1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
//! The layout algorithms themselves

pub(crate) mod common;
pub(crate) mod leaf;

#[cfg(feature = "block_layout")]
pub(crate) mod block;

#[cfg(feature = "flexbox")]
pub(crate) mod flexbox;

#[cfg(feature = "grid")]
pub(crate) mod grid;

pub use leaf::compute_leaf_layout;

#[cfg(feature = "block_layout")]
pub use self::block::compute_block_layout;

#[cfg(feature = "flexbox")]
pub use self::flexbox::compute_flexbox_layout;

#[cfg(feature = "grid")]
pub use self::grid::compute_grid_layout;

use crate::geometry::{Line, Point, Size};
use crate::style::{AvailableSpace, Overflow};
use crate::tree::{
    Layout, LayoutInput, LayoutOutput, LayoutTree, NodeId, PartialLayoutTree, PartialLayoutTreeExt, SizingMode,
};
use crate::util::debug::{debug_log, debug_log_node, debug_pop_node, debug_push_node};
use crate::util::sys::round;
use crate::util::ResolveOrZero;

/// Updates the stored layout of the provided `node` and its children
pub fn compute_layout(tree: &mut impl PartialLayoutTree, root: NodeId, available_space: Size<AvailableSpace>) {
    // Recursively compute node layout
    let output = tree.perform_child_layout(
        root,
        Size::NONE,
        available_space.into_options(),
        available_space,
        SizingMode::InherentSize,
        Line::FALSE,
    );

    let style = tree.get_style(root);
    let padding = style.padding.resolve_or_zero(available_space.width.into_option());
    let border = style.border.resolve_or_zero(available_space.width.into_option());
    let scrollbar_size = Size {
        width: if style.overflow.y == Overflow::Scroll { style.scrollbar_width } else { 0.0 },
        height: if style.overflow.x == Overflow::Scroll { style.scrollbar_width } else { 0.0 },
    };

    tree.set_unrounded_layout(
        root,
        &Layout {
            order: 0,
            location: Point::ZERO,
            size: output.size,
            #[cfg(feature = "content_size")]
            content_size: output.content_size,
            scrollbar_size,
            padding,
            border,
        },
    );
}

/// Updates the stored layout of the provided `node` and its children
#[inline(always)]
pub fn compute_cached_layout<Tree: PartialLayoutTree + ?Sized, ComputeFunction>(
    tree: &mut Tree,
    node: NodeId,
    inputs: LayoutInput,
    mut compute_uncached: ComputeFunction,
) -> LayoutOutput
where
    ComputeFunction: FnMut(&mut Tree, NodeId, LayoutInput) -> LayoutOutput,
{
    debug_push_node!(node);
    let LayoutInput { known_dimensions, available_space, run_mode, .. } = inputs;

    // First we check if we have a cached result for the given input
    let cache_entry = tree.get_cache_mut(node).get(known_dimensions, available_space, run_mode);
    if let Some(cached_size_and_baselines) = cache_entry {
        debug_log!("CACHE", dbg:cached_size_and_baselines.size);
        debug_log_node!(known_dimensions, parent_size, available_space, run_mode, sizing_mode);
        debug_pop_node!();
        return cached_size_and_baselines;
    }

    let computed_size_and_baselines = compute_uncached(tree, node, inputs);

    // Cache result
    tree.get_cache_mut(node).store(known_dimensions, available_space, run_mode, computed_size_and_baselines);

    debug_log!("RESULT", dbg:computed_size_and_baselines.size);
    debug_pop_node!();

    computed_size_and_baselines
}

/// Rounds the calculated [`Layout`] to exact pixel values
///
/// In order to ensure that no gaps in the layout are introduced we:
///   - Always round based on the cumulative x/y coordinates (relative to the viewport) rather than
///     parent-relative coordinates
///   - Compute width/height by first rounding the top/bottom/left/right and then computing the difference
///     rather than rounding the width/height directly
/// See <https://github.com/facebook/yoga/commit/aa5b296ac78f7a22e1aeaf4891243c6bb76488e2> for more context
///
/// In order to prevent innacuracies caused by rounding already-rounded values, we read from `unrounded_layout`
/// and write to `final_layout`.
pub fn round_layout(tree: &mut impl LayoutTree, node_id: NodeId) {
    return round_layout_inner(tree, node_id, 0.0, 0.0);

    /// Recursive function to apply rounding to all descendents
    fn round_layout_inner(tree: &mut impl LayoutTree, node_id: NodeId, cumulative_x: f32, cumulative_y: f32) {
        let unrounded_layout = *tree.get_unrounded_layout(node_id);
        let mut layout = unrounded_layout;

        let cumulative_x = cumulative_x + unrounded_layout.location.x;
        let cumulative_y = cumulative_y + unrounded_layout.location.y;

        layout.location.x = round(unrounded_layout.location.x);
        layout.location.y = round(unrounded_layout.location.y);
        layout.size.width = round(cumulative_x + unrounded_layout.size.width) - round(cumulative_x);
        layout.size.height = round(cumulative_y + unrounded_layout.size.height) - round(cumulative_y);
        layout.scrollbar_size.width = round(unrounded_layout.scrollbar_size.width);
        layout.scrollbar_size.height = round(unrounded_layout.scrollbar_size.height);
        layout.border.left = round(cumulative_x + unrounded_layout.border.left) - round(cumulative_x);
        layout.border.right = round(cumulative_x + unrounded_layout.size.width)
            - round(cumulative_x + unrounded_layout.size.width - unrounded_layout.border.right);
        layout.border.top = round(cumulative_y + unrounded_layout.border.top) - round(cumulative_y);
        layout.border.bottom = round(cumulative_y + unrounded_layout.size.height)
            - round(cumulative_y + unrounded_layout.size.height - unrounded_layout.border.bottom);
        layout.padding.left = round(cumulative_x + unrounded_layout.padding.left) - round(cumulative_x);
        layout.padding.right = round(cumulative_x + unrounded_layout.size.width)
            - round(cumulative_x + unrounded_layout.size.width - unrounded_layout.padding.right);
        layout.padding.top = round(cumulative_y + unrounded_layout.padding.top) - round(cumulative_y);
        layout.padding.bottom = round(cumulative_y + unrounded_layout.size.height)
            - round(cumulative_y + unrounded_layout.size.height - unrounded_layout.padding.bottom);

        #[cfg(feature = "content_size")]
        round_content_size(&mut layout, unrounded_layout.content_size, cumulative_x, cumulative_y);

        tree.set_final_layout(node_id, &layout);

        let child_count = tree.child_count(node_id);
        for index in 0..child_count {
            let child = tree.get_child_id(node_id, index);
            round_layout_inner(tree, child, cumulative_x, cumulative_y);
        }
    }

    #[cfg(feature = "content_size")]
    #[inline(always)]
    /// Round content size variables.
    /// This is split into a separate function to make it easier to feature flag.
    fn round_content_size(
        layout: &mut Layout,
        unrounded_content_size: Size<f32>,
        cumulative_x: f32,
        cumulative_y: f32,
    ) {
        layout.content_size.width = round(cumulative_x + unrounded_content_size.width) - round(cumulative_x);
        layout.content_size.height = round(cumulative_y + unrounded_content_size.height) - round(cumulative_y);
    }
}

/// Creates a layout for this node and its children, recursively.
/// Each hidden node has zero size and is placed at the origin
pub fn compute_hidden_layout(tree: &mut impl PartialLayoutTree, node: NodeId) -> LayoutOutput {
    // Clear cache and set zeroed-out layout for the node
    tree.get_cache_mut(node).clear();
    tree.set_unrounded_layout(node, &Layout::with_order(0));

    // Perform hidden layout on all children
    for index in 0..tree.child_count(node) {
        let child_id = tree.get_child_id(node, index);
        tree.compute_child_layout(child_id, LayoutInput::HIDDEN);
    }

    LayoutOutput::HIDDEN
}

#[cfg(test)]
mod tests {
    use super::compute_hidden_layout;
    use crate::geometry::{Point, Size};
    use crate::style::{Display, Style};
    use crate::TaffyTree;

    #[test]
    fn hidden_layout_should_hide_recursively() {
        let mut taffy: TaffyTree<()> = TaffyTree::new();

        let style: Style = Style { display: Display::Flex, size: Size::from_lengths(50.0, 50.0), ..Default::default() };

        let grandchild_00 = taffy.new_leaf(style.clone()).unwrap();
        let grandchild_01 = taffy.new_leaf(style.clone()).unwrap();
        let child_00 = taffy.new_with_children(style.clone(), &[grandchild_00, grandchild_01]).unwrap();

        let grandchild_02 = taffy.new_leaf(style.clone()).unwrap();
        let child_01 = taffy.new_with_children(style.clone(), &[grandchild_02]).unwrap();

        let root = taffy
            .new_with_children(
                Style { display: Display::None, size: Size::from_lengths(50.0, 50.0), ..Default::default() },
                &[child_00, child_01],
            )
            .unwrap();

        compute_hidden_layout(&mut taffy.as_layout_tree(), root.into());

        // Whatever size and display-mode the nodes had previously,
        // all layouts should resolve to ZERO due to the root's DISPLAY::NONE
        for (node, _) in taffy.nodes.iter().filter(|(node, _)| *node != root.into()) {
            if let Ok(layout) = taffy.layout(node.into()) {
                assert_eq!(layout.size, Size::zero());
                assert_eq!(layout.location, Point::zero());
            }
        }
    }
}