taffy/geometry.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
//! Geometric primitives useful for layout
use crate::util::sys::f32_max;
use crate::{style::Dimension, util::sys::f32_min};
use core::ops::{Add, Sub};
#[cfg(feature = "flexbox")]
use crate::style::FlexDirection;
/// The simple absolute horizontal and vertical axis
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum AbsoluteAxis {
/// The horizontal axis
Horizontal,
/// The vertical axis
Vertical,
}
impl AbsoluteAxis {
/// Returns the other variant of the enum
#[inline]
pub const fn other_axis(&self) -> Self {
match *self {
AbsoluteAxis::Horizontal => AbsoluteAxis::Vertical,
AbsoluteAxis::Vertical => AbsoluteAxis::Horizontal,
}
}
}
impl<T> Size<T> {
#[inline(always)]
/// Get either the width or height depending on the AbsoluteAxis passed in
pub fn get_abs(self, axis: AbsoluteAxis) -> T {
match axis {
AbsoluteAxis::Horizontal => self.width,
AbsoluteAxis::Vertical => self.height,
}
}
}
impl<T: Add> Rect<T> {
#[inline(always)]
/// Get either the width or height depending on the AbsoluteAxis passed in
pub fn grid_axis_sum(self, axis: AbsoluteAxis) -> <T as Add>::Output {
match axis {
AbsoluteAxis::Horizontal => self.left + self.right,
AbsoluteAxis::Vertical => self.top + self.bottom,
}
}
}
/// The CSS abstract axis
/// <https://www.w3.org/TR/css-writing-modes-3/#abstract-axes>
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum AbstractAxis {
/// The axis in the inline dimension, i.e. the horizontal axis in horizontal writing modes and the vertical axis in vertical writing modes.
Inline,
/// The axis in the block dimension, i.e. the vertical axis in horizontal writing modes and the horizontal axis in vertical writing modes.
Block,
}
impl AbstractAxis {
/// Returns the other variant of the enum
#[inline]
pub fn other(&self) -> AbstractAxis {
match *self {
AbstractAxis::Inline => AbstractAxis::Block,
AbstractAxis::Block => AbstractAxis::Inline,
}
}
/// Convert an `AbstractAxis` into an `AbsoluteAxis` naively assuming that the Inline axis is Horizontal
/// This is currently always true, but will change if Taffy ever implements the `writing_mode` property
#[inline]
pub fn as_abs_naive(&self) -> AbsoluteAxis {
match self {
AbstractAxis::Inline => AbsoluteAxis::Horizontal,
AbstractAxis::Block => AbsoluteAxis::Vertical,
}
}
}
/// Container that holds an item in each absolute axis without specifying
/// what kind of item it is.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub(crate) struct InBothAbsAxis<T> {
/// The item in the horizontal axis
pub horizontal: T,
/// The item in the vertical axis
pub vertical: T,
}
impl<T: Copy> InBothAbsAxis<T> {
#[cfg(feature = "grid")]
/// Get the contained item based on the AbsoluteAxis passed
pub fn get(&self, axis: AbsoluteAxis) -> T {
match axis {
AbsoluteAxis::Horizontal => self.horizontal,
AbsoluteAxis::Vertical => self.vertical,
}
}
}
/// An axis-aligned UI rectangle
#[derive(Debug, Copy, Clone, PartialEq, Eq, Default)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Rect<T> {
/// This can represent either the x-coordinate of the starting edge,
/// or the amount of padding on the starting side.
///
/// The starting edge is the left edge when working with LTR text,
/// and the right edge when working with RTL text.
pub left: T,
/// This can represent either the x-coordinate of the ending edge,
/// or the amount of padding on the ending side.
///
/// The ending edge is the right edge when working with LTR text,
/// and the left edge when working with RTL text.
pub right: T,
/// This can represent either the y-coordinate of the top edge,
/// or the amount of padding on the top side.
pub top: T,
/// This can represent either the y-coordinate of the bottom edge,
/// or the amount of padding on the bottom side.
pub bottom: T,
}
impl<U, T: Add<U>> Add<Rect<U>> for Rect<T> {
type Output = Rect<T::Output>;
fn add(self, rhs: Rect<U>) -> Self::Output {
Rect {
left: self.left + rhs.left,
right: self.right + rhs.right,
top: self.top + rhs.top,
bottom: self.bottom + rhs.bottom,
}
}
}
impl<T> Rect<T> {
/// Applies the function `f` to all four sides of the rect
///
/// When applied to the left and right sides, the width is used
/// as the second parameter of `f`.
/// When applied to the top or bottom sides, the height is used instead.
#[cfg(feature = "flexbox")]
pub(crate) fn zip_size<R, F, U>(self, size: Size<U>, f: F) -> Rect<R>
where
F: Fn(T, U) -> R,
U: Copy,
{
Rect {
left: f(self.left, size.width),
right: f(self.right, size.width),
top: f(self.top, size.height),
bottom: f(self.bottom, size.height),
}
}
/// Applies the function `f` to the left, right, top, and bottom properties
///
/// This is used to transform a `Rect<T>` into a `Rect<R>`.
pub fn map<R, F>(self, f: F) -> Rect<R>
where
F: Fn(T) -> R,
{
Rect { left: f(self.left), right: f(self.right), top: f(self.top), bottom: f(self.bottom) }
}
/// Returns a `Line<T>` representing the left and right properties of the Rect
pub fn horizontal_components(self) -> Line<T> {
Line { start: self.left, end: self.right }
}
/// Returns a `Line<T>` containing the top and bottom properties of the Rect
pub fn vertical_components(self) -> Line<T> {
Line { start: self.top, end: self.bottom }
}
}
impl<T, U> Rect<T>
where
T: Add<Output = U> + Copy + Clone,
{
/// The sum of [`Rect.start`](Rect) and [`Rect.end`](Rect)
///
/// This is typically used when computing total padding.
///
/// **NOTE:** this is *not* the width of the rectangle.
#[inline(always)]
pub(crate) fn horizontal_axis_sum(&self) -> U {
self.left + self.right
}
/// The sum of [`Rect.top`](Rect) and [`Rect.bottom`](Rect)
///
/// This is typically used when computing total padding.
///
/// **NOTE:** this is *not* the height of the rectangle.
#[inline(always)]
pub(crate) fn vertical_axis_sum(&self) -> U {
self.top + self.bottom
}
/// Both horizontal_axis_sum and vertical_axis_sum as a Size<T>
///
/// **NOTE:** this is *not* the width/height of the rectangle.
#[inline(always)]
#[allow(dead_code)] // Fixes spurious clippy warning: this function is used!
pub(crate) fn sum_axes(&self) -> Size<U> {
Size { width: self.horizontal_axis_sum(), height: self.vertical_axis_sum() }
}
/// The sum of the two fields of the [`Rect`] representing the main axis.
///
/// This is typically used when computing total padding.
///
/// If the [`FlexDirection`] is [`FlexDirection::Row`] or [`FlexDirection::RowReverse`], this is [`Rect::horizontal`].
/// Otherwise, this is [`Rect::vertical`].
#[cfg(feature = "flexbox")]
pub(crate) fn main_axis_sum(&self, direction: FlexDirection) -> U {
if direction.is_row() {
self.horizontal_axis_sum()
} else {
self.vertical_axis_sum()
}
}
/// The sum of the two fields of the [`Rect`] representing the cross axis.
///
/// If the [`FlexDirection`] is [`FlexDirection::Row`] or [`FlexDirection::RowReverse`], this is [`Rect::vertical`].
/// Otherwise, this is [`Rect::horizontal`].
#[cfg(feature = "flexbox")]
pub(crate) fn cross_axis_sum(&self, direction: FlexDirection) -> U {
if direction.is_row() {
self.vertical_axis_sum()
} else {
self.horizontal_axis_sum()
}
}
}
impl<T> Rect<T>
where
T: Copy + Clone,
{
/// The `start` or `top` value of the [`Rect`], from the perspective of the main layout axis
#[cfg(feature = "flexbox")]
pub(crate) fn main_start(&self, direction: FlexDirection) -> T {
if direction.is_row() {
self.left
} else {
self.top
}
}
/// The `end` or `bottom` value of the [`Rect`], from the perspective of the main layout axis
#[cfg(feature = "flexbox")]
pub(crate) fn main_end(&self, direction: FlexDirection) -> T {
if direction.is_row() {
self.right
} else {
self.bottom
}
}
/// The `start` or `top` value of the [`Rect`], from the perspective of the cross layout axis
#[cfg(feature = "flexbox")]
pub(crate) fn cross_start(&self, direction: FlexDirection) -> T {
if direction.is_row() {
self.top
} else {
self.left
}
}
/// The `end` or `bottom` value of the [`Rect`], from the perspective of the main layout axis
#[cfg(feature = "flexbox")]
pub(crate) fn cross_end(&self, direction: FlexDirection) -> T {
if direction.is_row() {
self.bottom
} else {
self.right
}
}
}
impl Rect<f32> {
/// Creates a new Rect with `0.0` as all parameters
pub const ZERO: Rect<f32> = Self { left: 0.0, right: 0.0, top: 0.0, bottom: 0.0 };
/// Creates a new Rect
#[must_use]
pub const fn new(start: f32, end: f32, top: f32, bottom: f32) -> Self {
Self { left: start, right: end, top, bottom }
}
}
/// An abstract "line". Represents any type that has a start and an end
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(default))]
pub struct Line<T> {
/// The start position of a line
pub start: T,
/// The end position of a line
pub end: T,
}
impl<T> Line<T> {
/// Applies the function `f` to both the width and height
///
/// This is used to transform a `Line<T>` into a `Line<R>`.
pub fn map<R, F>(self, f: F) -> Line<R>
where
F: Fn(T) -> R,
{
Line { start: f(self.start), end: f(self.end) }
}
}
impl Line<bool> {
/// A `Line<bool>` with both start and end set to `true`
pub const TRUE: Self = Line { start: true, end: true };
/// A `Line<bool>` with both start and end set to `false`
pub const FALSE: Self = Line { start: false, end: false };
}
impl<T: Add + Copy> Line<T> {
/// Adds the start and end values together and returns the result
pub fn sum(&self) -> <T as Add>::Output {
self.start + self.end
}
}
/// The width and height of a [`Rect`]
#[derive(Debug, Copy, Clone, PartialEq, Eq, Default)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Size<T> {
/// The x extent of the rectangle
pub width: T,
/// The y extent of the rectangle
pub height: T,
}
// Generic Add impl for Size<T> + Size<U> where T + U has an Add impl
impl<U, T: Add<U>> Add<Size<U>> for Size<T> {
type Output = Size<<T as Add<U>>::Output>;
fn add(self, rhs: Size<U>) -> Self::Output {
Size { width: self.width + rhs.width, height: self.height + rhs.height }
}
}
// Generic Sub impl for Size<T> + Size<U> where T + U has an Sub impl
impl<U, T: Sub<U>> Sub<Size<U>> for Size<T> {
type Output = Size<<T as Sub<U>>::Output>;
fn sub(self, rhs: Size<U>) -> Self::Output {
Size { width: self.width - rhs.width, height: self.height - rhs.height }
}
}
// Note: we allow dead_code here as we want to provide a complete API of helpers that is symetrical in all axes,
// but sometimes we only currently have a use for the helper in a single axis
#[allow(dead_code)]
impl<T> Size<T> {
/// Applies the function `f` to both the width and height
///
/// This is used to transform a `Size<T>` into a `Size<R>`.
pub fn map<R, F>(self, f: F) -> Size<R>
where
F: Fn(T) -> R,
{
Size { width: f(self.width), height: f(self.height) }
}
/// Applies the function `f` to the width
pub fn map_width<F>(self, f: F) -> Size<T>
where
F: Fn(T) -> T,
{
Size { width: f(self.width), height: self.height }
}
/// Applies the function `f` to the height
pub fn map_height<F>(self, f: F) -> Size<T>
where
F: Fn(T) -> T,
{
Size { width: self.width, height: f(self.height) }
}
/// Applies the function `f` to both the width and height
/// of this value and another passed value
pub fn zip_map<Other, Ret, Func>(self, other: Size<Other>, f: Func) -> Size<Ret>
where
Func: Fn(T, Other) -> Ret,
{
Size { width: f(self.width, other.width), height: f(self.height, other.height) }
}
/// Sets the extent of the main layout axis
///
/// Whether this is the width or height depends on the `direction` provided
#[cfg(feature = "flexbox")]
pub(crate) fn set_main(&mut self, direction: FlexDirection, value: T) {
if direction.is_row() {
self.width = value
} else {
self.height = value
}
}
/// Sets the extent of the cross layout axis
///
/// Whether this is the width or height depends on the `direction` provided
#[cfg(feature = "flexbox")]
pub(crate) fn set_cross(&mut self, direction: FlexDirection, value: T) {
if direction.is_row() {
self.height = value
} else {
self.width = value
}
}
/// Creates a new value of type Self with the main axis set to value provided
///
/// Whether this is the width or height depends on the `direction` provided
#[cfg(feature = "flexbox")]
pub(crate) fn with_main(self, direction: FlexDirection, value: T) -> Self {
let mut new = self;
if direction.is_row() {
new.width = value
} else {
new.height = value
}
new
}
/// Creates a new value of type Self with the cross axis set to value provided
///
/// Whether this is the width or height depends on the `direction` provided
#[cfg(feature = "flexbox")]
pub(crate) fn with_cross(self, direction: FlexDirection, value: T) -> Self {
let mut new = self;
if direction.is_row() {
new.height = value
} else {
new.width = value
}
new
}
/// Creates a new value of type Self with the main axis modified by the callback provided
///
/// Whether this is the width or height depends on the `direction` provided
#[cfg(feature = "flexbox")]
pub(crate) fn map_main(self, direction: FlexDirection, mapper: impl FnOnce(T) -> T) -> Self {
let mut new = self;
if direction.is_row() {
new.width = mapper(new.width);
} else {
new.height = mapper(new.height);
}
new
}
/// Creates a new value of type Self with the cross axis modified by the callback provided
///
/// Whether this is the width or height depends on the `direction` provided
#[cfg(feature = "flexbox")]
pub(crate) fn map_cross(self, direction: FlexDirection, mapper: impl FnOnce(T) -> T) -> Self {
let mut new = self;
if direction.is_row() {
new.height = mapper(new.height);
} else {
new.width = mapper(new.width);
}
new
}
/// Gets the extent of the main layout axis
///
/// Whether this is the width or height depends on the `direction` provided
#[cfg(feature = "flexbox")]
pub(crate) fn main(self, direction: FlexDirection) -> T {
if direction.is_row() {
self.width
} else {
self.height
}
}
/// Gets the extent of the cross layout axis
///
/// Whether this is the width or height depends on the `direction` provided
#[cfg(feature = "flexbox")]
pub(crate) fn cross(self, direction: FlexDirection) -> T {
if direction.is_row() {
self.height
} else {
self.width
}
}
/// Gets the extent of the specified layout axis
/// Whether this is the width or height depends on the `GridAxis` provided
#[cfg(feature = "grid")]
pub(crate) fn get(self, axis: AbstractAxis) -> T {
match axis {
AbstractAxis::Inline => self.width,
AbstractAxis::Block => self.height,
}
}
/// Sets the extent of the specified layout axis
/// Whether this is the width or height depends on the `GridAxis` provided
#[cfg(feature = "grid")]
pub(crate) fn set(&mut self, axis: AbstractAxis, value: T) {
match axis {
AbstractAxis::Inline => self.width = value,
AbstractAxis::Block => self.height = value,
}
}
}
impl Size<f32> {
/// A [`Size`] with zero width and height
pub const ZERO: Size<f32> = Self { width: 0.0, height: 0.0 };
/// Applies f32_max to each component separately
#[inline(always)]
pub fn f32_max(self, rhs: Size<f32>) -> Size<f32> {
Size { width: f32_max(self.width, rhs.width), height: f32_max(self.height, rhs.height) }
}
/// Applies f32_min to each component separately
#[inline(always)]
pub fn f32_min(self, rhs: Size<f32>) -> Size<f32> {
Size { width: f32_min(self.width, rhs.width), height: f32_min(self.height, rhs.height) }
}
/// Return true if both width and height are greater than 0 else false
#[inline(always)]
pub fn has_non_zero_area(self) -> bool {
self.width > 0.0 && self.height > 0.0
}
}
impl Size<Option<f32>> {
/// A [`Size`] with `None` width and height
pub const NONE: Size<Option<f32>> = Self { width: None, height: None };
/// A [`Size<Option<f32>>`] with `Some(width)` and `Some(height)` as parameters
#[must_use]
pub const fn new(width: f32, height: f32) -> Self {
Size { width: Some(width), height: Some(height) }
}
/// Applies aspect_ratio (if one is supplied) to the Size:
/// - If width is `Some` but height is `None`, then height is computed from width and aspect_ratio
/// - If height is `Some` but width is `None`, then width is computed from height and aspect_ratio
///
/// If aspect_ratio is `None` then this function simply returns self.
pub fn maybe_apply_aspect_ratio(self, aspect_ratio: Option<f32>) -> Size<Option<f32>> {
match aspect_ratio {
Some(ratio) => match (self.width, self.height) {
(Some(width), None) => Size { width: Some(width), height: Some(width / ratio) },
(None, Some(height)) => Size { width: Some(height * ratio), height: Some(height) },
_ => self,
},
None => self,
}
}
}
impl<T> Size<Option<T>> {
/// Performs Option::unwrap_or on each component separately
pub fn unwrap_or(self, alt: Size<T>) -> Size<T> {
Size { width: self.width.unwrap_or(alt.width), height: self.height.unwrap_or(alt.height) }
}
/// Performs Option::or on each component separately
pub fn or(self, alt: Size<Option<T>>) -> Size<Option<T>> {
Size { width: self.width.or(alt.width), height: self.height.or(alt.height) }
}
/// Return true if both components are Some, else false.
#[inline(always)]
pub fn both_axis_defined(&self) -> bool {
self.width.is_some() && self.height.is_some()
}
}
impl Size<Dimension> {
/// Generates a [`Size<Dimension>`] using [`Dimension::Length`] values
#[must_use]
pub const fn from_lengths(width: f32, height: f32) -> Self {
Size { width: Dimension::Length(width), height: Dimension::Length(height) }
}
/// Generates a [`Size<Dimension>`] using [`Dimension::Percent`] values
#[must_use]
pub const fn from_percent(width: f32, height: f32) -> Self {
Size { width: Dimension::Percent(width), height: Dimension::Percent(height) }
}
}
/// A 2-dimensional coordinate.
///
/// When used in association with a [`Rect`], represents the top-left corner.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Default)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Point<T> {
/// The x-coordinate
pub x: T,
/// The y-coordinate
pub y: T,
}
impl Point<f32> {
/// A [`Point`] with values (0,0), representing the origin
pub const ZERO: Self = Self { x: 0.0, y: 0.0 };
}
impl Point<Option<f32>> {
/// A [`Point`] with values (None, None)
pub const NONE: Self = Self { x: None, y: None };
}
// Generic Add impl for Point<T> + Point<U> where T + U has an Add impl
impl<U, T: Add<U>> Add<Point<U>> for Point<T> {
type Output = Point<<T as Add<U>>::Output>;
fn add(self, rhs: Point<U>) -> Self::Output {
Point { x: self.x + rhs.x, y: self.y + rhs.y }
}
}
impl<T> Point<T> {
/// Applies the function `f` to both the x and y
///
/// This is used to transform a `Point<T>` into a `Point<R>`.
pub fn map<R, F>(self, f: F) -> Point<R>
where
F: Fn(T) -> R,
{
Point { x: f(self.x), y: f(self.y) }
}
/// Gets the extent of the specified layout axis
/// Whether this is the width or height depends on the `GridAxis` provided
#[cfg(feature = "grid")]
pub fn get(self, axis: AbstractAxis) -> T {
match axis {
AbstractAxis::Inline => self.x,
AbstractAxis::Block => self.y,
}
}
/// Swap x and y components
pub fn transpose(self) -> Point<T> {
Point { x: self.y, y: self.x }
}
/// Sets the extent of the specified layout axis
/// Whether this is the width or height depends on the `GridAxis` provided
#[cfg(feature = "grid")]
pub fn set(&mut self, axis: AbstractAxis, value: T) {
match axis {
AbstractAxis::Inline => self.x = value,
AbstractAxis::Block => self.y = value,
}
}
/// Gets the component in the main layout axis
///
/// Whether this is the x or y depends on the `direction` provided
#[cfg(feature = "flexbox")]
pub(crate) fn main(self, direction: FlexDirection) -> T {
if direction.is_row() {
self.x
} else {
self.y
}
}
/// Gets the component in the cross layout axis
///
/// Whether this is the x or y depends on the `direction` provided
#[cfg(feature = "flexbox")]
pub(crate) fn cross(self, direction: FlexDirection) -> T {
if direction.is_row() {
self.y
} else {
self.x
}
}
}
impl<T> From<Point<T>> for Size<T> {
fn from(value: Point<T>) -> Self {
Size { width: value.x, height: value.y }
}
}
/// Generic struct which holds a "min" value and a "max" value
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct MinMax<Min, Max> {
/// The value representing the minimum
pub min: Min,
/// The value representing the maximum
pub max: Max,
}