>.
///
/// ```
/// use strsim::sorensen_dice;
///
/// assert_eq!(1.0, sorensen_dice("", ""));
/// assert_eq!(0.0, sorensen_dice("", "a"));
/// assert_eq!(0.0, sorensen_dice("french", "quebec"));
/// assert_eq!(1.0, sorensen_dice("ferris", "ferris"));
/// assert_eq!(0.8888888888888888, sorensen_dice("feris", "ferris"));
/// ```
pub fn sorensen_dice(a: &str, b: &str) -> f64 {
    // implementation guided by
    // https://github.com/aceakash/string-similarity/blob/f83ba3cd7bae874c20c429774e911ae8cff8bced/src/index.js#L6

    let a: String = a.chars().filter(|&x| !char::is_whitespace(x)).collect();
    let b: String = b.chars().filter(|&x| !char::is_whitespace(x)).collect();

    if a == b {
        return 1.0;
    }

    if a.len() < 2 || b.len() < 2 {
        return 0.0;
    }

    let mut a_bigrams: HashMap<(char, char), usize> = HashMap::new();

    for bigram in bigrams(&a) {
        *a_bigrams.entry(bigram).or_insert(0) += 1;
    }

    let mut intersection_size = 0_usize;

    for bigram in bigrams(&b) {
        a_bigrams.entry(bigram).and_modify(|bi| {
            if *bi > 0 {
                *bi -= 1;
                intersection_size += 1;
            }
        });
    }

    (2 * intersection_size) as f64 / (a.len() + b.len() - 2) as f64
}

#[cfg(test)]
mod tests {
    use super::*;

    macro_rules! assert_delta {
        ($x:expr, $y:expr) => {
            assert_delta!($x, $y, 1e-5);
        };
        ($x:expr, $y:expr, $d:expr) => {
            if ($x - $y).abs() > $d {
                panic!(
                    "assertion failed: actual: `{}`, expected: `{}`: \
                    actual not within < {} of expected",
                    $x, $y, $d
                );
            }
        };
    }

    #[test]
    fn bigrams_iterator() {
        let mut bi = bigrams("abcde");

        assert_eq!(Some(('a', 'b')), bi.next());
        assert_eq!(Some(('b', 'c')), bi.next());
        assert_eq!(Some(('c', 'd')), bi.next());
        assert_eq!(Some(('d', 'e')), bi.next());
        assert_eq!(None, bi.next());
    }

    fn assert_hamming_dist(dist: usize, str1: &str, str2: &str) {
        assert_eq!(Ok(dist), hamming(str1, str2));
    }

    #[test]
    fn hamming_empty() {
        assert_hamming_dist(0, "", "")
    }

    #[test]
    fn hamming_same() {
        assert_hamming_dist(0, "hamming", "hamming")
    }

    #[test]
    fn hamming_numbers() {
        assert_eq!(Ok(1), generic_hamming(&[1, 2, 4], &[1, 2, 3]));
    }

    #[test]
    fn hamming_diff() {
        assert_hamming_dist(3, "hamming", "hammers")
    }

    #[test]
    fn hamming_diff_multibyte() {
        assert_hamming_dist(2, "hamming", "h香mmüng");
    }

    #[test]
    fn hamming_unequal_length() {
        assert_eq!(
            Err(StrSimError::DifferentLengthArgs),
            generic_hamming("ham".chars(), "hamming".chars())
        );
    }

    #[test]
    fn hamming_names() {
        assert_hamming_dist(14, "Friedrich Nietzs", "Jean-Paul Sartre")
    }

    #[test]
    fn jaro_both_empty() {
        assert_eq!(1.0, jaro("", ""));
    }

    #[test]
    fn jaro_first_empty() {
        assert_eq!(0.0, jaro("", "jaro"));
    }

    #[test]
    fn jaro_second_empty() {
        assert_eq!(0.0, jaro("distance", ""));
    }

    #[test]
    fn jaro_same() {
        assert_eq!(1.0, jaro("jaro", "jaro"));
    }

    #[test]
    fn jaro_multibyte() {
        assert_delta!(0.818, jaro("testabctest", "testöঙ香test"), 0.001);
        assert_delta!(0.818, jaro("testöঙ香test", "testabctest"), 0.001);
    }

    #[test]
    fn jaro_diff_short() {
        assert_delta!(0.767, jaro("dixon", "dicksonx"), 0.001);
    }

    #[test]
    fn jaro_diff_one_character() {
        assert_eq!(0.0, jaro("a", "b"));
    }

    #[test]
    fn jaro_same_one_character() {
        assert_eq!(1.0, jaro("a", "a"));
    }

    #[test]
    fn generic_jaro_diff() {
        assert_eq!(0.0, generic_jaro(&[1, 2], &[3, 4]));
    }

    #[test]
    fn jaro_diff_one_and_two() {
        assert_delta!(0.83, jaro("a", "ab"), 0.01);
    }

    #[test]
    fn jaro_diff_two_and_one() {
        assert_delta!(0.83, jaro("ab", "a"), 0.01);
    }

    #[test]
    fn jaro_diff_no_transposition() {
        assert_delta!(0.822, jaro("dwayne", "duane"), 0.001);
    }

    #[test]
    fn jaro_diff_with_transposition() {
        assert_delta!(0.944, jaro("martha", "marhta"), 0.001);
        assert_delta!(0.6, jaro("a jke", "jane a k"), 0.001);
    }

    #[test]
    fn jaro_names() {
        assert_delta!(
            0.392,
            jaro("Friedrich Nietzsche", "Jean-Paul Sartre"),
            0.001
        );
    }

    #[test]
    fn jaro_winkler_both_empty() {
        assert_eq!(1.0, jaro_winkler("", ""));
    }

    #[test]
    fn jaro_winkler_first_empty() {
        assert_eq!(0.0, jaro_winkler("", "jaro-winkler"));
    }

    #[test]
    fn jaro_winkler_second_empty() {
        assert_eq!(0.0, jaro_winkler("distance", ""));
    }

    #[test]
    fn jaro_winkler_same() {
        assert_eq!(1.0, jaro_winkler("Jaro-Winkler", "Jaro-Winkler"));
    }

    #[test]
    fn jaro_winkler_multibyte() {
        assert_delta!(0.89, jaro_winkler("testabctest", "testöঙ香test"), 0.001);
        assert_delta!(0.89, jaro_winkler("testöঙ香test", "testabctest"), 0.001);
    }

    #[test]
    fn jaro_winkler_diff_short() {
        assert_delta!(0.813, jaro_winkler("dixon", "dicksonx"), 0.001);
        assert_delta!(0.813, jaro_winkler("dicksonx", "dixon"), 0.001);
    }

    #[test]
    fn jaro_winkler_diff_one_character() {
        assert_eq!(0.0, jaro_winkler("a", "b"));
    }

    #[test]
    fn jaro_winkler_same_one_character() {
        assert_eq!(1.0, jaro_winkler("a", "a"));
    }

    #[test]
    fn jaro_winkler_diff_no_transposition() {
        assert_delta!(0.84, jaro_winkler("dwayne", "duane"), 0.001);
    }

    #[test]
    fn jaro_winkler_diff_with_transposition() {
        assert_delta!(0.961, jaro_winkler("martha", "marhta"), 0.001);
        assert_delta!(0.6, jaro_winkler("a jke", "jane a k"), 0.001);
    }

    #[test]
    fn jaro_winkler_names() {
        assert_delta!(
            0.452,
            jaro_winkler("Friedrich Nietzsche", "Fran-Paul Sartre"),
            0.001
        );
    }

    #[test]
    fn jaro_winkler_long_prefix() {
        assert_delta!(0.866, jaro_winkler("cheeseburger", "cheese fries"), 0.001);
    }

    #[test]
    fn jaro_winkler_more_names() {
        assert_delta!(0.868, jaro_winkler("Thorkel", "Thorgier"), 0.001);
    }

    #[test]
    fn jaro_winkler_length_of_one() {
        assert_delta!(0.738, jaro_winkler("Dinsdale", "D"), 0.001);
    }

    #[test]
    fn jaro_winkler_very_long_prefix() {
        assert_delta!(
            0.98519,
            jaro_winkler("thequickbrownfoxjumpedoverx", "thequickbrownfoxjumpedovery")
        );
    }

    #[test]
    fn levenshtein_empty() {
        assert_eq!(0, levenshtein("", ""));
    }

    #[test]
    fn levenshtein_same() {
        assert_eq!(0, levenshtein("levenshtein", "levenshtein"));
    }

    #[test]
    fn levenshtein_diff_short() {
        assert_eq!(3, levenshtein("kitten", "sitting"));
    }

    #[test]
    fn levenshtein_diff_with_space() {
        assert_eq!(5, levenshtein("hello, world", "bye, world"));
    }

    #[test]
    fn levenshtein_diff_multibyte() {
        assert_eq!(3, levenshtein("öঙ香", "abc"));
        assert_eq!(3, levenshtein("abc", "öঙ香"));
    }

    #[test]
    fn levenshtein_diff_longer() {
        let a = "The quick brown fox jumped over the angry dog.";
        let b = "Lorem ipsum dolor sit amet, dicta latine an eam.";
        assert_eq!(37, levenshtein(a, b));
    }

    #[test]
    fn levenshtein_first_empty() {
        assert_eq!(7, levenshtein("", "sitting"));
    }

    #[test]
    fn levenshtein_second_empty() {
        assert_eq!(6, levenshtein("kitten", ""));
    }

    #[test]
    fn normalized_levenshtein_diff_short() {
        assert_delta!(0.57142, normalized_levenshtein("kitten", "sitting"));
    }

    #[test]
    fn normalized_levenshtein_for_empty_strings() {
        assert_delta!(1.0, normalized_levenshtein("", ""));
    }

    #[test]
    fn normalized_levenshtein_first_empty() {
        assert_delta!(0.0, normalized_levenshtein("", "second"));
    }

    #[test]
    fn normalized_levenshtein_second_empty() {
        assert_delta!(0.0, normalized_levenshtein("first", ""));
    }

    #[test]
    fn normalized_levenshtein_identical_strings() {
        assert_delta!(1.0, normalized_levenshtein("identical", "identical"));
    }

    #[test]
    fn osa_distance_empty() {
        assert_eq!(0, osa_distance("", ""));
    }

    #[test]
    fn osa_distance_same() {
        assert_eq!(0, osa_distance("damerau", "damerau"));
    }

    #[test]
    fn osa_distance_first_empty() {
        assert_eq!(7, osa_distance("", "damerau"));
    }

    #[test]
    fn osa_distance_second_empty() {
        assert_eq!(7, osa_distance("damerau", ""));
    }

    #[test]
    fn osa_distance_diff() {
        assert_eq!(3, osa_distance("ca", "abc"));
    }

    #[test]
    fn osa_distance_diff_short() {
        assert_eq!(3, osa_distance("damerau", "aderua"));
    }

    #[test]
    fn osa_distance_diff_reversed() {
        assert_eq!(3, osa_distance("aderua", "damerau"));
    }

    #[test]
    fn osa_distance_diff_multibyte() {
        assert_eq!(3, osa_distance("öঙ香", "abc"));
        assert_eq!(3, osa_distance("abc", "öঙ香"));
    }

    #[test]
    fn osa_distance_diff_unequal_length() {
        assert_eq!(6, osa_distance("damerau", "aderuaxyz"));
    }

    #[test]
    fn osa_distance_diff_unequal_length_reversed() {
        assert_eq!(6, osa_distance("aderuaxyz", "damerau"));
    }

    #[test]
    fn osa_distance_diff_comedians() {
        assert_eq!(5, osa_distance("Stewart", "Colbert"));
    }

    #[test]
    fn osa_distance_many_transpositions() {
        assert_eq!(4, osa_distance("abcdefghijkl", "bacedfgihjlk"));
    }

    #[test]
    fn osa_distance_diff_longer() {
        let a = "The quick brown fox jumped over the angry dog.";
        let b = "Lehem ipsum dolor sit amet, dicta latine an eam.";
        assert_eq!(36, osa_distance(a, b));
    }

    #[test]
    fn osa_distance_beginning_transposition() {
        assert_eq!(1, osa_distance("foobar", "ofobar"));
    }

    #[test]
    fn osa_distance_end_transposition() {
        assert_eq!(1, osa_distance("specter", "spectre"));
    }

    #[test]
    fn osa_distance_restricted_edit() {
        assert_eq!(4, osa_distance("a cat", "an abct"));
    }

    #[test]
    fn damerau_levenshtein_empty() {
        assert_eq!(0, damerau_levenshtein("", ""));
    }

    #[test]
    fn damerau_levenshtein_same() {
        assert_eq!(0, damerau_levenshtein("damerau", "damerau"));
    }

    #[test]
    fn damerau_levenshtein_first_empty() {
        assert_eq!(7, damerau_levenshtein("", "damerau"));
    }

    #[test]
    fn damerau_levenshtein_second_empty() {
        assert_eq!(7, damerau_levenshtein("damerau", ""));
    }

    #[test]
    fn damerau_levenshtein_diff() {
        assert_eq!(2, damerau_levenshtein("ca", "abc"));
    }

    #[test]
    fn damerau_levenshtein_diff_short() {
        assert_eq!(3, damerau_levenshtein("damerau", "aderua"));
    }

    #[test]
    fn damerau_levenshtein_diff_reversed() {
        assert_eq!(3, damerau_levenshtein("aderua", "damerau"));
    }

    #[test]
    fn damerau_levenshtein_diff_multibyte() {
        assert_eq!(3, damerau_levenshtein("öঙ香", "abc"));
        assert_eq!(3, damerau_levenshtein("abc", "öঙ香"));
    }

    #[test]
    fn damerau_levenshtein_diff_unequal_length() {
        assert_eq!(6, damerau_levenshtein("damerau", "aderuaxyz"));
    }

    #[test]
    fn damerau_levenshtein_diff_unequal_length_reversed() {
        assert_eq!(6, damerau_levenshtein("aderuaxyz", "damerau"));
    }

    #[test]
    fn damerau_levenshtein_diff_comedians() {
        assert_eq!(5, damerau_levenshtein("Stewart", "Colbert"));
    }

    #[test]
    fn damerau_levenshtein_many_transpositions() {
        assert_eq!(4, damerau_levenshtein("abcdefghijkl", "bacedfgihjlk"));
    }

    #[test]
    fn damerau_levenshtein_diff_longer() {
        let a = "The quick brown fox jumped over the angry dog.";
        let b = "Lehem ipsum dolor sit amet, dicta latine an eam.";
        assert_eq!(36, damerau_levenshtein(a, b));
    }

    #[test]
    fn damerau_levenshtein_beginning_transposition() {
        assert_eq!(1, damerau_levenshtein("foobar", "ofobar"));
    }

    #[test]
    fn damerau_levenshtein_end_transposition() {
        assert_eq!(1, damerau_levenshtein("specter", "spectre"));
    }

    #[test]
    fn damerau_levenshtein_unrestricted_edit() {
        assert_eq!(3, damerau_levenshtein("a cat", "an abct"));
    }

    #[test]
    fn normalized_damerau_levenshtein_diff_short() {
        assert_delta!(
            0.27272,
            normalized_damerau_levenshtein("levenshtein", "löwenbräu")
        );
    }

    #[test]
    fn normalized_damerau_levenshtein_for_empty_strings() {
        assert_delta!(1.0, normalized_damerau_levenshtein("", ""));
    }

    #[test]
    fn normalized_damerau_levenshtein_first_empty() {
        assert_delta!(0.0, normalized_damerau_levenshtein("", "flower"));
    }

    #[test]
    fn normalized_damerau_levenshtein_second_empty() {
        assert_delta!(0.0, normalized_damerau_levenshtein("tree", ""));
    }

    #[test]
    fn normalized_damerau_levenshtein_identical_strings() {
        assert_delta!(
            1.0,
            normalized_damerau_levenshtein("sunglasses", "sunglasses")
        );
    }

    #[test]
    fn sorensen_dice_all() {
        // test cases taken from
        // https://github.com/aceakash/string-similarity/blob/f83ba3cd7bae874c20c429774e911ae8cff8bced/src/spec/index.spec.js#L11

        assert_delta!(1.0, sorensen_dice("a", "a"));
        assert_delta!(0.0, sorensen_dice("a", "b"));
        assert_delta!(1.0, sorensen_dice("", ""));
        assert_delta!(0.0, sorensen_dice("a", ""));
        assert_delta!(0.0, sorensen_dice("", "a"));
        assert_delta!(1.0, sorensen_dice("apple event", "apple    event"));
        assert_delta!(0.90909, sorensen_dice("iphone", "iphone x"));
        assert_delta!(0.0, sorensen_dice("french", "quebec"));
        assert_delta!(1.0, sorensen_dice("france", "france"));
        assert_delta!(0.2, sorensen_dice("fRaNce", "france"));
        assert_delta!(0.8, sorensen_dice("healed", "sealed"));
        assert_delta!(
            0.78788,
            sorensen_dice("web applications", "applications of the web")
        );
        assert_delta!(
            0.92,
            sorensen_dice(
                "this will have a typo somewhere",
                "this will huve a typo somewhere"
            )
        );
        assert_delta!(
            0.60606,
            sorensen_dice(
                "Olive-green table for sale, in extremely good condition.",
                "For sale: table in very good  condition, olive green in colour."
            )
        );
        assert_delta!(
            0.25581,
            sorensen_dice(
                "Olive-green table for sale, in extremely good condition.",
                "For sale: green Subaru Impreza, 210,000 miles"
            )
        );
        assert_delta!(
            0.14118,
            sorensen_dice(
                "Olive-green table for sale, in extremely good condition.",
                "Wanted: mountain bike with at least 21 gears."
            )
        );
        assert_delta!(
            0.77419,
            sorensen_dice("this has one extra word", "this has one word")
        );
    }
}