tiff/decoder/
image.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
use super::ifd::{Directory, Value};
use super::stream::{ByteOrder, DeflateReader, LZWReader, PackBitsReader};
use super::tag_reader::TagReader;
use super::{fp_predict_f32, fp_predict_f64, DecodingBuffer, Limits};
use super::{stream::SmartReader, ChunkType};
use crate::tags::{
    CompressionMethod, PhotometricInterpretation, PlanarConfiguration, Predictor, SampleFormat, Tag,
};
use crate::{ColorType, TiffError, TiffFormatError, TiffResult, TiffUnsupportedError, UsageError};
use std::convert::TryFrom;
use std::io::{self, Cursor, Read, Seek};
use std::sync::Arc;

#[derive(Debug)]
pub(crate) struct StripDecodeState {
    pub rows_per_strip: u32,
}

#[derive(Debug)]
/// Computed values useful for tile decoding
pub(crate) struct TileAttributes {
    pub image_width: usize,
    pub image_height: usize,

    pub tile_width: usize,
    pub tile_length: usize,
}

impl TileAttributes {
    pub fn tiles_across(&self) -> usize {
        (self.image_width + self.tile_width - 1) / self.tile_width
    }
    pub fn tiles_down(&self) -> usize {
        (self.image_height + self.tile_length - 1) / self.tile_length
    }
    fn padding_right(&self) -> usize {
        (self.tile_width - self.image_width % self.tile_width) % self.tile_width
    }
    fn padding_down(&self) -> usize {
        (self.tile_length - self.image_height % self.tile_length) % self.tile_length
    }
    pub fn get_padding(&self, tile: usize) -> (usize, usize) {
        let row = tile / self.tiles_across();
        let column = tile % self.tiles_across();

        let padding_right = if column == self.tiles_across() - 1 {
            self.padding_right()
        } else {
            0
        };

        let padding_down = if row == self.tiles_down() - 1 {
            self.padding_down()
        } else {
            0
        };

        (padding_right, padding_down)
    }
}

#[derive(Debug)]
pub(crate) struct Image {
    pub ifd: Option<Directory>,
    pub width: u32,
    pub height: u32,
    pub bits_per_sample: u8,
    #[allow(unused)]
    pub samples: u16,
    pub sample_format: Vec<SampleFormat>,
    pub photometric_interpretation: PhotometricInterpretation,
    pub compression_method: CompressionMethod,
    pub predictor: Predictor,
    pub jpeg_tables: Option<Arc<Vec<u8>>>,
    pub chunk_type: ChunkType,
    pub planar_config: PlanarConfiguration,
    pub strip_decoder: Option<StripDecodeState>,
    pub tile_attributes: Option<TileAttributes>,
    pub chunk_offsets: Vec<u64>,
    pub chunk_bytes: Vec<u64>,
}

impl Image {
    pub fn from_reader<R: Read + Seek>(
        reader: &mut SmartReader<R>,
        ifd: Directory,
        limits: &Limits,
        bigtiff: bool,
    ) -> TiffResult<Image> {
        let mut tag_reader = TagReader {
            reader,
            limits,
            ifd: &ifd,
            bigtiff,
        };

        let width = tag_reader.require_tag(Tag::ImageWidth)?.into_u32()?;
        let height = tag_reader.require_tag(Tag::ImageLength)?.into_u32()?;
        if width == 0 || height == 0 {
            return Err(TiffError::FormatError(TiffFormatError::InvalidDimensions(
                width, height,
            )));
        }

        let photometric_interpretation = tag_reader
            .find_tag(Tag::PhotometricInterpretation)?
            .map(Value::into_u16)
            .transpose()?
            .and_then(PhotometricInterpretation::from_u16)
            .ok_or(TiffUnsupportedError::UnknownInterpretation)?;

        // Try to parse both the compression method and the number, format, and bits of the included samples.
        // If they are not explicitly specified, those tags are reset to their default values and not carried from previous images.
        let compression_method = match tag_reader.find_tag(Tag::Compression)? {
            Some(val) => CompressionMethod::from_u16_exhaustive(val.into_u16()?),
            None => CompressionMethod::None,
        };

        let jpeg_tables = if compression_method == CompressionMethod::ModernJPEG
            && ifd.contains_key(&Tag::JPEGTables)
        {
            let vec = tag_reader
                .find_tag(Tag::JPEGTables)?
                .unwrap()
                .into_u8_vec()?;
            if vec.len() < 2 {
                return Err(TiffError::FormatError(
                    TiffFormatError::InvalidTagValueType(Tag::JPEGTables),
                ));
            }

            Some(Arc::new(vec))
        } else {
            None
        };

        let samples: u16 = tag_reader
            .find_tag(Tag::SamplesPerPixel)?
            .map(Value::into_u16)
            .transpose()?
            .unwrap_or(1);
        if samples == 0 {
            return Err(TiffFormatError::SamplesPerPixelIsZero.into());
        }

        let sample_format = match tag_reader.find_tag_uint_vec(Tag::SampleFormat)? {
            Some(vals) => {
                let sample_format: Vec<_> = vals
                    .into_iter()
                    .map(SampleFormat::from_u16_exhaustive)
                    .collect();

                // TODO: for now, only homogenous formats across samples are supported.
                if !sample_format.windows(2).all(|s| s[0] == s[1]) {
                    return Err(TiffUnsupportedError::UnsupportedSampleFormat(sample_format).into());
                }

                sample_format
            }
            None => vec![SampleFormat::Uint],
        };

        let bits_per_sample: Vec<u8> = tag_reader
            .find_tag_uint_vec(Tag::BitsPerSample)?
            .unwrap_or_else(|| vec![1]);

        // Technically bits_per_sample.len() should be *equal* to samples, but libtiff also allows
        // it to be a single value that applies to all samples.
        if bits_per_sample.len() != samples.into() && bits_per_sample.len() != 1 {
            return Err(TiffError::FormatError(
                TiffFormatError::InconsistentSizesEncountered,
            ));
        }

        // This library (and libtiff) do not support mixed sample formats.
        if bits_per_sample.iter().any(|&b| b != bits_per_sample[0]) {
            return Err(TiffUnsupportedError::InconsistentBitsPerSample(bits_per_sample).into());
        }

        let predictor = tag_reader
            .find_tag(Tag::Predictor)?
            .map(Value::into_u16)
            .transpose()?
            .map(|p| {
                Predictor::from_u16(p)
                    .ok_or(TiffError::FormatError(TiffFormatError::UnknownPredictor(p)))
            })
            .transpose()?
            .unwrap_or(Predictor::None);

        let planar_config = tag_reader
            .find_tag(Tag::PlanarConfiguration)?
            .map(Value::into_u16)
            .transpose()?
            .map(|p| {
                PlanarConfiguration::from_u16(p).ok_or(TiffError::FormatError(
                    TiffFormatError::UnknownPlanarConfiguration(p),
                ))
            })
            .transpose()?
            .unwrap_or(PlanarConfiguration::Chunky);

        let planes = match planar_config {
            PlanarConfiguration::Chunky => 1,
            PlanarConfiguration::Planar => samples,
        };

        let chunk_type;
        let chunk_offsets;
        let chunk_bytes;
        let strip_decoder;
        let tile_attributes;
        match (
            ifd.contains_key(&Tag::StripByteCounts),
            ifd.contains_key(&Tag::StripOffsets),
            ifd.contains_key(&Tag::TileByteCounts),
            ifd.contains_key(&Tag::TileOffsets),
        ) {
            (true, true, false, false) => {
                chunk_type = ChunkType::Strip;

                chunk_offsets = tag_reader
                    .find_tag(Tag::StripOffsets)?
                    .unwrap()
                    .into_u64_vec()?;
                chunk_bytes = tag_reader
                    .find_tag(Tag::StripByteCounts)?
                    .unwrap()
                    .into_u64_vec()?;
                let rows_per_strip = tag_reader
                    .find_tag(Tag::RowsPerStrip)?
                    .map(Value::into_u32)
                    .transpose()?
                    .unwrap_or(height);
                strip_decoder = Some(StripDecodeState { rows_per_strip });
                tile_attributes = None;

                if chunk_offsets.len() != chunk_bytes.len()
                    || rows_per_strip == 0
                    || u32::try_from(chunk_offsets.len())?
                        != (height.saturating_sub(1) / rows_per_strip + 1) * planes as u32
                {
                    return Err(TiffError::FormatError(
                        TiffFormatError::InconsistentSizesEncountered,
                    ));
                }
            }
            (false, false, true, true) => {
                chunk_type = ChunkType::Tile;

                let tile_width =
                    usize::try_from(tag_reader.require_tag(Tag::TileWidth)?.into_u32()?)?;
                let tile_length =
                    usize::try_from(tag_reader.require_tag(Tag::TileLength)?.into_u32()?)?;

                if tile_width == 0 {
                    return Err(TiffFormatError::InvalidTagValueType(Tag::TileWidth).into());
                } else if tile_length == 0 {
                    return Err(TiffFormatError::InvalidTagValueType(Tag::TileLength).into());
                }

                strip_decoder = None;
                tile_attributes = Some(TileAttributes {
                    image_width: usize::try_from(width)?,
                    image_height: usize::try_from(height)?,
                    tile_width,
                    tile_length,
                });
                chunk_offsets = tag_reader
                    .find_tag(Tag::TileOffsets)?
                    .unwrap()
                    .into_u64_vec()?;
                chunk_bytes = tag_reader
                    .find_tag(Tag::TileByteCounts)?
                    .unwrap()
                    .into_u64_vec()?;

                let tile = tile_attributes.as_ref().unwrap();
                if chunk_offsets.len() != chunk_bytes.len()
                    || chunk_offsets.len()
                        != tile.tiles_down() * tile.tiles_across() * planes as usize
                {
                    return Err(TiffError::FormatError(
                        TiffFormatError::InconsistentSizesEncountered,
                    ));
                }
            }
            (_, _, _, _) => {
                return Err(TiffError::FormatError(
                    TiffFormatError::StripTileTagConflict,
                ))
            }
        };

        Ok(Image {
            ifd: Some(ifd),
            width,
            height,
            bits_per_sample: bits_per_sample[0],
            samples,
            sample_format,
            photometric_interpretation,
            compression_method,
            jpeg_tables,
            predictor,
            chunk_type,
            planar_config,
            strip_decoder,
            tile_attributes,
            chunk_offsets,
            chunk_bytes,
        })
    }

    pub(crate) fn colortype(&self) -> TiffResult<ColorType> {
        match self.photometric_interpretation {
            PhotometricInterpretation::RGB => match self.samples {
                3 => Ok(ColorType::RGB(self.bits_per_sample)),
                4 => Ok(ColorType::RGBA(self.bits_per_sample)),
                // FIXME: We should _ignore_ other components. In particular:
                // > Beware of extra components. Some TIFF files may have more components per pixel
                // than you think. A Baseline TIFF reader must skip over them gracefully,using the
                // values of the SamplesPerPixel and BitsPerSample fields.
                // > -- TIFF 6.0 Specification, Section 7, Additional Baseline requirements.
                _ => Err(TiffError::UnsupportedError(
                    TiffUnsupportedError::InterpretationWithBits(
                        self.photometric_interpretation,
                        vec![self.bits_per_sample; self.samples as usize],
                    ),
                )),
            },
            PhotometricInterpretation::CMYK => match self.samples {
                4 => Ok(ColorType::CMYK(self.bits_per_sample)),
                _ => Err(TiffError::UnsupportedError(
                    TiffUnsupportedError::InterpretationWithBits(
                        self.photometric_interpretation,
                        vec![self.bits_per_sample; self.samples as usize],
                    ),
                )),
            },
            PhotometricInterpretation::YCbCr => match self.samples {
                3 => Ok(ColorType::YCbCr(self.bits_per_sample)),
                _ => Err(TiffError::UnsupportedError(
                    TiffUnsupportedError::InterpretationWithBits(
                        self.photometric_interpretation,
                        vec![self.bits_per_sample; self.samples as usize],
                    ),
                )),
            },
            PhotometricInterpretation::BlackIsZero | PhotometricInterpretation::WhiteIsZero
                if self.samples == 1 =>
            {
                Ok(ColorType::Gray(self.bits_per_sample))
            }

            // TODO: this is bad we should not fail at this point
            _ => Err(TiffError::UnsupportedError(
                TiffUnsupportedError::InterpretationWithBits(
                    self.photometric_interpretation,
                    vec![self.bits_per_sample; self.samples as usize],
                ),
            )),
        }
    }

    fn create_reader<'r, R: 'r + Read>(
        reader: R,
        photometric_interpretation: PhotometricInterpretation,
        compression_method: CompressionMethod,
        compressed_length: u64,
        jpeg_tables: Option<&[u8]>,
    ) -> TiffResult<Box<dyn Read + 'r>> {
        Ok(match compression_method {
            CompressionMethod::None => Box::new(reader),
            CompressionMethod::LZW => {
                Box::new(LZWReader::new(reader, usize::try_from(compressed_length)?))
            }
            CompressionMethod::PackBits => Box::new(PackBitsReader::new(reader, compressed_length)),
            CompressionMethod::Deflate | CompressionMethod::OldDeflate => {
                Box::new(DeflateReader::new(reader))
            }
            CompressionMethod::ModernJPEG => {
                if jpeg_tables.is_some() && compressed_length < 2 {
                    return Err(TiffError::FormatError(
                        TiffFormatError::InvalidTagValueType(Tag::JPEGTables),
                    ));
                }

                // Construct new jpeg_reader wrapping a SmartReader.
                //
                // JPEG compression in TIFF allows saving quantization and/or huffman tables in one
                // central location. These `jpeg_tables` are simply prepended to the remaining jpeg image data.
                // Because these `jpeg_tables` start with a `SOI` (HEX: `0xFFD8`) or __start of image__ marker
                // which is also at the beginning of the remaining JPEG image data and would
                // confuse the JPEG renderer, one of these has to be taken off. In this case the first two
                // bytes of the remaining JPEG data is removed because it follows `jpeg_tables`.
                // Similary, `jpeg_tables` ends with a `EOI` (HEX: `0xFFD9`) or __end of image__ marker,
                // this has to be removed as well (last two bytes of `jpeg_tables`).
                let jpeg_reader = match jpeg_tables {
                    Some(jpeg_tables) => {
                        let mut reader = reader.take(compressed_length);
                        reader.read_exact(&mut [0; 2])?;

                        Box::new(
                            Cursor::new(&jpeg_tables[..jpeg_tables.len() - 2])
                                .chain(reader.take(compressed_length)),
                        ) as Box<dyn Read>
                    }
                    None => Box::new(reader.take(compressed_length)),
                };

                let mut decoder = jpeg::Decoder::new(jpeg_reader);

                match photometric_interpretation {
                    PhotometricInterpretation::RGB => {
                        decoder.set_color_transform(jpeg::ColorTransform::RGB)
                    }
                    PhotometricInterpretation::WhiteIsZero => {
                        decoder.set_color_transform(jpeg::ColorTransform::None)
                    }
                    PhotometricInterpretation::BlackIsZero => {
                        decoder.set_color_transform(jpeg::ColorTransform::None)
                    }
                    PhotometricInterpretation::TransparencyMask => {
                        decoder.set_color_transform(jpeg::ColorTransform::None)
                    }
                    PhotometricInterpretation::CMYK => {
                        decoder.set_color_transform(jpeg::ColorTransform::CMYK)
                    }
                    PhotometricInterpretation::YCbCr => {
                        decoder.set_color_transform(jpeg::ColorTransform::YCbCr)
                    }
                    photometric_interpretation => {
                        return Err(TiffError::UnsupportedError(
                            TiffUnsupportedError::UnsupportedInterpretation(
                                photometric_interpretation,
                            ),
                        ));
                    }
                }

                let data = decoder.decode()?;

                Box::new(Cursor::new(data))
            }
            method => {
                return Err(TiffError::UnsupportedError(
                    TiffUnsupportedError::UnsupportedCompressionMethod(method),
                ))
            }
        })
    }

    /// Samples per pixel within chunk.
    ///
    /// In planar config, samples are stored in separate strips/chunks, also called bands.
    ///
    /// Example with `bits_per_sample = [8, 8, 8]` and `PhotometricInterpretation::RGB`:
    /// * `PlanarConfiguration::Chunky` -> 3 (RGBRGBRGB...)
    /// * `PlanarConfiguration::Planar` -> 1 (RRR...) (GGG...) (BBB...)
    pub(crate) fn samples_per_pixel(&self) -> usize {
        match self.planar_config {
            PlanarConfiguration::Chunky => self.samples.into(),
            PlanarConfiguration::Planar => 1,
        }
    }

    /// Number of strips per pixel.
    pub(crate) fn strips_per_pixel(&self) -> usize {
        match self.planar_config {
            PlanarConfiguration::Chunky => 1,
            PlanarConfiguration::Planar => self.samples.into(),
        }
    }

    pub(crate) fn chunk_file_range(&self, chunk: u32) -> TiffResult<(u64, u64)> {
        let file_offset = self
            .chunk_offsets
            .get(chunk as usize)
            .ok_or(TiffError::FormatError(
                TiffFormatError::InconsistentSizesEncountered,
            ))?;

        let compressed_bytes =
            self.chunk_bytes
                .get(chunk as usize)
                .ok_or(TiffError::FormatError(
                    TiffFormatError::InconsistentSizesEncountered,
                ))?;

        Ok((*file_offset, *compressed_bytes))
    }

    pub(crate) fn chunk_dimensions(&self) -> TiffResult<(u32, u32)> {
        match self.chunk_type {
            ChunkType::Strip => {
                let strip_attrs = self.strip_decoder.as_ref().unwrap();
                Ok((self.width, strip_attrs.rows_per_strip))
            }
            ChunkType::Tile => {
                let tile_attrs = self.tile_attributes.as_ref().unwrap();
                Ok((
                    u32::try_from(tile_attrs.tile_width)?,
                    u32::try_from(tile_attrs.tile_length)?,
                ))
            }
        }
    }

    pub(crate) fn chunk_data_dimensions(&self, chunk_index: u32) -> TiffResult<(u32, u32)> {
        let dims = self.chunk_dimensions()?;

        match self.chunk_type {
            ChunkType::Strip => {
                let strip_attrs = self.strip_decoder.as_ref().unwrap();
                let strips_per_band =
                    self.height.saturating_sub(1) / strip_attrs.rows_per_strip + 1;
                let strip_height_without_padding = (chunk_index % strips_per_band)
                    .checked_mul(dims.1)
                    .and_then(|x| self.height.checked_sub(x))
                    .ok_or(TiffError::UsageError(UsageError::InvalidChunkIndex(
                        chunk_index,
                    )))?;

                // Ignore potential vertical padding on the bottommost strip
                let strip_height = dims.1.min(strip_height_without_padding);

                Ok((dims.0, strip_height))
            }
            ChunkType::Tile => {
                let tile_attrs = self.tile_attributes.as_ref().unwrap();
                let (padding_right, padding_down) = tile_attrs.get_padding(chunk_index as usize);

                let tile_width = tile_attrs.tile_width - padding_right;
                let tile_length = tile_attrs.tile_length - padding_down;

                Ok((u32::try_from(tile_width)?, u32::try_from(tile_length)?))
            }
        }
    }

    pub(crate) fn expand_chunk(
        &self,
        reader: impl Read,
        mut buffer: DecodingBuffer,
        output_width: usize,
        byte_order: ByteOrder,
        chunk_index: u32,
        limits: &Limits,
    ) -> TiffResult<()> {
        // Validate that the provided buffer is of the expected type.
        let color_type = self.colortype()?;
        match (color_type, &buffer) {
            (ColorType::RGB(n), _)
            | (ColorType::RGBA(n), _)
            | (ColorType::CMYK(n), _)
            | (ColorType::YCbCr(n), _)
            | (ColorType::Gray(n), _)
                if usize::from(n) == buffer.byte_len() * 8 => {}
            (ColorType::Gray(n), DecodingBuffer::U8(_)) if n < 8 => match self.predictor {
                Predictor::None => {}
                Predictor::Horizontal => {
                    return Err(TiffError::UnsupportedError(
                        TiffUnsupportedError::HorizontalPredictor(color_type),
                    ))
                }
                Predictor::FloatingPoint => {
                    return Err(TiffError::UnsupportedError(
                        TiffUnsupportedError::FloatingPointPredictor(color_type),
                    ));
                }
            },
            (type_, _) => {
                return Err(TiffError::UnsupportedError(
                    TiffUnsupportedError::UnsupportedColorType(type_),
                ))
            }
        }

        // Validate that the predictor is supported for the sample type.
        match (self.predictor, &buffer) {
            (Predictor::Horizontal, DecodingBuffer::F32(_))
            | (Predictor::Horizontal, DecodingBuffer::F64(_)) => {
                return Err(TiffError::UnsupportedError(
                    TiffUnsupportedError::HorizontalPredictor(color_type),
                ));
            }
            (Predictor::FloatingPoint, DecodingBuffer::F32(_))
            | (Predictor::FloatingPoint, DecodingBuffer::F64(_)) => {}
            (Predictor::FloatingPoint, _) => {
                return Err(TiffError::UnsupportedError(
                    TiffUnsupportedError::FloatingPointPredictor(color_type),
                ));
            }
            _ => {}
        }

        let compressed_bytes =
            self.chunk_bytes
                .get(chunk_index as usize)
                .ok_or(TiffError::FormatError(
                    TiffFormatError::InconsistentSizesEncountered,
                ))?;
        if *compressed_bytes > limits.intermediate_buffer_size as u64 {
            return Err(TiffError::LimitsExceeded);
        }

        let byte_len = buffer.byte_len();
        let compression_method = self.compression_method;
        let photometric_interpretation = self.photometric_interpretation;
        let predictor = self.predictor;
        let samples = self.samples_per_pixel();

        let chunk_dims = self.chunk_dimensions()?;
        let data_dims = self.chunk_data_dimensions(chunk_index)?;

        let padding_right = chunk_dims.0 - data_dims.0;

        let mut reader = Self::create_reader(
            reader,
            photometric_interpretation,
            compression_method,
            *compressed_bytes,
            self.jpeg_tables.as_deref().map(|a| &**a),
        )?;

        if output_width == data_dims.0 as usize && padding_right == 0 {
            let total_samples = data_dims.0 as usize * data_dims.1 as usize * samples;
            let tile = &mut buffer.as_bytes_mut()[..total_samples * byte_len];
            reader.read_exact(tile)?;

            for row in 0..data_dims.1 as usize {
                let row_start = row * output_width * samples;
                let row_end = (row + 1) * output_width * samples;
                let row = buffer.subrange(row_start..row_end);
                super::fix_endianness_and_predict(row, samples, byte_order, predictor);
            }
            if photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
                super::invert_colors(&mut buffer.subrange(0..total_samples), color_type);
            }
        } else if padding_right > 0 && self.predictor == Predictor::FloatingPoint {
            // The floating point predictor shuffles the padding bytes into the encoded output, so
            // this case is handled specially when needed.
            let mut encoded = vec![0u8; chunk_dims.0 as usize * samples * byte_len];

            for row in 0..data_dims.1 as usize {
                let row_start = row * output_width * samples;
                let row_end = row_start + data_dims.0 as usize * samples;

                reader.read_exact(&mut encoded)?;
                match buffer.subrange(row_start..row_end) {
                    DecodingBuffer::F32(buf) => fp_predict_f32(&mut encoded, buf, samples),
                    DecodingBuffer::F64(buf) => fp_predict_f64(&mut encoded, buf, samples),
                    _ => unreachable!(),
                }
                if photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
                    super::invert_colors(&mut buffer.subrange(row_start..row_end), color_type);
                }
            }
        } else {
            for row in 0..data_dims.1 as usize {
                let row_start = row * output_width * samples;
                let row_end = row_start + data_dims.0 as usize * samples;

                let row = &mut buffer.as_bytes_mut()[(row_start * byte_len)..(row_end * byte_len)];
                reader.read_exact(row)?;

                // Skip horizontal padding
                if padding_right > 0 {
                    let len = u64::try_from(padding_right as usize * samples * byte_len)?;
                    io::copy(&mut reader.by_ref().take(len), &mut io::sink())?;
                }

                let mut row = buffer.subrange(row_start..row_end);
                super::fix_endianness_and_predict(row.copy(), samples, byte_order, predictor);
                if photometric_interpretation == PhotometricInterpretation::WhiteIsZero {
                    super::invert_colors(&mut row, color_type);
                }
            }
        }

        Ok(())
    }
}