taffy/compute/grid/track_sizing.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
//! Implements the track sizing algorithm
//! <https://www.w3.org/TR/css-grid-1/#layout-algorithm>
use super::types::{GridItem, GridTrack, TrackCounts};
use crate::geometry::{AbstractAxis, Line, Size};
use crate::style::{
AlignContent, AlignSelf, AvailableSpace, LengthPercentage, MaxTrackSizingFunction, MinTrackSizingFunction,
};
use crate::style_helpers::TaffyMinContent;
use crate::tree::{PartialLayoutTree, PartialLayoutTreeExt, SizingMode};
use crate::util::sys::{f32_max, f32_min, Vec};
use crate::util::{MaybeMath, ResolveOrZero};
use core::cmp::Ordering;
/// Takes an axis, and a list of grid items sorted firstly by whether they cross a flex track
/// in the specified axis (items that don't cross a flex track first) and then by the number
/// of tracks they cross in specified axis (ascending order).
struct ItemBatcher {
/// The axis in which the ItemBatcher is operating. Used when querying properties from items.
axis: AbstractAxis,
/// The starting index of the current batch
index_offset: usize,
/// The span of the items in the current batch
current_span: u16,
/// Whether the current batch of items cross a flexible track
current_is_flex: bool,
}
impl ItemBatcher {
/// Create a new ItemBatcher for the specified axis
#[inline(always)]
fn new(axis: AbstractAxis) -> Self {
ItemBatcher { index_offset: 0, axis, current_span: 1, current_is_flex: false }
}
/// This is basically a manual version of Iterator::next which passes `items`
/// in as a parameter on each iteration to work around borrow checker rules
#[inline]
fn next<'items>(&mut self, items: &'items mut [GridItem]) -> Option<(&'items mut [GridItem], bool)> {
if self.current_is_flex || self.index_offset >= items.len() {
return None;
}
let item = &items[self.index_offset];
self.current_span = item.span(self.axis);
self.current_is_flex = item.crosses_flexible_track(self.axis);
let next_index_offset = if self.current_is_flex {
items.len()
} else {
items
.iter()
.position(|item: &GridItem| {
item.crosses_flexible_track(self.axis) || item.span(self.axis) > self.current_span
})
.unwrap_or(items.len())
};
let batch_range = self.index_offset..next_index_offset;
self.index_offset = next_index_offset;
let batch = &mut items[batch_range];
Some((batch, self.current_is_flex))
}
}
/// This struct captures a bunch of variables which are used to compute the intrinsic sizes of children so that those variables
/// don't have to be passed around all over the place below. It then has methods that implement the intrinsic sizing computations
struct IntrisicSizeMeasurer<'tree, 'oat, Tree, EstimateFunction>
where
Tree: PartialLayoutTree,
EstimateFunction: Fn(&GridTrack, Option<f32>) -> Option<f32>,
{
/// The layout tree
tree: &'tree mut Tree,
/// The tracks in the opposite axis to the one we are currently sizing
other_axis_tracks: &'oat [GridTrack],
/// A function that computes an estimate of an other-axis track's size which is passed to
/// the child size measurement functions
get_track_size_estimate: EstimateFunction,
/// The axis we are currently sizing
axis: AbstractAxis,
/// The available grid space
inner_node_size: Size<Option<f32>>,
}
impl<'tree, 'oat, Tree, EstimateFunction> IntrisicSizeMeasurer<'tree, 'oat, Tree, EstimateFunction>
where
Tree: PartialLayoutTree,
EstimateFunction: Fn(&GridTrack, Option<f32>) -> Option<f32>,
{
/// Compute the available_space to be passed to the child sizing functions
/// These are estimates based on either the max track sizing function or the provisional base size in the opposite
/// axis to the one currently being sized.
/// https://www.w3.org/TR/css-grid-1/#algo-overview
#[inline(always)]
fn available_space(&self, item: &mut GridItem) -> Size<Option<f32>> {
item.available_space_cached(
self.axis,
self.other_axis_tracks,
self.inner_node_size.get(self.axis.other()),
&self.get_track_size_estimate,
)
}
/// Compute the item's resolved margins for size contributions. Horizontal percentage margins always resolve
/// to zero if the container size is indefinite as otherwise this would introduce a cyclic dependency.
#[inline(always)]
fn margins_axis_sums_with_baseline_shims(&self, item: &GridItem) -> Size<f32> {
item.margins_axis_sums_with_baseline_shims(self.inner_node_size.width)
}
/// Retrieve the item's min content contribution from the cache or compute it using the provided parameters
#[inline(always)]
fn min_content_contribution(&mut self, item: &mut GridItem) -> f32 {
let available_space = self.available_space(item);
let margin_axis_sums = self.margins_axis_sums_with_baseline_shims(item);
let contribution =
item.min_content_contribution_cached(self.axis, self.tree, available_space, self.inner_node_size);
contribution + margin_axis_sums.get(self.axis)
}
/// Retrieve the item's max content contribution from the cache or compute it using the provided parameters
#[inline(always)]
fn max_content_contribution(&mut self, item: &mut GridItem) -> f32 {
let available_space = self.available_space(item);
let margin_axis_sums = self.margins_axis_sums_with_baseline_shims(item);
let contribution =
item.max_content_contribution_cached(self.axis, self.tree, available_space, self.inner_node_size);
contribution + margin_axis_sums.get(self.axis)
}
/// The minimum contribution of an item is the smallest outer size it can have.
/// Specifically:
/// - If the item’s computed preferred size behaves as auto or depends on the size of its containing block in the relevant axis:
/// Its minimum contribution is the outer size that would result from assuming the item’s used minimum size as its preferred size;
/// - Else the item’s minimum contribution is its min-content contribution.
/// Because the minimum contribution often depends on the size of the item’s content, it is considered a type of intrinsic size contribution.
#[inline(always)]
fn minimum_contribution(&mut self, item: &mut GridItem, axis_tracks: &[GridTrack]) -> f32 {
let available_space = self.available_space(item);
let margin_axis_sums = self.margins_axis_sums_with_baseline_shims(item);
let contribution =
item.minimum_contribution_cached(self.tree, self.axis, axis_tracks, available_space, self.inner_node_size);
contribution + margin_axis_sums.get(self.axis)
}
}
/// To make track sizing efficient we want to order tracks
/// Here a placement is either a Line<i16> representing a row-start/row-end or a column-start/column-end
#[inline(always)]
pub(super) fn cmp_by_cross_flex_then_span_then_start(
axis: AbstractAxis,
) -> impl FnMut(&GridItem, &GridItem) -> Ordering {
move |item_a: &GridItem, item_b: &GridItem| -> Ordering {
match (item_a.crosses_flexible_track(axis), item_b.crosses_flexible_track(axis)) {
(false, true) => Ordering::Less,
(true, false) => Ordering::Greater,
_ => {
let placement_a = item_a.placement(axis);
let placement_b = item_b.placement(axis);
match placement_a.span().cmp(&placement_b.span()) {
Ordering::Less => Ordering::Less,
Ordering::Greater => Ordering::Greater,
Ordering::Equal => placement_a.start.cmp(&placement_b.start),
}
}
}
}
}
/// When applying the track sizing algorithm and estimating the size in the other axis for content sizing items
/// we should take into account align-content/justify-content if both the grid container and all items in the
/// other axis have definite sizes. This function computes such a per-gutter additional size adjustment.
#[inline(always)]
pub(super) fn compute_alignment_gutter_adjustment(
alignment: AlignContent,
axis_inner_node_size: Option<f32>,
get_track_size_estimate: impl Fn(&GridTrack, Option<f32>) -> Option<f32>,
tracks: &[GridTrack],
) -> f32 {
if tracks.len() <= 1 {
return 0.0;
}
// As items never cross the outermost gutters in a grid, we can simplify our calculations by treating
// AlignContent::Start and AlignContent::End the same
let outer_gutter_weight = match alignment {
AlignContent::Start => 1,
AlignContent::FlexStart => 1,
AlignContent::End => 1,
AlignContent::FlexEnd => 1,
AlignContent::Center => 1,
AlignContent::Stretch => 0,
AlignContent::SpaceBetween => 0,
AlignContent::SpaceAround => 1,
AlignContent::SpaceEvenly => 1,
};
let inner_gutter_weight = match alignment {
AlignContent::FlexStart => 0,
AlignContent::Start => 0,
AlignContent::FlexEnd => 0,
AlignContent::End => 0,
AlignContent::Center => 0,
AlignContent::Stretch => 0,
AlignContent::SpaceBetween => 1,
AlignContent::SpaceAround => 2,
AlignContent::SpaceEvenly => 1,
};
if inner_gutter_weight == 0 {
return 0.0;
}
if let Some(axis_inner_node_size) = axis_inner_node_size {
let free_space = tracks
.iter()
.map(|track| get_track_size_estimate(track, Some(axis_inner_node_size)))
.sum::<Option<f32>>()
.map(|track_size_sum| f32_max(0.0, axis_inner_node_size - track_size_sum))
.unwrap_or(0.0);
let weighted_track_count =
(((tracks.len() - 3) / 2) * inner_gutter_weight as usize) + (2 * outer_gutter_weight as usize);
return (free_space / weighted_track_count as f32) * inner_gutter_weight as f32;
}
0.0
}
/// Convert origin-zero coordinates track placement in grid track vector indexes
#[inline(always)]
pub(super) fn resolve_item_track_indexes(items: &mut [GridItem], column_counts: TrackCounts, row_counts: TrackCounts) {
for item in items {
item.column_indexes = item.column.map(|line| line.into_track_vec_index(column_counts) as u16);
item.row_indexes = item.row.map(|line| line.into_track_vec_index(row_counts) as u16);
}
}
/// Determine (in each axis) whether the item crosses any flexible tracks
#[inline(always)]
pub(super) fn determine_if_item_crosses_flexible_or_intrinsic_tracks(
items: &mut Vec<GridItem>,
columns: &[GridTrack],
rows: &[GridTrack],
) {
for item in items {
item.crosses_flexible_column =
item.track_range_excluding_lines(AbstractAxis::Inline).any(|i| columns[i].is_flexible());
item.crosses_intrinsic_column =
item.track_range_excluding_lines(AbstractAxis::Inline).any(|i| columns[i].has_intrinsic_sizing_function());
item.crosses_flexible_row =
item.track_range_excluding_lines(AbstractAxis::Block).any(|i| rows[i].is_flexible());
item.crosses_intrinsic_row =
item.track_range_excluding_lines(AbstractAxis::Block).any(|i| rows[i].has_intrinsic_sizing_function());
}
}
/// Track sizing algorithm
/// Note: Gutters are treated as empty fixed-size tracks for the purpose of the track sizing algorithm.
#[allow(clippy::too_many_arguments)]
#[inline(always)]
pub(super) fn track_sizing_algorithm<Tree: PartialLayoutTree>(
tree: &mut Tree,
axis: AbstractAxis,
axis_min_size: Option<f32>,
axis_max_size: Option<f32>,
other_axis_alignment: AlignContent,
available_grid_space: Size<AvailableSpace>,
inner_node_size: Size<Option<f32>>,
axis_tracks: &mut [GridTrack],
other_axis_tracks: &mut [GridTrack],
items: &mut [GridItem],
get_track_size_estimate: impl Fn(&GridTrack, Option<f32>) -> Option<f32>,
has_baseline_aligned_item: bool,
) {
// 11.4 Initialise Track sizes
// Initialize each track’s base size and growth limit.
initialize_track_sizes(axis_tracks, inner_node_size.get(axis));
// 11.5.1 Shim item baselines
if has_baseline_aligned_item {
resolve_item_baselines(tree, axis, items, inner_node_size);
}
// If all tracks have base_size = growth_limit, then skip the rest of this function.
// Note: this can only happen both track sizing function have the same fixed track sizing function
if axis_tracks.iter().all(|track| track.base_size == track.growth_limit) {
return;
}
// Pre-computations for 11.5 Resolve Intrinsic Track Sizes
// Compute an additional amount to add to each spanned gutter when computing item's estimated size in the
// in the opposite axis based on the alignment, container size, and estimated track sizes in that axis
let gutter_alignment_adjustment = compute_alignment_gutter_adjustment(
other_axis_alignment,
inner_node_size.get(axis.other()),
&get_track_size_estimate,
other_axis_tracks,
);
if other_axis_tracks.len() > 3 {
let len = other_axis_tracks.len();
let inner_gutter_tracks = other_axis_tracks[2..len].iter_mut().step_by(2);
for track in inner_gutter_tracks {
track.content_alignment_adjustment = gutter_alignment_adjustment;
}
}
// 11.5 Resolve Intrinsic Track Sizes
resolve_intrinsic_track_sizes(
tree,
axis,
axis_tracks,
other_axis_tracks,
items,
available_grid_space.get(axis),
inner_node_size,
get_track_size_estimate,
);
// 11.6. Maximise Tracks
// Distributes free space (if any) to tracks with FINITE growth limits, up to their limits.
maximise_tracks(axis_tracks, inner_node_size.get(axis), available_grid_space.get(axis));
// For the purpose of the final two expansion steps ("Expand Flexible Tracks" and "Stretch auto Tracks"), we only want to expand
// into space generated by the grid container's size (as defined by either it's preferred size style or by it's parent node through
// something like stretch alignment), not just any available space. To do this we map definite available space to AvailableSpace::MaxContent
// in the case that inner_node_size is None
let axis_available_space_for_expansion = if let Some(available_space) = inner_node_size.get(axis) {
AvailableSpace::Definite(available_space)
} else {
match available_grid_space.get(axis) {
AvailableSpace::MinContent => AvailableSpace::MinContent,
AvailableSpace::MaxContent | AvailableSpace::Definite(_) => AvailableSpace::MaxContent,
}
};
// 11.7. Expand Flexible Tracks
// This step sizes flexible tracks using the largest value it can assign to an fr without exceeding the available space.
expand_flexible_tracks(
tree,
axis,
axis_tracks,
items,
axis_min_size,
axis_max_size,
axis_available_space_for_expansion,
inner_node_size,
);
// 11.8. Stretch auto Tracks
// This step expands tracks that have an auto max track sizing function by dividing any remaining positive, definite free space equally amongst them.
stretch_auto_tracks(axis_tracks, axis_min_size, axis_available_space_for_expansion);
}
/// Whether it is a minimum or maximum size's space being distributed
/// This controls behaviour of the space distribution algorithm when distributing beyond limits
/// See "distributing space beyond limits" at https://www.w3.org/TR/css-grid-1/#extra-space
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum IntrinsicContributionType {
/// It's a minimum size's space being distributed
Minimum,
/// It's a maximum size's space being distributed
Maximum,
}
/// Add any planned base size increases to the base size after a round of distributing space to base sizes
/// Reset the planed base size increase to zero ready for the next round.
#[inline(always)]
fn flush_planned_base_size_increases(tracks: &mut [GridTrack]) {
for track in tracks {
track.base_size += track.base_size_planned_increase;
track.base_size_planned_increase = 0.0;
}
}
/// Add any planned growth limit increases to the growth limit after a round of distributing space to growth limits
/// Reset the planed growth limit increase to zero ready for the next round.
#[inline(always)]
fn flush_planned_growth_limit_increases(tracks: &mut [GridTrack], set_infinitely_growable: bool) {
for track in tracks {
if track.growth_limit_planned_increase > 0.0 {
track.growth_limit = if track.growth_limit == f32::INFINITY {
track.base_size + track.growth_limit_planned_increase
} else {
track.growth_limit + track.growth_limit_planned_increase
};
track.infinitely_growable = set_infinitely_growable;
} else {
track.infinitely_growable = false;
}
track.growth_limit_planned_increase = 0.0
}
}
/// 11.4 Initialise Track sizes
/// Initialize each track’s base size and growth limit.
#[inline(always)]
fn initialize_track_sizes(axis_tracks: &mut [GridTrack], axis_inner_node_size: Option<f32>) {
let last_track_idx = axis_tracks.len() - 1;
// First and last grid lines are always zero-sized.
axis_tracks[0].base_size = 0.0;
axis_tracks[0].growth_limit = 0.0;
axis_tracks[last_track_idx].base_size = 0.0;
axis_tracks[last_track_idx].growth_limit = 0.0;
let all_but_first_and_last = 1..last_track_idx;
for track in axis_tracks[all_but_first_and_last].iter_mut() {
// For each track, if the track’s min track sizing function is:
// - A fixed sizing function
// Resolve to an absolute length and use that size as the track’s initial base size.
// Note: Indefinite lengths cannot occur, as they’re treated as auto.
// - An intrinsic sizing function
// Use an initial base size of zero.
track.base_size = track.min_track_sizing_function.definite_value(axis_inner_node_size).unwrap_or(0.0);
// For each track, if the track’s max track sizing function is:
// - A fixed sizing function
// Resolve to an absolute length and use that size as the track’s initial growth limit.
// - An intrinsic sizing function
// Use an initial growth limit of infinity.
// - A flexible sizing function
// Use an initial growth limit of infinity.
track.growth_limit =
track.max_track_sizing_function.definite_value(axis_inner_node_size).unwrap_or(f32::INFINITY);
// In all cases, if the growth limit is less than the base size, increase the growth limit to match the base size.
if track.growth_limit < track.base_size {
track.growth_limit = track.base_size;
}
}
}
/// 11.5.1 Shim baseline-aligned items so their intrinsic size contributions reflect their baseline alignment.
fn resolve_item_baselines(
tree: &mut impl PartialLayoutTree,
axis: AbstractAxis,
items: &mut [GridItem],
inner_node_size: Size<Option<f32>>,
) {
// Sort items by track in the other axis (row) start position so that we can iterate items in groups which
// are in the same track in the other axis (row)
let other_axis = axis.other();
items.sort_by_key(|item| item.placement(other_axis).start);
// Iterate over grid rows
let mut remaining_items = &mut items[0..];
while !remaining_items.is_empty() {
// Get the row index of the current row
let current_row = remaining_items[0].placement(other_axis).start;
// Find the item index of the first item that is in a different row (or None if we've reached the end of the list)
let next_row_first_item =
remaining_items.iter().position(|item| item.placement(other_axis).start != current_row);
// Use this index to split the `remaining_items` slice in two slices:
// - A `row_items` slice containing the items (that start) in the current row
// - A new `remaining_items` consisting of the remainder of the `remaining_items` slice
// that hasn't been split off into `row_items
let row_items = if let Some(index) = next_row_first_item {
let (row_items, tail) = remaining_items.split_at_mut(index);
remaining_items = tail;
row_items
} else {
let row_items = remaining_items;
remaining_items = &mut [];
row_items
};
// Count how many items in *this row* are baseline aligned
// If a row has one or zero items participating in baseline alignment then baseline alignment is a no-op
// for those items and we skip further computations for that row
let row_baseline_item_count = row_items.iter().filter(|item| item.align_self == AlignSelf::Baseline).count();
if row_baseline_item_count <= 1 {
continue;
}
// Compute the baselines of all items in the row
for item in row_items.iter_mut() {
let measured_size_and_baselines = tree.perform_child_layout(
item.node,
Size::NONE,
inner_node_size,
Size::MIN_CONTENT,
SizingMode::InherentSize,
Line::FALSE,
);
let baseline = measured_size_and_baselines.first_baselines.y;
let height = measured_size_and_baselines.size.height;
item.baseline = Some(baseline.unwrap_or(height) + item.margin.top.resolve_or_zero(inner_node_size.width));
}
// Compute the max baseline of all items in the row
let row_max_baseline =
row_items.iter().map(|item| item.baseline.unwrap_or(0.0)).max_by(|a, b| a.total_cmp(b)).unwrap();
// Compute the baseline shim for each item in the row
for item in row_items.iter_mut() {
item.baseline_shim = row_max_baseline - item.baseline.unwrap_or(0.0);
}
}
}
/// 11.5 Resolve Intrinsic Track Sizes
#[allow(clippy::too_many_arguments)]
fn resolve_intrinsic_track_sizes(
tree: &mut impl PartialLayoutTree,
axis: AbstractAxis,
axis_tracks: &mut [GridTrack],
other_axis_tracks: &[GridTrack],
items: &mut [GridItem],
axis_available_grid_space: AvailableSpace,
inner_node_size: Size<Option<f32>>,
get_track_size_estimate: impl Fn(&GridTrack, Option<f32>) -> Option<f32>,
) {
// Step 1. Shim baseline-aligned items so their intrinsic size contributions reflect their baseline alignment.
// Already done at this point. See resolve_item_baselines function.
// Step 2.
// The track sizing algorithm requires us to iterate through the items in ascendeding order of the number of
// tracks they span (first items that span 1 track, then items that span 2 tracks, etc).
// To avoid having to do multiple iterations of the items, we pre-sort them into this order.
items.sort_by(cmp_by_cross_flex_then_span_then_start(axis));
// Step 2, Step 3 and Step 4
// 2 & 3. Iterate over items that don't cross a flex track. Items should have already been sorted in ascending order
// of the number of tracks they span. Step 2 is the 1 track case and has an optimised implementation
// 4. Next, repeat the previous step instead considering (together, rather than grouped by span size) all items
// that do span a track with a flexible sizing function while
// Compute item's intrinsic (content-based) sizes
// Note: For items with a specified minimum size of auto (the initial value), the minimum contribution is usually equivalent
// to the min-content contribution—but can differ in some cases, see §6.6 Automatic Minimum Size of Grid Items.
// Also, minimum contribution <= min-content contribution <= max-content contribution.
let axis_inner_node_size = inner_node_size.get(axis);
let flex_factor_sum = axis_tracks.iter().map(|track| track.flex_factor()).sum::<f32>();
let mut item_sizer =
IntrisicSizeMeasurer { tree, other_axis_tracks, axis, inner_node_size, get_track_size_estimate };
let mut batched_item_iterator = ItemBatcher::new(axis);
while let Some((batch, is_flex)) = batched_item_iterator.next(items) {
// 2. Size tracks to fit non-spanning items: For each track with an intrinsic track sizing function and not a flexible sizing function,
// consider the items in it with a span of 1:
let batch_span = batch[0].placement(axis).span();
if !is_flex && batch_span == 1 {
for item in batch.iter_mut() {
let track_index = item.placement_indexes(axis).start + 1;
let track = &axis_tracks[track_index as usize];
// Handle base sizes
let new_base_size = match track.min_track_sizing_function {
MinTrackSizingFunction::MinContent => {
f32_max(track.base_size, item_sizer.min_content_contribution(item))
}
// If the container size is indefinite and has not yet been resolved then percentage sized
// tracks should be treated as min-content (this matches Chrome's behaviour and seems sensible)
MinTrackSizingFunction::Fixed(LengthPercentage::Percent(_)) => {
if axis_inner_node_size.is_none() {
f32_max(track.base_size, item_sizer.min_content_contribution(item))
} else {
track.base_size
}
}
MinTrackSizingFunction::MaxContent => {
f32_max(track.base_size, item_sizer.max_content_contribution(item))
}
MinTrackSizingFunction::Auto => {
let space = match axis_available_grid_space {
// QUIRK: The spec says that:
//
// If the grid container is being sized under a min- or max-content constraint, use the items’ limited
// min-content contributions in place of their minimum contributions here.
//
// However, in practice browsers only seem to apply this rule if the item is not a scroll container
// (note that overflow:hidden counts as a scroll container), giving the automatic minimum size of scroll
// containers (zero) precedence over the min-content contributions.
AvailableSpace::MinContent | AvailableSpace::MaxContent
if !item.overflow.get(axis).is_scroll_container() =>
{
let axis_minimum_size = item_sizer.minimum_contribution(item, axis_tracks);
let axis_min_content_size = item_sizer.min_content_contribution(item);
let limit = track.max_track_sizing_function.definite_limit(axis_inner_node_size);
axis_min_content_size.maybe_min(limit).max(axis_minimum_size)
}
_ => item_sizer.minimum_contribution(item, axis_tracks),
};
f32_max(track.base_size, space)
}
MinTrackSizingFunction::Fixed(_) => {
// Do nothing as it's not an intrinsic track sizing function
track.base_size
}
};
let track = &mut axis_tracks[track_index as usize];
track.base_size = new_base_size;
// Handle growth limits
if let MaxTrackSizingFunction::FitContent(_) = track.max_track_sizing_function {
// If item is not a scroll container, then increase the growth limit to at least the
// size of the min-content contribution
if !item.overflow.get(axis).is_scroll_container() {
let min_content_contribution = item_sizer.min_content_contribution(item);
track.growth_limit_planned_increase =
f32_max(track.growth_limit_planned_increase, min_content_contribution);
}
// Always increase the growth limit to at least the size of the *fit-content limited*
// max-cotent contribution
let fit_content_limit = track.fit_content_limit(axis_inner_node_size);
let max_content_contribution =
f32_min(item_sizer.max_content_contribution(item), fit_content_limit);
track.growth_limit_planned_increase =
f32_max(track.growth_limit_planned_increase, max_content_contribution);
} else if track.max_track_sizing_function.is_max_content_alike()
|| track.max_track_sizing_function.uses_percentage() && axis_inner_node_size.is_none()
{
// If the container size is indefinite and has not yet been resolved then percentage sized
// tracks should be treated as auto (this matches Chrome's behaviour and seems sensible)
track.growth_limit_planned_increase =
f32_max(track.growth_limit_planned_increase, item_sizer.max_content_contribution(item));
} else if track.max_track_sizing_function.is_intrinsic() {
track.growth_limit_planned_increase =
f32_max(track.growth_limit_planned_increase, item_sizer.min_content_contribution(item));
}
}
for track in axis_tracks.iter_mut() {
if track.growth_limit_planned_increase > 0.0 {
track.growth_limit = if track.growth_limit == f32::INFINITY {
track.growth_limit_planned_increase
} else {
f32_max(track.growth_limit, track.growth_limit_planned_increase)
};
}
track.infinitely_growable = false;
track.growth_limit_planned_increase = 0.0;
if track.growth_limit < track.base_size {
track.growth_limit = track.base_size;
}
}
continue;
}
let use_flex_factor_for_distribution = is_flex && flex_factor_sum != 0.0;
// 1. For intrinsic minimums:
// First increase the base size of tracks with an intrinsic min track sizing function
let has_intrinsic_min_track_sizing_function =
move |track: &GridTrack| track.min_track_sizing_function.definite_value(axis_inner_node_size).is_none();
for item in batch.iter_mut().filter(|item| item.crosses_intrinsic_track(axis)) {
// ...by distributing extra space as needed to accommodate these items’ minimum contributions.
//
// QUIRK: The spec says that:
//
// If the grid container is being sized under a min- or max-content constraint, use the items’ limited min-content contributions
// in place of their minimum contributions here.
//
// However, in practice browsers only seem to apply this rule if the item is not a scroll container (note that overflow:hidden counts as
// a scroll container), giving the automatic minimum size of scroll containers (zero) precedence over the min-content contributions.
let space = match axis_available_grid_space {
AvailableSpace::MinContent | AvailableSpace::MaxContent
if !item.overflow.get(axis).is_scroll_container() =>
{
let axis_minimum_size = item_sizer.minimum_contribution(item, axis_tracks);
let axis_min_content_size = item_sizer.min_content_contribution(item);
let limit = item.spanned_track_limit(axis, axis_tracks, axis_inner_node_size);
axis_min_content_size.maybe_min(limit).max(axis_minimum_size)
}
_ => item_sizer.minimum_contribution(item, axis_tracks),
};
let tracks = &mut axis_tracks[item.track_range_excluding_lines(axis)];
if space > 0.0 {
if item.overflow.get(axis).is_scroll_container() {
let fit_content_limit = move |track: &GridTrack| track.fit_content_limit(axis_inner_node_size);
distribute_item_space_to_base_size(
is_flex,
use_flex_factor_for_distribution,
space,
tracks,
has_intrinsic_min_track_sizing_function,
fit_content_limit,
IntrinsicContributionType::Minimum,
);
} else {
distribute_item_space_to_base_size(
is_flex,
use_flex_factor_for_distribution,
space,
tracks,
has_intrinsic_min_track_sizing_function,
|_| f32::INFINITY,
IntrinsicContributionType::Minimum,
);
}
}
}
flush_planned_base_size_increases(axis_tracks);
// 2. For content-based minimums:
// Next continue to increase the base size of tracks with a min track sizing function of min-content or max-content
// by distributing extra space as needed to account for these items' min-content contributions.
let has_min_or_max_content_min_track_sizing_function = move |track: &GridTrack| {
use MinTrackSizingFunction::{MaxContent, MinContent};
matches!(track.min_track_sizing_function, MinContent | MaxContent)
};
for item in batch.iter_mut() {
let space = item_sizer.min_content_contribution(item);
let tracks = &mut axis_tracks[item.track_range_excluding_lines(axis)];
if space > 0.0 {
if item.overflow.get(axis).is_scroll_container() {
let fit_content_limit = move |track: &GridTrack| track.fit_content_limit(axis_inner_node_size);
distribute_item_space_to_base_size(
is_flex,
use_flex_factor_for_distribution,
space,
tracks,
has_min_or_max_content_min_track_sizing_function,
fit_content_limit,
IntrinsicContributionType::Minimum,
);
} else {
distribute_item_space_to_base_size(
is_flex,
use_flex_factor_for_distribution,
space,
tracks,
has_min_or_max_content_min_track_sizing_function,
|_| f32::INFINITY,
IntrinsicContributionType::Minimum,
);
}
}
}
flush_planned_base_size_increases(axis_tracks);
// 3. For max-content minimums:
// If the grid container is being sized under a max-content constraint, continue to increase the base size of tracks with
// a min track sizing function of auto or max-content by distributing extra space as needed to account for these items'
// limited max-content contributions.
// Define fit_content_limited_growth_limit function. This is passed to the distribute_space_up_to_limits
// helper function, and is used to compute the limit to distribute up to for each track.
// Wrapping the method on GridTrack is necessary in order to resolve percentage fit-content arguments.
if axis_available_grid_space == AvailableSpace::MaxContent {
/// Whether a track:
/// - has an Auto MIN track sizing function
/// - Does not have a MinContent MAX track sizing function
///
/// The latter condition was added in order to match Chrome. But I believe it is due to the provision
/// under minmax here https://www.w3.org/TR/css-grid-1/#track-sizes which states that:
///
/// "If the max is less than the min, then the max will be floored by the min (essentially yielding minmax(min, min))"
#[inline(always)]
fn has_auto_min_track_sizing_function(track: &GridTrack) -> bool {
track.min_track_sizing_function == MinTrackSizingFunction::Auto
&& track.max_track_sizing_function != MaxTrackSizingFunction::MinContent
}
/// Whether a track has a MaxContent min track sizing function
#[inline(always)]
fn has_max_content_min_track_sizing_function(track: &GridTrack) -> bool {
track.min_track_sizing_function == MinTrackSizingFunction::MaxContent
}
for item in batch.iter_mut() {
let axis_max_content_size = item_sizer.max_content_contribution(item);
let limit = item.spanned_track_limit(axis, axis_tracks, axis_inner_node_size);
let space = axis_max_content_size.maybe_min(limit);
let tracks = &mut axis_tracks[item.track_range_excluding_lines(axis)];
if space > 0.0 {
// If any of the tracks spanned by the item have a MaxContent min track sizing function then
// distribute space only to those tracks. Otherwise distribute space to tracks with an Auto min
// track sizing function.
//
// Note: this prioritisation of MaxContent over Auto is not mentioned in the spec (which suggests that
// we ought to distribute space evenly between MaxContent and Auto tracks). But it is implemented like
// this in both Chrome and Firefox (and it does have a certain logic to it), so we implement it too for
// compatibility.
//
// See: https://www.w3.org/TR/css-grid-1/#track-size-max-content-min
if tracks.iter().any(has_max_content_min_track_sizing_function) {
distribute_item_space_to_base_size(
is_flex,
use_flex_factor_for_distribution,
space,
tracks,
has_max_content_min_track_sizing_function,
|_| f32::INFINITY,
IntrinsicContributionType::Maximum,
);
} else {
let fit_content_limited_growth_limit =
move |track: &GridTrack| track.fit_content_limited_growth_limit(axis_inner_node_size);
distribute_item_space_to_base_size(
is_flex,
use_flex_factor_for_distribution,
space,
tracks,
has_auto_min_track_sizing_function,
fit_content_limited_growth_limit,
IntrinsicContributionType::Maximum,
);
}
}
}
flush_planned_base_size_increases(axis_tracks);
}
// In all cases, continue to increase the base size of tracks with a min track sizing function of max-content by distributing
// extra space as needed to account for these items' max-content contributions.
let has_max_content_min_track_sizing_function =
move |track: &GridTrack| matches!(track.min_track_sizing_function, MinTrackSizingFunction::MaxContent);
for item in batch.iter_mut() {
let axis_max_content_size = item_sizer.max_content_contribution(item);
let space = axis_max_content_size;
let tracks = &mut axis_tracks[item.track_range_excluding_lines(axis)];
if space > 0.0 {
distribute_item_space_to_base_size(
is_flex,
use_flex_factor_for_distribution,
space,
tracks,
has_max_content_min_track_sizing_function,
|_| f32::INFINITY,
IntrinsicContributionType::Maximum,
);
}
}
flush_planned_base_size_increases(axis_tracks);
// 4. If at this point any track’s growth limit is now less than its base size, increase its growth limit to match its base size.
for track in axis_tracks.iter_mut() {
if track.growth_limit < track.base_size {
track.growth_limit = track.base_size;
}
}
// If a track is a flexible track, then it has flexible max track sizing function
// It cannot also have an intrinsic max track sizing function, so these steps do not apply.
if !is_flex {
// 5. For intrinsic maximums: Next increase the growth limit of tracks with an intrinsic max track sizing function by
// distributing extra space as needed to account for these items' min-content contributions.
let has_intrinsic_max_track_sizing_function =
move |track: &GridTrack| track.max_track_sizing_function.definite_value(axis_inner_node_size).is_none();
for item in batch.iter_mut() {
let axis_min_content_size = item_sizer.min_content_contribution(item);
let space = axis_min_content_size;
let tracks = &mut axis_tracks[item.track_range_excluding_lines(axis)];
if space > 0.0 {
distribute_item_space_to_growth_limit(
space,
tracks,
has_intrinsic_max_track_sizing_function,
inner_node_size.get(axis),
);
}
}
// Mark any tracks whose growth limit changed from infinite to finite in this step as infinitely growable for the next step.
flush_planned_growth_limit_increases(axis_tracks, true);
// 6. For max-content maximums: Lastly continue to increase the growth limit of tracks with a max track sizing function of max-content
// by distributing extra space as needed to account for these items' max-content contributions. However, limit the growth of any
// fit-content() tracks by their fit-content() argument.
let has_max_content_max_track_sizing_function = |track: &GridTrack| {
track.max_track_sizing_function.is_max_content_alike()
|| (track.max_track_sizing_function.uses_percentage() && axis_inner_node_size.is_none())
};
for item in batch.iter_mut() {
let axis_max_content_size = item_sizer.max_content_contribution(item);
let space = axis_max_content_size;
let tracks = &mut axis_tracks[item.track_range_excluding_lines(axis)];
if space > 0.0 {
distribute_item_space_to_growth_limit(
space,
tracks,
has_max_content_max_track_sizing_function,
inner_node_size.get(axis),
);
}
}
// Mark any tracks whose growth limit changed from infinite to finite in this step as infinitely growable for the next step.
flush_planned_growth_limit_increases(axis_tracks, false);
}
}
// Step 5. If any track still has an infinite growth limit (because, for example, it had no items placed
// in it or it is a flexible track), set its growth limit to its base size.
// NOTE: this step is super-important to ensure that the "Maximise Tracks" step doesn't affect flexible tracks
axis_tracks
.iter_mut()
.filter(|track| track.growth_limit == f32::INFINITY)
.for_each(|track| track.growth_limit = track.base_size);
}
/// 11.5.1. Distributing Extra Space Across Spanned Tracks
/// https://www.w3.org/TR/css-grid-1/#extra-space
#[inline(always)]
fn distribute_item_space_to_base_size(
is_flex: bool,
use_flex_factor_for_distribution: bool,
space: f32,
tracks: &mut [GridTrack],
track_is_affected: impl Fn(&GridTrack) -> bool,
track_limit: impl Fn(&GridTrack) -> f32,
intrinsic_contribution_type: IntrinsicContributionType,
) {
if is_flex {
let filter = |track: &GridTrack| track.is_flexible() && track_is_affected(track);
if use_flex_factor_for_distribution {
distribute_item_space_to_base_size_inner(
space,
tracks,
filter,
|track| track.flex_factor(),
track_limit,
intrinsic_contribution_type,
)
} else {
distribute_item_space_to_base_size_inner(
space,
tracks,
filter,
|_| 1.0,
track_limit,
intrinsic_contribution_type,
)
}
} else {
distribute_item_space_to_base_size_inner(
space,
tracks,
track_is_affected,
|_| 1.0,
track_limit,
intrinsic_contribution_type,
)
}
/// Inner function that doesn't account for differences due to distributing to flex items
/// This difference is handled by the closure passed in above
fn distribute_item_space_to_base_size_inner(
space: f32,
tracks: &mut [GridTrack],
track_is_affected: impl Fn(&GridTrack) -> bool,
track_distribution_proportion: impl Fn(&GridTrack) -> f32,
track_limit: impl Fn(&GridTrack) -> f32,
intrinsic_contribution_type: IntrinsicContributionType,
) {
// Skip this distribution if there is either
// - no space to distribute
// - no affected tracks to distribute space to
if space == 0.0 || !tracks.iter().any(&track_is_affected) {
return;
}
// Define get_base_size function. This is passed to the distribute_space_up_to_limits helper function
// to indicate that it is the base size that is being distributed to.
let get_base_size = |track: &GridTrack| track.base_size;
// 1. Find the space to distribute
let track_sizes: f32 = tracks.iter().map(|track| track.base_size).sum();
let extra_space: f32 = f32_max(0.0, space - track_sizes);
// 2. Distribute space up to limits:
// Note: there are two exit conditions to this loop:
// - We run out of space to distribute (extra_space falls below THRESHOLD)
// - We run out of growable tracks to distribute to
/// Define a small constant to avoid infinite loops due to rounding errors. Rather than stopping distributing
/// extra space when it gets to exactly zero, we will stop when it falls below this amount
const THRESHOLD: f32 = 0.000001;
let extra_space = distribute_space_up_to_limits(
extra_space,
tracks,
&track_is_affected,
&track_distribution_proportion,
get_base_size,
&track_limit,
);
// 3. Distribute remaining span beyond limits (if any)
if extra_space > THRESHOLD {
// When accommodating minimum contributions or accommodating min-content contributions:
// - any affected track that happens to also have an intrinsic max track sizing function;
// When accommodating max-content contributions:
// - any affected track that happens to also have a max-content max track sizing function
let mut filter = match intrinsic_contribution_type {
IntrinsicContributionType::Minimum => {
(|track: &GridTrack| track.max_track_sizing_function.is_intrinsic()) as fn(&GridTrack) -> bool
}
IntrinsicContributionType::Maximum => {
use MaxTrackSizingFunction::{FitContent, MaxContent};
(|track: &GridTrack| {
matches!(track.max_track_sizing_function, MaxContent | FitContent(_))
|| track.min_track_sizing_function == MinTrackSizingFunction::MaxContent
}) as fn(&GridTrack) -> bool
}
};
// If there are no such tracks (matching filter above), then use all affected tracks.
let number_of_tracks =
tracks.iter().filter(|track| track_is_affected(track)).filter(|track| filter(track)).count();
if number_of_tracks == 0 {
filter = (|_| true) as fn(&GridTrack) -> bool;
}
distribute_space_up_to_limits(
extra_space,
tracks,
filter,
&track_distribution_proportion,
get_base_size,
&track_limit, // Should apply only fit-content limit here?
);
}
// 4. For each affected track, if the track’s item-incurred increase is larger than the track’s planned increase
// set the track’s planned increase to that value.
for track in tracks.iter_mut() {
if track.item_incurred_increase > track.base_size_planned_increase {
track.base_size_planned_increase = track.item_incurred_increase;
}
// Reset the item_incurresed increase ready for the next space distribution
track.item_incurred_increase = 0.0;
}
}
}
/// 11.5.1. Distributing Extra Space Across Spanned Tracks
/// This is simplified (and faster) version of the algorithm for growth limits
/// https://www.w3.org/TR/css-grid-1/#extra-space
fn distribute_item_space_to_growth_limit(
space: f32,
tracks: &mut [GridTrack],
track_is_affected: impl Fn(&GridTrack) -> bool,
axis_inner_node_size: Option<f32>,
) {
// Skip this distribution if there is either
// - no space to distribute
// - no affected tracks to distribute space to
if space == 0.0 || tracks.iter().filter(|track| track_is_affected(track)).count() == 0 {
return;
}
// 1. Find the space to distribute
let track_sizes: f32 = tracks
.iter()
.map(|track| if track.growth_limit == f32::INFINITY { track.base_size } else { track.growth_limit })
.sum();
let extra_space: f32 = f32_max(0.0, space - track_sizes);
// 2. Distribute space up to limits:
// For growth limits the limit is either Infinity, or the growth limit itself. Which means that:
// - If there are any tracks with infinite limits then all space will be distributed to those track(s).
// - Otherwise no space will be distributed as part of this step
let number_of_growable_tracks = tracks
.iter()
.filter(|track| track_is_affected(track))
.filter(|track| {
track.infinitely_growable || track.fit_content_limited_growth_limit(axis_inner_node_size) == f32::INFINITY
})
.count();
if number_of_growable_tracks > 0 {
let item_incurred_increase = extra_space / number_of_growable_tracks as f32;
for track in tracks.iter_mut().filter(|track| track_is_affected(track)).filter(|track| {
track.infinitely_growable || track.fit_content_limited_growth_limit(axis_inner_node_size) == f32::INFINITY
}) {
track.item_incurred_increase = item_incurred_increase;
}
} else {
// 3. Distribute space beyond limits
// If space remains after all tracks are frozen, unfreeze and continue to distribute space to the item-incurred increase
// ...when handling any intrinsic growth limit: all affected tracks.
distribute_space_up_to_limits(
extra_space,
tracks,
track_is_affected,
|_| 1.0,
|track| if track.growth_limit == f32::INFINITY { track.base_size } else { track.growth_limit },
move |track| track.fit_content_limit(axis_inner_node_size),
);
};
// 4. For each affected track, if the track’s item-incurred increase is larger than the track’s planned increase
// set the track’s planned increase to that value.
for track in tracks.iter_mut() {
if track.item_incurred_increase > track.growth_limit_planned_increase {
track.growth_limit_planned_increase = track.item_incurred_increase;
}
// Reset the item_incurresed increase ready for the next space distribution
track.item_incurred_increase = 0.0;
}
}
/// 11.6 Maximise Tracks
/// Distributes free space (if any) to tracks with FINITE growth limits, up to their limits.
#[inline(always)]
fn maximise_tracks(
axis_tracks: &mut [GridTrack],
axis_inner_node_size: Option<f32>,
axis_available_grid_space: AvailableSpace,
) {
let used_space: f32 = axis_tracks.iter().map(|track| track.base_size).sum();
let free_space = axis_available_grid_space.compute_free_space(used_space);
if free_space == f32::INFINITY {
axis_tracks.iter_mut().for_each(|track| track.base_size = track.growth_limit);
} else if free_space > 0.0 {
distribute_space_up_to_limits(
free_space,
axis_tracks,
|_| true,
|_| 1.0,
|track| track.base_size,
move |track: &GridTrack| track.fit_content_limited_growth_limit(axis_inner_node_size),
);
for track in axis_tracks.iter_mut() {
track.base_size += track.item_incurred_increase;
track.item_incurred_increase = 0.0;
}
}
}
/// 11.7. Expand Flexible Tracks
/// This step sizes flexible tracks using the largest value it can assign to an fr without exceeding the available space.
#[allow(clippy::too_many_arguments)]
#[inline(always)]
fn expand_flexible_tracks(
tree: &mut impl PartialLayoutTree,
axis: AbstractAxis,
axis_tracks: &mut [GridTrack],
items: &mut [GridItem],
axis_min_size: Option<f32>,
axis_max_size: Option<f32>,
axis_available_space_for_expansion: AvailableSpace,
inner_node_size: Size<Option<f32>>,
) {
// First, find the grid’s used flex fraction:
let flex_fraction = match axis_available_space_for_expansion {
// If the free space is zero:
// The used flex fraction is zero.
// Otherwise, if the free space is a definite length:
// The used flex fraction is the result of finding the size of an fr using all of the grid tracks and
// a space to fill of the available grid space.
AvailableSpace::Definite(available_space) => {
let used_space: f32 = axis_tracks.iter().map(|track| track.base_size).sum();
let free_space = available_space - used_space;
if free_space <= 0.0 {
0.0
} else {
find_size_of_fr(axis_tracks, available_space)
}
}
// If ... sizing the grid container under a min-content constraint the used flex fraction is zero.
AvailableSpace::MinContent => 0.0,
// Otherwise, if the free space is an indefinite length:
AvailableSpace::MaxContent => {
// The used flex fraction is the maximum of:
let flex_fraction = f32_max(
// For each flexible track, if the flexible track’s flex factor is greater than one,
// the result of dividing the track’s base size by its flex factor; otherwise, the track’s base size.
axis_tracks
.iter()
.filter(|track| track.max_track_sizing_function.is_flexible())
.map(|track| {
let flex_factor = track.flex_factor();
if flex_factor > 1.0 {
track.base_size / flex_factor
} else {
track.base_size
}
})
.max_by(|a, b| a.total_cmp(b))
.unwrap_or(0.0),
// For each grid item that crosses a flexible track, the result of finding the size of an fr using all the grid tracks
// that the item crosses and a space to fill of the item’s max-content contribution.
items
.iter_mut()
.filter(|item| item.crosses_flexible_track(axis))
.map(|item| {
let tracks = &axis_tracks[item.track_range_excluding_lines(axis)];
// TODO: plumb estimate of other axis size (known_dimensions) in here rather than just passing Size::NONE?
let max_content_contribution =
item.max_content_contribution_cached(axis, tree, Size::NONE, inner_node_size);
find_size_of_fr(tracks, max_content_contribution)
})
.max_by(|a, b| a.total_cmp(b))
.unwrap_or(0.0),
);
// If using this flex fraction would cause the grid to be smaller than the grid container’s min-width/height (or larger than the
// grid container’s max-width/height), then redo this step, treating the free space as definite and the available grid space as equal
// to the grid container’s inner size when it’s sized to its min-width/height (max-width/height).
// (Note: min_size takes precedence over max_size)
let hypothetical_grid_size: f32 = axis_tracks
.iter()
.map(|track| match track.max_track_sizing_function {
MaxTrackSizingFunction::Fraction(track_flex_factor) => {
f32_max(track.base_size, track_flex_factor * flex_fraction)
}
_ => track.base_size,
})
.sum();
let axis_min_size = axis_min_size.unwrap_or(0.0);
let axis_max_size = axis_max_size.unwrap_or(f32::INFINITY);
if hypothetical_grid_size < axis_min_size {
find_size_of_fr(axis_tracks, axis_min_size)
} else if hypothetical_grid_size > axis_max_size {
find_size_of_fr(axis_tracks, axis_max_size)
} else {
flex_fraction
}
}
};
// For each flexible track, if the product of the used flex fraction and the track’s flex factor is greater
// than the track’s base size, set its base size to that product.
for track in axis_tracks.iter_mut() {
if let MaxTrackSizingFunction::Fraction(track_flex_factor) = track.max_track_sizing_function {
track.base_size = f32_max(track.base_size, track_flex_factor * flex_fraction);
}
}
}
/// 11.7.1. Find the Size of an fr
/// This algorithm finds the largest size that an fr unit can be without exceeding the target size.
/// It must be called with a set of grid tracks and some quantity of space to fill.
#[inline(always)]
fn find_size_of_fr(tracks: &[GridTrack], space_to_fill: f32) -> f32 {
// Handle the trivial case where there is no space to fill
// Do not remove as otherwise the loop below will loop infinitely
if space_to_fill == 0.0 {
return 0.0;
}
// If the product of the hypothetical fr size (computed below) and any flexible track’s flex factor
// is less than the track’s base size, then we must restart this algorithm treating all such tracks as inflexible.
// We therefore wrap the entire algorithm in a loop, with an hypotherical_fr_size of INFINITY such that the above
// condition can never be true for the first iteration.
let mut hypothetical_fr_size = f32::INFINITY;
let mut previous_iter_hypothetical_fr_size;
loop {
// Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks.
// Let flex factor sum be the sum of the flex factors of the flexible tracks. If this value is less than 1, set it to 1 instead.
// We compute both of these in a single loop to avoid iterating over the data twice
let mut used_space = 0.0;
let mut naive_flex_factor_sum = 0.0;
for track in tracks.iter() {
match track.max_track_sizing_function {
// Tracks for which flex_factor * hypothetical_fr_size < track.base_size are treated as inflexible
MaxTrackSizingFunction::Fraction(flex_factor)
if flex_factor * hypothetical_fr_size >= track.base_size =>
{
naive_flex_factor_sum += flex_factor;
}
_ => used_space += track.base_size,
};
}
let leftover_space = space_to_fill - used_space;
let flex_factor = f32_max(naive_flex_factor_sum, 1.0);
// Let the hypothetical fr size be the leftover space divided by the flex factor sum.
previous_iter_hypothetical_fr_size = hypothetical_fr_size;
hypothetical_fr_size = leftover_space / flex_factor;
// If the product of the hypothetical fr size and a flexible track’s flex factor is less than the track’s base size,
// restart this algorithm treating all such tracks as inflexible.
// We keep track of the hypothetical_fr_size
let hypotherical_fr_size_is_valid = tracks.iter().all(|track| match track.max_track_sizing_function {
MaxTrackSizingFunction::Fraction(flex_factor) => {
flex_factor * hypothetical_fr_size >= track.base_size
|| flex_factor * previous_iter_hypothetical_fr_size < track.base_size
}
_ => true,
});
if hypotherical_fr_size_is_valid {
break;
}
}
// Return the hypothetical fr size.
hypothetical_fr_size
}
/// 11.8. Stretch auto Tracks
/// This step expands tracks that have an auto max track sizing function by dividing any remaining positive, definite free space equally amongst them.
#[inline(always)]
fn stretch_auto_tracks(
axis_tracks: &mut [GridTrack],
axis_min_size: Option<f32>,
axis_available_space_for_expansion: AvailableSpace,
) {
let num_auto_tracks =
axis_tracks.iter().filter(|track| track.max_track_sizing_function == MaxTrackSizingFunction::Auto).count();
if num_auto_tracks > 0 {
let used_space: f32 = axis_tracks.iter().map(|track| track.base_size).sum();
// If the free space is indefinite, but the grid container has a definite min-width/height
// use that size to calculate the free space for this step instead.
let free_space = if axis_available_space_for_expansion.is_definite() {
axis_available_space_for_expansion.compute_free_space(used_space)
} else {
match axis_min_size {
Some(size) => size - used_space,
None => 0.0,
}
};
if free_space > 0.0 {
let extra_space_per_auto_track = free_space / num_auto_tracks as f32;
axis_tracks
.iter_mut()
.filter(|track| track.max_track_sizing_function == MaxTrackSizingFunction::Auto)
.for_each(|track| track.base_size += extra_space_per_auto_track);
}
}
}
/// Helper function for distributing space to tracks evenly
/// Used by both distribute_item_space_to_base_size and maximise_tracks steps
#[inline(always)]
fn distribute_space_up_to_limits(
space_to_distribute: f32,
tracks: &mut [GridTrack],
track_is_affected: impl Fn(&GridTrack) -> bool,
track_distribution_proportion: impl Fn(&GridTrack) -> f32,
track_affected_property: impl Fn(&GridTrack) -> f32,
track_limit: impl Fn(&GridTrack) -> f32,
) -> f32 {
/// Define a small constant to avoid infinite loops due to rounding errors. Rather than stopping distributing
/// extra space when it gets to exactly zero, we will stop when it falls below this amount
const THRESHOLD: f32 = 0.000001;
let mut space_to_distribute = space_to_distribute;
while space_to_distribute > THRESHOLD {
let track_distribution_proportion_sum: f32 = tracks
.iter()
.filter(|track| track_affected_property(track) + track.item_incurred_increase < track_limit(track))
.filter(|track| track_is_affected(track))
.map(&track_distribution_proportion)
.sum();
if track_distribution_proportion_sum == 0.0 {
break;
}
// Compute item-incurred increase for this iteration
let min_increase_limit = tracks
.iter()
.filter(|track| track_affected_property(track) + track.item_incurred_increase < track_limit(track))
.filter(|track| track_is_affected(track))
.map(|track| (track_limit(track) - track_affected_property(track)) / track_distribution_proportion(track))
.min_by(|a, b| a.total_cmp(b))
.unwrap(); // We will never pass an empty track list to this function
let iteration_item_incurred_increase =
f32_min(min_increase_limit, space_to_distribute / track_distribution_proportion_sum);
for track in tracks.iter_mut().filter(|track| track_is_affected(track)) {
let increase = iteration_item_incurred_increase * track_distribution_proportion(track);
if increase > 0.0 && track_affected_property(track) + increase <= track_limit(track) {
track.item_incurred_increase += increase;
space_to_distribute -= increase;
}
}
}
space_to_distribute
}