taffy/compute/grid/
track_sizing.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
//! Implements the track sizing algorithm
//! <https://www.w3.org/TR/css-grid-1/#layout-algorithm>
use super::types::{GridItem, GridTrack, TrackCounts};
use crate::geometry::{AbstractAxis, Line, Size};
use crate::style::{
    AlignContent, AlignSelf, AvailableSpace, LengthPercentage, MaxTrackSizingFunction, MinTrackSizingFunction,
};
use crate::style_helpers::TaffyMinContent;
use crate::tree::{PartialLayoutTree, PartialLayoutTreeExt, SizingMode};
use crate::util::sys::{f32_max, f32_min, Vec};
use crate::util::{MaybeMath, ResolveOrZero};
use core::cmp::Ordering;

/// Takes an axis, and a list of grid items sorted firstly by whether they cross a flex track
/// in the specified axis (items that don't cross a flex track first) and then by the number
/// of tracks they cross in specified axis (ascending order).
struct ItemBatcher {
    /// The axis in which the ItemBatcher is operating. Used when querying properties from items.
    axis: AbstractAxis,
    /// The starting index of the current batch
    index_offset: usize,
    /// The span of the items in the current batch
    current_span: u16,
    /// Whether the current batch of items cross a flexible track
    current_is_flex: bool,
}

impl ItemBatcher {
    /// Create a new ItemBatcher for the specified axis
    #[inline(always)]
    fn new(axis: AbstractAxis) -> Self {
        ItemBatcher { index_offset: 0, axis, current_span: 1, current_is_flex: false }
    }

    /// This is basically a manual version of Iterator::next which passes `items`
    /// in as a parameter on each iteration to work around borrow checker rules
    #[inline]
    fn next<'items>(&mut self, items: &'items mut [GridItem]) -> Option<(&'items mut [GridItem], bool)> {
        if self.current_is_flex || self.index_offset >= items.len() {
            return None;
        }

        let item = &items[self.index_offset];
        self.current_span = item.span(self.axis);
        self.current_is_flex = item.crosses_flexible_track(self.axis);

        let next_index_offset = if self.current_is_flex {
            items.len()
        } else {
            items
                .iter()
                .position(|item: &GridItem| {
                    item.crosses_flexible_track(self.axis) || item.span(self.axis) > self.current_span
                })
                .unwrap_or(items.len())
        };

        let batch_range = self.index_offset..next_index_offset;
        self.index_offset = next_index_offset;

        let batch = &mut items[batch_range];
        Some((batch, self.current_is_flex))
    }
}

/// This struct captures a bunch of variables which are used to compute the intrinsic sizes of children so that those variables
/// don't have to be passed around all over the place below. It then has methods that implement the intrinsic sizing computations
struct IntrisicSizeMeasurer<'tree, 'oat, Tree, EstimateFunction>
where
    Tree: PartialLayoutTree,
    EstimateFunction: Fn(&GridTrack, Option<f32>) -> Option<f32>,
{
    /// The layout tree
    tree: &'tree mut Tree,
    /// The tracks in the opposite axis to the one we are currently sizing
    other_axis_tracks: &'oat [GridTrack],
    /// A function that computes an estimate of an other-axis track's size which is passed to
    /// the child size measurement functions
    get_track_size_estimate: EstimateFunction,
    /// The axis we are currently sizing
    axis: AbstractAxis,
    /// The available grid space
    inner_node_size: Size<Option<f32>>,
}

impl<'tree, 'oat, Tree, EstimateFunction> IntrisicSizeMeasurer<'tree, 'oat, Tree, EstimateFunction>
where
    Tree: PartialLayoutTree,
    EstimateFunction: Fn(&GridTrack, Option<f32>) -> Option<f32>,
{
    /// Compute the available_space to be passed to the child sizing functions
    /// These are estimates based on either the max track sizing function or the provisional base size in the opposite
    /// axis to the one currently being sized.
    /// https://www.w3.org/TR/css-grid-1/#algo-overview
    #[inline(always)]
    fn available_space(&self, item: &mut GridItem) -> Size<Option<f32>> {
        item.available_space_cached(
            self.axis,
            self.other_axis_tracks,
            self.inner_node_size.get(self.axis.other()),
            &self.get_track_size_estimate,
        )
    }

    /// Compute the item's resolved margins for size contributions. Horizontal percentage margins always resolve
    /// to zero if the container size is indefinite as otherwise this would introduce a cyclic dependency.
    #[inline(always)]
    fn margins_axis_sums_with_baseline_shims(&self, item: &GridItem) -> Size<f32> {
        item.margins_axis_sums_with_baseline_shims(self.inner_node_size.width)
    }

    /// Retrieve the item's min content contribution from the cache or compute it using the provided parameters
    #[inline(always)]
    fn min_content_contribution(&mut self, item: &mut GridItem) -> f32 {
        let available_space = self.available_space(item);
        let margin_axis_sums = self.margins_axis_sums_with_baseline_shims(item);
        let contribution =
            item.min_content_contribution_cached(self.axis, self.tree, available_space, self.inner_node_size);
        contribution + margin_axis_sums.get(self.axis)
    }

    /// Retrieve the item's max content contribution from the cache or compute it using the provided parameters
    #[inline(always)]
    fn max_content_contribution(&mut self, item: &mut GridItem) -> f32 {
        let available_space = self.available_space(item);
        let margin_axis_sums = self.margins_axis_sums_with_baseline_shims(item);
        let contribution =
            item.max_content_contribution_cached(self.axis, self.tree, available_space, self.inner_node_size);
        contribution + margin_axis_sums.get(self.axis)
    }

    /// The minimum contribution of an item is the smallest outer size it can have.
    /// Specifically:
    ///   - If the item’s computed preferred size behaves as auto or depends on the size of its containing block in the relevant axis:
    ///     Its minimum contribution is the outer size that would result from assuming the item’s used minimum size as its preferred size;
    ///   - Else the item’s minimum contribution is its min-content contribution.
    /// Because the minimum contribution often depends on the size of the item’s content, it is considered a type of intrinsic size contribution.
    #[inline(always)]
    fn minimum_contribution(&mut self, item: &mut GridItem, axis_tracks: &[GridTrack]) -> f32 {
        let available_space = self.available_space(item);
        let margin_axis_sums = self.margins_axis_sums_with_baseline_shims(item);
        let contribution =
            item.minimum_contribution_cached(self.tree, self.axis, axis_tracks, available_space, self.inner_node_size);
        contribution + margin_axis_sums.get(self.axis)
    }
}

/// To make track sizing efficient we want to order tracks
/// Here a placement is either a Line<i16> representing a row-start/row-end or a column-start/column-end
#[inline(always)]
pub(super) fn cmp_by_cross_flex_then_span_then_start(
    axis: AbstractAxis,
) -> impl FnMut(&GridItem, &GridItem) -> Ordering {
    move |item_a: &GridItem, item_b: &GridItem| -> Ordering {
        match (item_a.crosses_flexible_track(axis), item_b.crosses_flexible_track(axis)) {
            (false, true) => Ordering::Less,
            (true, false) => Ordering::Greater,
            _ => {
                let placement_a = item_a.placement(axis);
                let placement_b = item_b.placement(axis);
                match placement_a.span().cmp(&placement_b.span()) {
                    Ordering::Less => Ordering::Less,
                    Ordering::Greater => Ordering::Greater,
                    Ordering::Equal => placement_a.start.cmp(&placement_b.start),
                }
            }
        }
    }
}

/// When applying the track sizing algorithm and estimating the size in the other axis for content sizing items
/// we should take into account align-content/justify-content if both the grid container and all items in the
/// other axis have definite sizes. This function computes such a per-gutter additional size adjustment.
#[inline(always)]
pub(super) fn compute_alignment_gutter_adjustment(
    alignment: AlignContent,
    axis_inner_node_size: Option<f32>,
    get_track_size_estimate: impl Fn(&GridTrack, Option<f32>) -> Option<f32>,
    tracks: &[GridTrack],
) -> f32 {
    if tracks.len() <= 1 {
        return 0.0;
    }

    // As items never cross the outermost gutters in a grid, we can simplify our calculations by treating
    // AlignContent::Start and AlignContent::End the same
    let outer_gutter_weight = match alignment {
        AlignContent::Start => 1,
        AlignContent::FlexStart => 1,
        AlignContent::End => 1,
        AlignContent::FlexEnd => 1,
        AlignContent::Center => 1,
        AlignContent::Stretch => 0,
        AlignContent::SpaceBetween => 0,
        AlignContent::SpaceAround => 1,
        AlignContent::SpaceEvenly => 1,
    };

    let inner_gutter_weight = match alignment {
        AlignContent::FlexStart => 0,
        AlignContent::Start => 0,
        AlignContent::FlexEnd => 0,
        AlignContent::End => 0,
        AlignContent::Center => 0,
        AlignContent::Stretch => 0,
        AlignContent::SpaceBetween => 1,
        AlignContent::SpaceAround => 2,
        AlignContent::SpaceEvenly => 1,
    };

    if inner_gutter_weight == 0 {
        return 0.0;
    }

    if let Some(axis_inner_node_size) = axis_inner_node_size {
        let free_space = tracks
            .iter()
            .map(|track| get_track_size_estimate(track, Some(axis_inner_node_size)))
            .sum::<Option<f32>>()
            .map(|track_size_sum| f32_max(0.0, axis_inner_node_size - track_size_sum))
            .unwrap_or(0.0);

        let weighted_track_count =
            (((tracks.len() - 3) / 2) * inner_gutter_weight as usize) + (2 * outer_gutter_weight as usize);

        return (free_space / weighted_track_count as f32) * inner_gutter_weight as f32;
    }

    0.0
}

/// Convert origin-zero coordinates track placement in grid track vector indexes
#[inline(always)]
pub(super) fn resolve_item_track_indexes(items: &mut [GridItem], column_counts: TrackCounts, row_counts: TrackCounts) {
    for item in items {
        item.column_indexes = item.column.map(|line| line.into_track_vec_index(column_counts) as u16);
        item.row_indexes = item.row.map(|line| line.into_track_vec_index(row_counts) as u16);
    }
}

/// Determine (in each axis) whether the item crosses any flexible tracks
#[inline(always)]
pub(super) fn determine_if_item_crosses_flexible_or_intrinsic_tracks(
    items: &mut Vec<GridItem>,
    columns: &[GridTrack],
    rows: &[GridTrack],
) {
    for item in items {
        item.crosses_flexible_column =
            item.track_range_excluding_lines(AbstractAxis::Inline).any(|i| columns[i].is_flexible());
        item.crosses_intrinsic_column =
            item.track_range_excluding_lines(AbstractAxis::Inline).any(|i| columns[i].has_intrinsic_sizing_function());
        item.crosses_flexible_row =
            item.track_range_excluding_lines(AbstractAxis::Block).any(|i| rows[i].is_flexible());
        item.crosses_intrinsic_row =
            item.track_range_excluding_lines(AbstractAxis::Block).any(|i| rows[i].has_intrinsic_sizing_function());
    }
}

/// Track sizing algorithm
/// Note: Gutters are treated as empty fixed-size tracks for the purpose of the track sizing algorithm.
#[allow(clippy::too_many_arguments)]
#[inline(always)]
pub(super) fn track_sizing_algorithm<Tree: PartialLayoutTree>(
    tree: &mut Tree,
    axis: AbstractAxis,
    axis_min_size: Option<f32>,
    axis_max_size: Option<f32>,
    other_axis_alignment: AlignContent,
    available_grid_space: Size<AvailableSpace>,
    inner_node_size: Size<Option<f32>>,
    axis_tracks: &mut [GridTrack],
    other_axis_tracks: &mut [GridTrack],
    items: &mut [GridItem],
    get_track_size_estimate: impl Fn(&GridTrack, Option<f32>) -> Option<f32>,
    has_baseline_aligned_item: bool,
) {
    // 11.4 Initialise Track sizes
    // Initialize each track’s base size and growth limit.
    initialize_track_sizes(axis_tracks, inner_node_size.get(axis));

    // 11.5.1 Shim item baselines
    if has_baseline_aligned_item {
        resolve_item_baselines(tree, axis, items, inner_node_size);
    }

    // If all tracks have base_size = growth_limit, then skip the rest of this function.
    // Note: this can only happen both track sizing function have the same fixed track sizing function
    if axis_tracks.iter().all(|track| track.base_size == track.growth_limit) {
        return;
    }

    // Pre-computations for 11.5 Resolve Intrinsic Track Sizes

    // Compute an additional amount to add to each spanned gutter when computing item's estimated size in the
    // in the opposite axis based on the alignment, container size, and estimated track sizes in that axis
    let gutter_alignment_adjustment = compute_alignment_gutter_adjustment(
        other_axis_alignment,
        inner_node_size.get(axis.other()),
        &get_track_size_estimate,
        other_axis_tracks,
    );
    if other_axis_tracks.len() > 3 {
        let len = other_axis_tracks.len();
        let inner_gutter_tracks = other_axis_tracks[2..len].iter_mut().step_by(2);
        for track in inner_gutter_tracks {
            track.content_alignment_adjustment = gutter_alignment_adjustment;
        }
    }

    // 11.5 Resolve Intrinsic Track Sizes
    resolve_intrinsic_track_sizes(
        tree,
        axis,
        axis_tracks,
        other_axis_tracks,
        items,
        available_grid_space.get(axis),
        inner_node_size,
        get_track_size_estimate,
    );

    // 11.6. Maximise Tracks
    // Distributes free space (if any) to tracks with FINITE growth limits, up to their limits.
    maximise_tracks(axis_tracks, inner_node_size.get(axis), available_grid_space.get(axis));

    // For the purpose of the final two expansion steps ("Expand Flexible Tracks" and "Stretch auto Tracks"), we only want to expand
    // into space generated by the grid container's size (as defined by either it's preferred size style or by it's parent node through
    // something like stretch alignment), not just any available space. To do this we map definite available space to AvailableSpace::MaxContent
    // in the case that inner_node_size is None
    let axis_available_space_for_expansion = if let Some(available_space) = inner_node_size.get(axis) {
        AvailableSpace::Definite(available_space)
    } else {
        match available_grid_space.get(axis) {
            AvailableSpace::MinContent => AvailableSpace::MinContent,
            AvailableSpace::MaxContent | AvailableSpace::Definite(_) => AvailableSpace::MaxContent,
        }
    };

    // 11.7. Expand Flexible Tracks
    // This step sizes flexible tracks using the largest value it can assign to an fr without exceeding the available space.
    expand_flexible_tracks(
        tree,
        axis,
        axis_tracks,
        items,
        axis_min_size,
        axis_max_size,
        axis_available_space_for_expansion,
        inner_node_size,
    );

    // 11.8. Stretch auto Tracks
    // This step expands tracks that have an auto max track sizing function by dividing any remaining positive, definite free space equally amongst them.
    stretch_auto_tracks(axis_tracks, axis_min_size, axis_available_space_for_expansion);
}

/// Whether it is a minimum or maximum size's space being distributed
/// This controls behaviour of the space distribution algorithm when distributing beyond limits
/// See "distributing space beyond limits" at https://www.w3.org/TR/css-grid-1/#extra-space
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum IntrinsicContributionType {
    /// It's a minimum size's space being distributed
    Minimum,
    /// It's a maximum size's space being distributed
    Maximum,
}

/// Add any planned base size increases to the base size after a round of distributing space to base sizes
/// Reset the planed base size increase to zero ready for the next round.
#[inline(always)]
fn flush_planned_base_size_increases(tracks: &mut [GridTrack]) {
    for track in tracks {
        track.base_size += track.base_size_planned_increase;
        track.base_size_planned_increase = 0.0;
    }
}

/// Add any planned growth limit increases to the growth limit after a round of distributing space to growth limits
/// Reset the planed growth limit increase to zero ready for the next round.
#[inline(always)]
fn flush_planned_growth_limit_increases(tracks: &mut [GridTrack], set_infinitely_growable: bool) {
    for track in tracks {
        if track.growth_limit_planned_increase > 0.0 {
            track.growth_limit = if track.growth_limit == f32::INFINITY {
                track.base_size + track.growth_limit_planned_increase
            } else {
                track.growth_limit + track.growth_limit_planned_increase
            };
            track.infinitely_growable = set_infinitely_growable;
        } else {
            track.infinitely_growable = false;
        }
        track.growth_limit_planned_increase = 0.0
    }
}

/// 11.4 Initialise Track sizes
/// Initialize each track’s base size and growth limit.
#[inline(always)]
fn initialize_track_sizes(axis_tracks: &mut [GridTrack], axis_inner_node_size: Option<f32>) {
    let last_track_idx = axis_tracks.len() - 1;

    // First and last grid lines are always zero-sized.
    axis_tracks[0].base_size = 0.0;
    axis_tracks[0].growth_limit = 0.0;
    axis_tracks[last_track_idx].base_size = 0.0;
    axis_tracks[last_track_idx].growth_limit = 0.0;

    let all_but_first_and_last = 1..last_track_idx;
    for track in axis_tracks[all_but_first_and_last].iter_mut() {
        // For each track, if the track’s min track sizing function is:
        // - A fixed sizing function
        //     Resolve to an absolute length and use that size as the track’s initial base size.
        //     Note: Indefinite lengths cannot occur, as they’re treated as auto.
        // - An intrinsic sizing function
        //     Use an initial base size of zero.
        track.base_size = track.min_track_sizing_function.definite_value(axis_inner_node_size).unwrap_or(0.0);

        // For each track, if the track’s max track sizing function is:
        // - A fixed sizing function
        //     Resolve to an absolute length and use that size as the track’s initial growth limit.
        // - An intrinsic sizing function
        //     Use an initial growth limit of infinity.
        // - A flexible sizing function
        //     Use an initial growth limit of infinity.
        track.growth_limit =
            track.max_track_sizing_function.definite_value(axis_inner_node_size).unwrap_or(f32::INFINITY);

        // In all cases, if the growth limit is less than the base size, increase the growth limit to match the base size.
        if track.growth_limit < track.base_size {
            track.growth_limit = track.base_size;
        }
    }
}

/// 11.5.1 Shim baseline-aligned items so their intrinsic size contributions reflect their baseline alignment.
fn resolve_item_baselines(
    tree: &mut impl PartialLayoutTree,
    axis: AbstractAxis,
    items: &mut [GridItem],
    inner_node_size: Size<Option<f32>>,
) {
    // Sort items by track in the other axis (row) start position so that we can iterate items in groups which
    // are in the same track in the other axis (row)
    let other_axis = axis.other();
    items.sort_by_key(|item| item.placement(other_axis).start);

    // Iterate over grid rows
    let mut remaining_items = &mut items[0..];
    while !remaining_items.is_empty() {
        // Get the row index of the current row
        let current_row = remaining_items[0].placement(other_axis).start;

        // Find the item index of the first item that is in a different row (or None if we've reached the end of the list)
        let next_row_first_item =
            remaining_items.iter().position(|item| item.placement(other_axis).start != current_row);

        // Use this index to split the `remaining_items` slice in two slices:
        //    - A `row_items` slice containing the items (that start) in the current row
        //    - A new `remaining_items` consisting of the remainder of the `remaining_items` slice
        //      that hasn't been split off into `row_items
        let row_items = if let Some(index) = next_row_first_item {
            let (row_items, tail) = remaining_items.split_at_mut(index);
            remaining_items = tail;
            row_items
        } else {
            let row_items = remaining_items;
            remaining_items = &mut [];
            row_items
        };

        // Count how many items in *this row* are baseline aligned
        // If a row has one or zero items participating in baseline alignment then baseline alignment is a no-op
        // for those items and we skip further computations for that row
        let row_baseline_item_count = row_items.iter().filter(|item| item.align_self == AlignSelf::Baseline).count();
        if row_baseline_item_count <= 1 {
            continue;
        }

        // Compute the baselines of all items in the row
        for item in row_items.iter_mut() {
            let measured_size_and_baselines = tree.perform_child_layout(
                item.node,
                Size::NONE,
                inner_node_size,
                Size::MIN_CONTENT,
                SizingMode::InherentSize,
                Line::FALSE,
            );

            let baseline = measured_size_and_baselines.first_baselines.y;
            let height = measured_size_and_baselines.size.height;

            item.baseline = Some(baseline.unwrap_or(height) + item.margin.top.resolve_or_zero(inner_node_size.width));
        }

        // Compute the max baseline of all items in the row
        let row_max_baseline =
            row_items.iter().map(|item| item.baseline.unwrap_or(0.0)).max_by(|a, b| a.total_cmp(b)).unwrap();

        // Compute the baseline shim for each item in the row
        for item in row_items.iter_mut() {
            item.baseline_shim = row_max_baseline - item.baseline.unwrap_or(0.0);
        }
    }
}

/// 11.5 Resolve Intrinsic Track Sizes
#[allow(clippy::too_many_arguments)]
fn resolve_intrinsic_track_sizes(
    tree: &mut impl PartialLayoutTree,
    axis: AbstractAxis,
    axis_tracks: &mut [GridTrack],
    other_axis_tracks: &[GridTrack],
    items: &mut [GridItem],
    axis_available_grid_space: AvailableSpace,
    inner_node_size: Size<Option<f32>>,
    get_track_size_estimate: impl Fn(&GridTrack, Option<f32>) -> Option<f32>,
) {
    // Step 1. Shim baseline-aligned items so their intrinsic size contributions reflect their baseline alignment.

    // Already done at this point. See resolve_item_baselines function.

    // Step 2.

    // The track sizing algorithm requires us to iterate through the items in ascendeding order of the number of
    // tracks they span (first items that span 1 track, then items that span 2 tracks, etc).
    // To avoid having to do multiple iterations of the items, we pre-sort them into this order.
    items.sort_by(cmp_by_cross_flex_then_span_then_start(axis));

    // Step 2, Step 3 and Step 4
    // 2 & 3. Iterate over items that don't cross a flex track. Items should have already been sorted in ascending order
    // of the number of tracks they span. Step 2 is the 1 track case and has an optimised implementation
    // 4. Next, repeat the previous step instead considering (together, rather than grouped by span size) all items
    // that do span a track with a flexible sizing function while

    // Compute item's intrinsic (content-based) sizes
    // Note: For items with a specified minimum size of auto (the initial value), the minimum contribution is usually equivalent
    // to the min-content contribution—but can differ in some cases, see §6.6 Automatic Minimum Size of Grid Items.
    // Also, minimum contribution <= min-content contribution <= max-content contribution.

    let axis_inner_node_size = inner_node_size.get(axis);
    let flex_factor_sum = axis_tracks.iter().map(|track| track.flex_factor()).sum::<f32>();
    let mut item_sizer =
        IntrisicSizeMeasurer { tree, other_axis_tracks, axis, inner_node_size, get_track_size_estimate };

    let mut batched_item_iterator = ItemBatcher::new(axis);
    while let Some((batch, is_flex)) = batched_item_iterator.next(items) {
        // 2. Size tracks to fit non-spanning items: For each track with an intrinsic track sizing function and not a flexible sizing function,
        // consider the items in it with a span of 1:
        let batch_span = batch[0].placement(axis).span();
        if !is_flex && batch_span == 1 {
            for item in batch.iter_mut() {
                let track_index = item.placement_indexes(axis).start + 1;
                let track = &axis_tracks[track_index as usize];

                // Handle base sizes
                let new_base_size = match track.min_track_sizing_function {
                    MinTrackSizingFunction::MinContent => {
                        f32_max(track.base_size, item_sizer.min_content_contribution(item))
                    }
                    // If the container size is indefinite and has not yet been resolved then percentage sized
                    // tracks should be treated as min-content (this matches Chrome's behaviour and seems sensible)
                    MinTrackSizingFunction::Fixed(LengthPercentage::Percent(_)) => {
                        if axis_inner_node_size.is_none() {
                            f32_max(track.base_size, item_sizer.min_content_contribution(item))
                        } else {
                            track.base_size
                        }
                    }
                    MinTrackSizingFunction::MaxContent => {
                        f32_max(track.base_size, item_sizer.max_content_contribution(item))
                    }
                    MinTrackSizingFunction::Auto => {
                        let space = match axis_available_grid_space {
                            // QUIRK: The spec says that:
                            //
                            //   If the grid container is being sized under a min- or max-content constraint, use the items’ limited
                            //   min-content contributions in place of their minimum contributions here.
                            //
                            // However, in practice browsers only seem to apply this rule if the item is not a scroll container
                            // (note that overflow:hidden counts as a scroll container), giving the automatic minimum size of scroll
                            // containers (zero) precedence over the min-content contributions.
                            AvailableSpace::MinContent | AvailableSpace::MaxContent
                                if !item.overflow.get(axis).is_scroll_container() =>
                            {
                                let axis_minimum_size = item_sizer.minimum_contribution(item, axis_tracks);
                                let axis_min_content_size = item_sizer.min_content_contribution(item);
                                let limit = track.max_track_sizing_function.definite_limit(axis_inner_node_size);
                                axis_min_content_size.maybe_min(limit).max(axis_minimum_size)
                            }
                            _ => item_sizer.minimum_contribution(item, axis_tracks),
                        };
                        f32_max(track.base_size, space)
                    }
                    MinTrackSizingFunction::Fixed(_) => {
                        // Do nothing as it's not an intrinsic track sizing function
                        track.base_size
                    }
                };
                let track = &mut axis_tracks[track_index as usize];
                track.base_size = new_base_size;

                // Handle growth limits
                if let MaxTrackSizingFunction::FitContent(_) = track.max_track_sizing_function {
                    // If item is not a scroll container, then increase the growth limit to at least the
                    // size of the min-content contribution
                    if !item.overflow.get(axis).is_scroll_container() {
                        let min_content_contribution = item_sizer.min_content_contribution(item);
                        track.growth_limit_planned_increase =
                            f32_max(track.growth_limit_planned_increase, min_content_contribution);
                    }

                    // Always increase the growth limit to at least the size of the *fit-content limited*
                    // max-cotent contribution
                    let fit_content_limit = track.fit_content_limit(axis_inner_node_size);
                    let max_content_contribution =
                        f32_min(item_sizer.max_content_contribution(item), fit_content_limit);
                    track.growth_limit_planned_increase =
                        f32_max(track.growth_limit_planned_increase, max_content_contribution);
                } else if track.max_track_sizing_function.is_max_content_alike()
                    || track.max_track_sizing_function.uses_percentage() && axis_inner_node_size.is_none()
                {
                    // If the container size is indefinite and has not yet been resolved then percentage sized
                    // tracks should be treated as auto (this matches Chrome's behaviour and seems sensible)
                    track.growth_limit_planned_increase =
                        f32_max(track.growth_limit_planned_increase, item_sizer.max_content_contribution(item));
                } else if track.max_track_sizing_function.is_intrinsic() {
                    track.growth_limit_planned_increase =
                        f32_max(track.growth_limit_planned_increase, item_sizer.min_content_contribution(item));
                }
            }

            for track in axis_tracks.iter_mut() {
                if track.growth_limit_planned_increase > 0.0 {
                    track.growth_limit = if track.growth_limit == f32::INFINITY {
                        track.growth_limit_planned_increase
                    } else {
                        f32_max(track.growth_limit, track.growth_limit_planned_increase)
                    };
                }
                track.infinitely_growable = false;
                track.growth_limit_planned_increase = 0.0;
                if track.growth_limit < track.base_size {
                    track.growth_limit = track.base_size;
                }
            }

            continue;
        }

        let use_flex_factor_for_distribution = is_flex && flex_factor_sum != 0.0;

        // 1. For intrinsic minimums:
        // First increase the base size of tracks with an intrinsic min track sizing function
        let has_intrinsic_min_track_sizing_function =
            move |track: &GridTrack| track.min_track_sizing_function.definite_value(axis_inner_node_size).is_none();
        for item in batch.iter_mut().filter(|item| item.crosses_intrinsic_track(axis)) {
            // ...by distributing extra space as needed to accommodate these items’ minimum contributions.
            //
            // QUIRK: The spec says that:
            //
            //   If the grid container is being sized under a min- or max-content constraint, use the items’ limited min-content contributions
            //   in place of their minimum contributions here.
            //
            // However, in practice browsers only seem to apply this rule if the item is not a scroll container (note that overflow:hidden counts as
            // a scroll container), giving the automatic minimum size of scroll containers (zero) precedence over the min-content contributions.
            let space = match axis_available_grid_space {
                AvailableSpace::MinContent | AvailableSpace::MaxContent
                    if !item.overflow.get(axis).is_scroll_container() =>
                {
                    let axis_minimum_size = item_sizer.minimum_contribution(item, axis_tracks);
                    let axis_min_content_size = item_sizer.min_content_contribution(item);
                    let limit = item.spanned_track_limit(axis, axis_tracks, axis_inner_node_size);
                    axis_min_content_size.maybe_min(limit).max(axis_minimum_size)
                }
                _ => item_sizer.minimum_contribution(item, axis_tracks),
            };
            let tracks = &mut axis_tracks[item.track_range_excluding_lines(axis)];
            if space > 0.0 {
                if item.overflow.get(axis).is_scroll_container() {
                    let fit_content_limit = move |track: &GridTrack| track.fit_content_limit(axis_inner_node_size);
                    distribute_item_space_to_base_size(
                        is_flex,
                        use_flex_factor_for_distribution,
                        space,
                        tracks,
                        has_intrinsic_min_track_sizing_function,
                        fit_content_limit,
                        IntrinsicContributionType::Minimum,
                    );
                } else {
                    distribute_item_space_to_base_size(
                        is_flex,
                        use_flex_factor_for_distribution,
                        space,
                        tracks,
                        has_intrinsic_min_track_sizing_function,
                        |_| f32::INFINITY,
                        IntrinsicContributionType::Minimum,
                    );
                }
            }
        }
        flush_planned_base_size_increases(axis_tracks);

        // 2. For content-based minimums:
        // Next continue to increase the base size of tracks with a min track sizing function of min-content or max-content
        // by distributing extra space as needed to account for these items' min-content contributions.
        let has_min_or_max_content_min_track_sizing_function = move |track: &GridTrack| {
            use MinTrackSizingFunction::{MaxContent, MinContent};
            matches!(track.min_track_sizing_function, MinContent | MaxContent)
        };
        for item in batch.iter_mut() {
            let space = item_sizer.min_content_contribution(item);
            let tracks = &mut axis_tracks[item.track_range_excluding_lines(axis)];
            if space > 0.0 {
                if item.overflow.get(axis).is_scroll_container() {
                    let fit_content_limit = move |track: &GridTrack| track.fit_content_limit(axis_inner_node_size);
                    distribute_item_space_to_base_size(
                        is_flex,
                        use_flex_factor_for_distribution,
                        space,
                        tracks,
                        has_min_or_max_content_min_track_sizing_function,
                        fit_content_limit,
                        IntrinsicContributionType::Minimum,
                    );
                } else {
                    distribute_item_space_to_base_size(
                        is_flex,
                        use_flex_factor_for_distribution,
                        space,
                        tracks,
                        has_min_or_max_content_min_track_sizing_function,
                        |_| f32::INFINITY,
                        IntrinsicContributionType::Minimum,
                    );
                }
            }
        }
        flush_planned_base_size_increases(axis_tracks);

        // 3. For max-content minimums:

        // If the grid container is being sized under a max-content constraint, continue to increase the base size of tracks with
        // a min track sizing function of auto or max-content by distributing extra space as needed to account for these items'
        // limited max-content contributions.

        // Define fit_content_limited_growth_limit function. This is passed to the distribute_space_up_to_limits
        // helper function, and is used to compute the limit to distribute up to for each track.
        // Wrapping the method on GridTrack is necessary in order to resolve percentage fit-content arguments.
        if axis_available_grid_space == AvailableSpace::MaxContent {
            /// Whether a track:
            ///   - has an Auto MIN track sizing function
            ///   - Does not have a MinContent MAX track sizing function
            ///
            /// The latter condition was added in order to match Chrome. But I believe it is due to the provision
            /// under minmax here https://www.w3.org/TR/css-grid-1/#track-sizes which states that:
            ///
            ///    "If the max is less than the min, then the max will be floored by the min (essentially yielding minmax(min, min))"
            #[inline(always)]
            fn has_auto_min_track_sizing_function(track: &GridTrack) -> bool {
                track.min_track_sizing_function == MinTrackSizingFunction::Auto
                    && track.max_track_sizing_function != MaxTrackSizingFunction::MinContent
            }

            /// Whether a track has a MaxContent min track sizing function
            #[inline(always)]
            fn has_max_content_min_track_sizing_function(track: &GridTrack) -> bool {
                track.min_track_sizing_function == MinTrackSizingFunction::MaxContent
            }

            for item in batch.iter_mut() {
                let axis_max_content_size = item_sizer.max_content_contribution(item);
                let limit = item.spanned_track_limit(axis, axis_tracks, axis_inner_node_size);
                let space = axis_max_content_size.maybe_min(limit);
                let tracks = &mut axis_tracks[item.track_range_excluding_lines(axis)];
                if space > 0.0 {
                    // If any of the tracks spanned by the item have a MaxContent min track sizing function then
                    // distribute space only to those tracks. Otherwise distribute space to tracks with an Auto min
                    // track sizing function.
                    //
                    // Note: this prioritisation of MaxContent over Auto is not mentioned in the spec (which suggests that
                    // we ought to distribute space evenly between MaxContent and Auto tracks). But it is implemented like
                    // this in both Chrome and Firefox (and it does have a certain logic to it), so we implement it too for
                    // compatibility.
                    //
                    // See: https://www.w3.org/TR/css-grid-1/#track-size-max-content-min
                    if tracks.iter().any(has_max_content_min_track_sizing_function) {
                        distribute_item_space_to_base_size(
                            is_flex,
                            use_flex_factor_for_distribution,
                            space,
                            tracks,
                            has_max_content_min_track_sizing_function,
                            |_| f32::INFINITY,
                            IntrinsicContributionType::Maximum,
                        );
                    } else {
                        let fit_content_limited_growth_limit =
                            move |track: &GridTrack| track.fit_content_limited_growth_limit(axis_inner_node_size);
                        distribute_item_space_to_base_size(
                            is_flex,
                            use_flex_factor_for_distribution,
                            space,
                            tracks,
                            has_auto_min_track_sizing_function,
                            fit_content_limited_growth_limit,
                            IntrinsicContributionType::Maximum,
                        );
                    }
                }
            }
            flush_planned_base_size_increases(axis_tracks);
        }

        // In all cases, continue to increase the base size of tracks with a min track sizing function of max-content by distributing
        // extra space as needed to account for these items' max-content contributions.
        let has_max_content_min_track_sizing_function =
            move |track: &GridTrack| matches!(track.min_track_sizing_function, MinTrackSizingFunction::MaxContent);
        for item in batch.iter_mut() {
            let axis_max_content_size = item_sizer.max_content_contribution(item);
            let space = axis_max_content_size;
            let tracks = &mut axis_tracks[item.track_range_excluding_lines(axis)];
            if space > 0.0 {
                distribute_item_space_to_base_size(
                    is_flex,
                    use_flex_factor_for_distribution,
                    space,
                    tracks,
                    has_max_content_min_track_sizing_function,
                    |_| f32::INFINITY,
                    IntrinsicContributionType::Maximum,
                );
            }
        }
        flush_planned_base_size_increases(axis_tracks);

        // 4. If at this point any track’s growth limit is now less than its base size, increase its growth limit to match its base size.
        for track in axis_tracks.iter_mut() {
            if track.growth_limit < track.base_size {
                track.growth_limit = track.base_size;
            }
        }

        // If a track is a flexible track, then it has flexible max track sizing function
        // It cannot also have an intrinsic max track sizing function, so these steps do not apply.
        if !is_flex {
            // 5. For intrinsic maximums: Next increase the growth limit of tracks with an intrinsic max track sizing function by
            // distributing extra space as needed to account for these items' min-content contributions.
            let has_intrinsic_max_track_sizing_function =
                move |track: &GridTrack| track.max_track_sizing_function.definite_value(axis_inner_node_size).is_none();
            for item in batch.iter_mut() {
                let axis_min_content_size = item_sizer.min_content_contribution(item);
                let space = axis_min_content_size;
                let tracks = &mut axis_tracks[item.track_range_excluding_lines(axis)];
                if space > 0.0 {
                    distribute_item_space_to_growth_limit(
                        space,
                        tracks,
                        has_intrinsic_max_track_sizing_function,
                        inner_node_size.get(axis),
                    );
                }
            }
            // Mark any tracks whose growth limit changed from infinite to finite in this step as infinitely growable for the next step.
            flush_planned_growth_limit_increases(axis_tracks, true);

            // 6. For max-content maximums: Lastly continue to increase the growth limit of tracks with a max track sizing function of max-content
            // by distributing extra space as needed to account for these items' max-content contributions. However, limit the growth of any
            // fit-content() tracks by their fit-content() argument.
            let has_max_content_max_track_sizing_function = |track: &GridTrack| {
                track.max_track_sizing_function.is_max_content_alike()
                    || (track.max_track_sizing_function.uses_percentage() && axis_inner_node_size.is_none())
            };
            for item in batch.iter_mut() {
                let axis_max_content_size = item_sizer.max_content_contribution(item);
                let space = axis_max_content_size;
                let tracks = &mut axis_tracks[item.track_range_excluding_lines(axis)];
                if space > 0.0 {
                    distribute_item_space_to_growth_limit(
                        space,
                        tracks,
                        has_max_content_max_track_sizing_function,
                        inner_node_size.get(axis),
                    );
                }
            }
            // Mark any tracks whose growth limit changed from infinite to finite in this step as infinitely growable for the next step.
            flush_planned_growth_limit_increases(axis_tracks, false);
        }
    }

    // Step 5. If any track still has an infinite growth limit (because, for example, it had no items placed
    // in it or it is a flexible track), set its growth limit to its base size.
    // NOTE: this step is super-important to ensure that the "Maximise Tracks" step doesn't affect flexible tracks
    axis_tracks
        .iter_mut()
        .filter(|track| track.growth_limit == f32::INFINITY)
        .for_each(|track| track.growth_limit = track.base_size);
}

/// 11.5.1. Distributing Extra Space Across Spanned Tracks
/// https://www.w3.org/TR/css-grid-1/#extra-space
#[inline(always)]
fn distribute_item_space_to_base_size(
    is_flex: bool,
    use_flex_factor_for_distribution: bool,
    space: f32,
    tracks: &mut [GridTrack],
    track_is_affected: impl Fn(&GridTrack) -> bool,
    track_limit: impl Fn(&GridTrack) -> f32,
    intrinsic_contribution_type: IntrinsicContributionType,
) {
    if is_flex {
        let filter = |track: &GridTrack| track.is_flexible() && track_is_affected(track);
        if use_flex_factor_for_distribution {
            distribute_item_space_to_base_size_inner(
                space,
                tracks,
                filter,
                |track| track.flex_factor(),
                track_limit,
                intrinsic_contribution_type,
            )
        } else {
            distribute_item_space_to_base_size_inner(
                space,
                tracks,
                filter,
                |_| 1.0,
                track_limit,
                intrinsic_contribution_type,
            )
        }
    } else {
        distribute_item_space_to_base_size_inner(
            space,
            tracks,
            track_is_affected,
            |_| 1.0,
            track_limit,
            intrinsic_contribution_type,
        )
    }

    /// Inner function that doesn't account for differences due to distributing to flex items
    /// This difference is handled by the closure passed in above
    fn distribute_item_space_to_base_size_inner(
        space: f32,
        tracks: &mut [GridTrack],
        track_is_affected: impl Fn(&GridTrack) -> bool,
        track_distribution_proportion: impl Fn(&GridTrack) -> f32,
        track_limit: impl Fn(&GridTrack) -> f32,
        intrinsic_contribution_type: IntrinsicContributionType,
    ) {
        // Skip this distribution if there is either
        //   - no space to distribute
        //   - no affected tracks to distribute space to
        if space == 0.0 || !tracks.iter().any(&track_is_affected) {
            return;
        }

        // Define get_base_size function. This is passed to the distribute_space_up_to_limits helper function
        // to indicate that it is the base size that is being distributed to.
        let get_base_size = |track: &GridTrack| track.base_size;

        // 1. Find the space to distribute
        let track_sizes: f32 = tracks.iter().map(|track| track.base_size).sum();
        let extra_space: f32 = f32_max(0.0, space - track_sizes);

        // 2. Distribute space up to limits:
        // Note: there are two exit conditions to this loop:
        //   - We run out of space to distribute (extra_space falls below THRESHOLD)
        //   - We run out of growable tracks to distribute to

        /// Define a small constant to avoid infinite loops due to rounding errors. Rather than stopping distributing
        /// extra space when it gets to exactly zero, we will stop when it falls below this amount
        const THRESHOLD: f32 = 0.000001;

        let extra_space = distribute_space_up_to_limits(
            extra_space,
            tracks,
            &track_is_affected,
            &track_distribution_proportion,
            get_base_size,
            &track_limit,
        );

        // 3. Distribute remaining span beyond limits (if any)
        if extra_space > THRESHOLD {
            // When accommodating minimum contributions or accommodating min-content contributions:
            //   - any affected track that happens to also have an intrinsic max track sizing function;
            // When accommodating max-content contributions:
            //   - any affected track that happens to also have a max-content max track sizing function
            let mut filter = match intrinsic_contribution_type {
                IntrinsicContributionType::Minimum => {
                    (|track: &GridTrack| track.max_track_sizing_function.is_intrinsic()) as fn(&GridTrack) -> bool
                }
                IntrinsicContributionType::Maximum => {
                    use MaxTrackSizingFunction::{FitContent, MaxContent};
                    (|track: &GridTrack| {
                        matches!(track.max_track_sizing_function, MaxContent | FitContent(_))
                            || track.min_track_sizing_function == MinTrackSizingFunction::MaxContent
                    }) as fn(&GridTrack) -> bool
                }
            };

            // If there are no such tracks (matching filter above), then use all affected tracks.
            let number_of_tracks =
                tracks.iter().filter(|track| track_is_affected(track)).filter(|track| filter(track)).count();
            if number_of_tracks == 0 {
                filter = (|_| true) as fn(&GridTrack) -> bool;
            }

            distribute_space_up_to_limits(
                extra_space,
                tracks,
                filter,
                &track_distribution_proportion,
                get_base_size,
                &track_limit, // Should apply only fit-content limit here?
            );
        }

        // 4. For each affected track, if the track’s item-incurred increase is larger than the track’s planned increase
        // set the track’s planned increase to that value.
        for track in tracks.iter_mut() {
            if track.item_incurred_increase > track.base_size_planned_increase {
                track.base_size_planned_increase = track.item_incurred_increase;
            }

            // Reset the item_incurresed increase ready for the next space distribution
            track.item_incurred_increase = 0.0;
        }
    }
}

/// 11.5.1. Distributing Extra Space Across Spanned Tracks
/// This is simplified (and faster) version of the algorithm for growth limits
/// https://www.w3.org/TR/css-grid-1/#extra-space
fn distribute_item_space_to_growth_limit(
    space: f32,
    tracks: &mut [GridTrack],
    track_is_affected: impl Fn(&GridTrack) -> bool,
    axis_inner_node_size: Option<f32>,
) {
    // Skip this distribution if there is either
    //   - no space to distribute
    //   - no affected tracks to distribute space to
    if space == 0.0 || tracks.iter().filter(|track| track_is_affected(track)).count() == 0 {
        return;
    }

    // 1. Find the space to distribute
    let track_sizes: f32 = tracks
        .iter()
        .map(|track| if track.growth_limit == f32::INFINITY { track.base_size } else { track.growth_limit })
        .sum();
    let extra_space: f32 = f32_max(0.0, space - track_sizes);

    // 2. Distribute space up to limits:
    // For growth limits the limit is either Infinity, or the growth limit itself. Which means that:
    //   - If there are any tracks with infinite limits then all space will be distributed to those track(s).
    //   - Otherwise no space will be distributed as part of this step
    let number_of_growable_tracks = tracks
        .iter()
        .filter(|track| track_is_affected(track))
        .filter(|track| {
            track.infinitely_growable || track.fit_content_limited_growth_limit(axis_inner_node_size) == f32::INFINITY
        })
        .count();
    if number_of_growable_tracks > 0 {
        let item_incurred_increase = extra_space / number_of_growable_tracks as f32;
        for track in tracks.iter_mut().filter(|track| track_is_affected(track)).filter(|track| {
            track.infinitely_growable || track.fit_content_limited_growth_limit(axis_inner_node_size) == f32::INFINITY
        }) {
            track.item_incurred_increase = item_incurred_increase;
        }
    } else {
        // 3. Distribute space beyond limits
        // If space remains after all tracks are frozen, unfreeze and continue to distribute space to the item-incurred increase
        // ...when handling any intrinsic growth limit: all affected tracks.
        distribute_space_up_to_limits(
            extra_space,
            tracks,
            track_is_affected,
            |_| 1.0,
            |track| if track.growth_limit == f32::INFINITY { track.base_size } else { track.growth_limit },
            move |track| track.fit_content_limit(axis_inner_node_size),
        );
    };

    // 4. For each affected track, if the track’s item-incurred increase is larger than the track’s planned increase
    // set the track’s planned increase to that value.
    for track in tracks.iter_mut() {
        if track.item_incurred_increase > track.growth_limit_planned_increase {
            track.growth_limit_planned_increase = track.item_incurred_increase;
        }

        // Reset the item_incurresed increase ready for the next space distribution
        track.item_incurred_increase = 0.0;
    }
}

/// 11.6 Maximise Tracks
/// Distributes free space (if any) to tracks with FINITE growth limits, up to their limits.
#[inline(always)]
fn maximise_tracks(
    axis_tracks: &mut [GridTrack],
    axis_inner_node_size: Option<f32>,
    axis_available_grid_space: AvailableSpace,
) {
    let used_space: f32 = axis_tracks.iter().map(|track| track.base_size).sum();
    let free_space = axis_available_grid_space.compute_free_space(used_space);
    if free_space == f32::INFINITY {
        axis_tracks.iter_mut().for_each(|track| track.base_size = track.growth_limit);
    } else if free_space > 0.0 {
        distribute_space_up_to_limits(
            free_space,
            axis_tracks,
            |_| true,
            |_| 1.0,
            |track| track.base_size,
            move |track: &GridTrack| track.fit_content_limited_growth_limit(axis_inner_node_size),
        );
        for track in axis_tracks.iter_mut() {
            track.base_size += track.item_incurred_increase;
            track.item_incurred_increase = 0.0;
        }
    }
}

/// 11.7. Expand Flexible Tracks
/// This step sizes flexible tracks using the largest value it can assign to an fr without exceeding the available space.
#[allow(clippy::too_many_arguments)]
#[inline(always)]
fn expand_flexible_tracks(
    tree: &mut impl PartialLayoutTree,
    axis: AbstractAxis,
    axis_tracks: &mut [GridTrack],
    items: &mut [GridItem],
    axis_min_size: Option<f32>,
    axis_max_size: Option<f32>,
    axis_available_space_for_expansion: AvailableSpace,
    inner_node_size: Size<Option<f32>>,
) {
    // First, find the grid’s used flex fraction:
    let flex_fraction = match axis_available_space_for_expansion {
        // If the free space is zero:
        //    The used flex fraction is zero.
        // Otherwise, if the free space is a definite length:
        //   The used flex fraction is the result of finding the size of an fr using all of the grid tracks and
        //   a space to fill of the available grid space.
        AvailableSpace::Definite(available_space) => {
            let used_space: f32 = axis_tracks.iter().map(|track| track.base_size).sum();
            let free_space = available_space - used_space;
            if free_space <= 0.0 {
                0.0
            } else {
                find_size_of_fr(axis_tracks, available_space)
            }
        }
        // If ... sizing the grid container under a min-content constraint the used flex fraction is zero.
        AvailableSpace::MinContent => 0.0,
        // Otherwise, if the free space is an indefinite length:
        AvailableSpace::MaxContent => {
            // The used flex fraction is the maximum of:
            let flex_fraction = f32_max(
                // For each flexible track, if the flexible track’s flex factor is greater than one,
                // the result of dividing the track’s base size by its flex factor; otherwise, the track’s base size.
                axis_tracks
                    .iter()
                    .filter(|track| track.max_track_sizing_function.is_flexible())
                    .map(|track| {
                        let flex_factor = track.flex_factor();
                        if flex_factor > 1.0 {
                            track.base_size / flex_factor
                        } else {
                            track.base_size
                        }
                    })
                    .max_by(|a, b| a.total_cmp(b))
                    .unwrap_or(0.0),
                // For each grid item that crosses a flexible track, the result of finding the size of an fr using all the grid tracks
                // that the item crosses and a space to fill of the item’s max-content contribution.
                items
                    .iter_mut()
                    .filter(|item| item.crosses_flexible_track(axis))
                    .map(|item| {
                        let tracks = &axis_tracks[item.track_range_excluding_lines(axis)];
                        // TODO: plumb estimate of other axis size (known_dimensions) in here rather than just passing Size::NONE?
                        let max_content_contribution =
                            item.max_content_contribution_cached(axis, tree, Size::NONE, inner_node_size);
                        find_size_of_fr(tracks, max_content_contribution)
                    })
                    .max_by(|a, b| a.total_cmp(b))
                    .unwrap_or(0.0),
            );

            // If using this flex fraction would cause the grid to be smaller than the grid container’s min-width/height (or larger than the
            // grid container’s max-width/height), then redo this step, treating the free space as definite and the available grid space as equal
            // to the grid container’s inner size when it’s sized to its min-width/height (max-width/height).
            // (Note: min_size takes precedence over max_size)
            let hypothetical_grid_size: f32 = axis_tracks
                .iter()
                .map(|track| match track.max_track_sizing_function {
                    MaxTrackSizingFunction::Fraction(track_flex_factor) => {
                        f32_max(track.base_size, track_flex_factor * flex_fraction)
                    }
                    _ => track.base_size,
                })
                .sum();
            let axis_min_size = axis_min_size.unwrap_or(0.0);
            let axis_max_size = axis_max_size.unwrap_or(f32::INFINITY);
            if hypothetical_grid_size < axis_min_size {
                find_size_of_fr(axis_tracks, axis_min_size)
            } else if hypothetical_grid_size > axis_max_size {
                find_size_of_fr(axis_tracks, axis_max_size)
            } else {
                flex_fraction
            }
        }
    };

    // For each flexible track, if the product of the used flex fraction and the track’s flex factor is greater
    // than the track’s base size, set its base size to that product.
    for track in axis_tracks.iter_mut() {
        if let MaxTrackSizingFunction::Fraction(track_flex_factor) = track.max_track_sizing_function {
            track.base_size = f32_max(track.base_size, track_flex_factor * flex_fraction);
        }
    }
}

/// 11.7.1. Find the Size of an fr
/// This algorithm finds the largest size that an fr unit can be without exceeding the target size.
/// It must be called with a set of grid tracks and some quantity of space to fill.
#[inline(always)]
fn find_size_of_fr(tracks: &[GridTrack], space_to_fill: f32) -> f32 {
    // Handle the trivial case where there is no space to fill
    // Do not remove as otherwise the loop below will loop infinitely
    if space_to_fill == 0.0 {
        return 0.0;
    }

    // If the product of the hypothetical fr size (computed below) and any flexible track’s flex factor
    // is less than the track’s base size, then we must restart this algorithm treating all such tracks as inflexible.
    // We therefore wrap the entire algorithm in a loop, with an hypotherical_fr_size of INFINITY such that the above
    // condition can never be true for the first iteration.
    let mut hypothetical_fr_size = f32::INFINITY;
    let mut previous_iter_hypothetical_fr_size;
    loop {
        // Let leftover space be the space to fill minus the base sizes of the non-flexible grid tracks.
        // Let flex factor sum be the sum of the flex factors of the flexible tracks. If this value is less than 1, set it to 1 instead.
        // We compute both of these in a single loop to avoid iterating over the data twice
        let mut used_space = 0.0;
        let mut naive_flex_factor_sum = 0.0;
        for track in tracks.iter() {
            match track.max_track_sizing_function {
                // Tracks for which flex_factor * hypothetical_fr_size < track.base_size are treated as inflexible
                MaxTrackSizingFunction::Fraction(flex_factor)
                    if flex_factor * hypothetical_fr_size >= track.base_size =>
                {
                    naive_flex_factor_sum += flex_factor;
                }
                _ => used_space += track.base_size,
            };
        }
        let leftover_space = space_to_fill - used_space;
        let flex_factor = f32_max(naive_flex_factor_sum, 1.0);

        // Let the hypothetical fr size be the leftover space divided by the flex factor sum.
        previous_iter_hypothetical_fr_size = hypothetical_fr_size;
        hypothetical_fr_size = leftover_space / flex_factor;

        // If the product of the hypothetical fr size and a flexible track’s flex factor is less than the track’s base size,
        // restart this algorithm treating all such tracks as inflexible.
        // We keep track of the hypothetical_fr_size
        let hypotherical_fr_size_is_valid = tracks.iter().all(|track| match track.max_track_sizing_function {
            MaxTrackSizingFunction::Fraction(flex_factor) => {
                flex_factor * hypothetical_fr_size >= track.base_size
                    || flex_factor * previous_iter_hypothetical_fr_size < track.base_size
            }
            _ => true,
        });
        if hypotherical_fr_size_is_valid {
            break;
        }
    }

    // Return the hypothetical fr size.
    hypothetical_fr_size
}

/// 11.8. Stretch auto Tracks
/// This step expands tracks that have an auto max track sizing function by dividing any remaining positive, definite free space equally amongst them.
#[inline(always)]
fn stretch_auto_tracks(
    axis_tracks: &mut [GridTrack],
    axis_min_size: Option<f32>,
    axis_available_space_for_expansion: AvailableSpace,
) {
    let num_auto_tracks =
        axis_tracks.iter().filter(|track| track.max_track_sizing_function == MaxTrackSizingFunction::Auto).count();
    if num_auto_tracks > 0 {
        let used_space: f32 = axis_tracks.iter().map(|track| track.base_size).sum();

        // If the free space is indefinite, but the grid container has a definite min-width/height
        // use that size to calculate the free space for this step instead.
        let free_space = if axis_available_space_for_expansion.is_definite() {
            axis_available_space_for_expansion.compute_free_space(used_space)
        } else {
            match axis_min_size {
                Some(size) => size - used_space,
                None => 0.0,
            }
        };
        if free_space > 0.0 {
            let extra_space_per_auto_track = free_space / num_auto_tracks as f32;
            axis_tracks
                .iter_mut()
                .filter(|track| track.max_track_sizing_function == MaxTrackSizingFunction::Auto)
                .for_each(|track| track.base_size += extra_space_per_auto_track);
        }
    }
}

/// Helper function for distributing space to tracks evenly
/// Used by both distribute_item_space_to_base_size and maximise_tracks steps
#[inline(always)]
fn distribute_space_up_to_limits(
    space_to_distribute: f32,
    tracks: &mut [GridTrack],
    track_is_affected: impl Fn(&GridTrack) -> bool,
    track_distribution_proportion: impl Fn(&GridTrack) -> f32,
    track_affected_property: impl Fn(&GridTrack) -> f32,
    track_limit: impl Fn(&GridTrack) -> f32,
) -> f32 {
    /// Define a small constant to avoid infinite loops due to rounding errors. Rather than stopping distributing
    /// extra space when it gets to exactly zero, we will stop when it falls below this amount
    const THRESHOLD: f32 = 0.000001;

    let mut space_to_distribute = space_to_distribute;
    while space_to_distribute > THRESHOLD {
        let track_distribution_proportion_sum: f32 = tracks
            .iter()
            .filter(|track| track_affected_property(track) + track.item_incurred_increase < track_limit(track))
            .filter(|track| track_is_affected(track))
            .map(&track_distribution_proportion)
            .sum();

        if track_distribution_proportion_sum == 0.0 {
            break;
        }

        // Compute item-incurred increase for this iteration
        let min_increase_limit = tracks
            .iter()
            .filter(|track| track_affected_property(track) + track.item_incurred_increase < track_limit(track))
            .filter(|track| track_is_affected(track))
            .map(|track| (track_limit(track) - track_affected_property(track)) / track_distribution_proportion(track))
            .min_by(|a, b| a.total_cmp(b))
            .unwrap(); // We will never pass an empty track list to this function
        let iteration_item_incurred_increase =
            f32_min(min_increase_limit, space_to_distribute / track_distribution_proportion_sum);

        for track in tracks.iter_mut().filter(|track| track_is_affected(track)) {
            let increase = iteration_item_incurred_increase * track_distribution_proportion(track);
            if increase > 0.0 && track_affected_property(track) + increase <= track_limit(track) {
                track.item_incurred_increase += increase;
                space_to_distribute -= increase;
            }
        }
    }

    space_to_distribute
}