1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use tiny_skia_path::{NormalizedF32, Scalar};

/// 8-bit type for an alpha value. 255 is 100% opaque, zero is 100% transparent.
pub type AlphaU8 = u8;

/// Represents fully transparent AlphaU8 value.
pub const ALPHA_U8_TRANSPARENT: AlphaU8 = 0x00;

/// Represents fully opaque AlphaU8 value.
pub const ALPHA_U8_OPAQUE: AlphaU8 = 0xFF;

/// Represents fully transparent Alpha value.
pub const ALPHA_TRANSPARENT: NormalizedF32 = NormalizedF32::ZERO;

/// Represents fully opaque Alpha value.
pub const ALPHA_OPAQUE: NormalizedF32 = NormalizedF32::ONE;

/// A 32-bit RGBA color value.
///
/// Byteorder: RGBA (relevant for bytemuck casts)
#[repr(transparent)]
#[derive(Copy, Clone, PartialEq)]
pub struct ColorU8([u8; 4]);

impl ColorU8 {
    /// Creates a new color.
    pub const fn from_rgba(r: u8, g: u8, b: u8, a: u8) -> Self {
        ColorU8([r, g, b, a])
    }

    /// Returns color's red component.
    pub const fn red(self) -> u8 {
        self.0[0]
    }

    /// Returns color's green component.
    pub const fn green(self) -> u8 {
        self.0[1]
    }

    /// Returns color's blue component.
    pub const fn blue(self) -> u8 {
        self.0[2]
    }

    /// Returns color's alpha component.
    pub const fn alpha(self) -> u8 {
        self.0[3]
    }

    /// Check that color is opaque.
    ///
    /// Alpha == 255
    pub fn is_opaque(&self) -> bool {
        self.alpha() == ALPHA_U8_OPAQUE
    }

    /// Converts into a premultiplied color.
    pub fn premultiply(&self) -> PremultipliedColorU8 {
        let a = self.alpha();
        if a != ALPHA_U8_OPAQUE {
            PremultipliedColorU8::from_rgba_unchecked(
                premultiply_u8(self.red(), a),
                premultiply_u8(self.green(), a),
                premultiply_u8(self.blue(), a),
                a,
            )
        } else {
            PremultipliedColorU8::from_rgba_unchecked(self.red(), self.green(), self.blue(), a)
        }
    }
}

impl core::fmt::Debug for ColorU8 {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("ColorU8")
            .field("r", &self.red())
            .field("g", &self.green())
            .field("b", &self.blue())
            .field("a", &self.alpha())
            .finish()
    }
}

/// A 32-bit premultiplied RGBA color value.
///
/// Byteorder: RGBA (relevant for bytemuck casts)
#[repr(transparent)]
#[derive(Copy, Clone, PartialEq)]
pub struct PremultipliedColorU8([u8; 4]);

// Perfectly safe, since [u8; 4] is already Pod.
unsafe impl bytemuck::Zeroable for PremultipliedColorU8 {}
unsafe impl bytemuck::Pod for PremultipliedColorU8 {}

impl PremultipliedColorU8 {
    /// A transparent color.
    pub const TRANSPARENT: Self = PremultipliedColorU8::from_rgba_unchecked(0, 0, 0, 0);

    /// Creates a new premultiplied color.
    ///
    /// RGB components must be <= alpha.
    pub fn from_rgba(r: u8, g: u8, b: u8, a: u8) -> Option<Self> {
        if r <= a && g <= a && b <= a {
            Some(PremultipliedColorU8([r, g, b, a]))
        } else {
            None
        }
    }

    /// Creates a new color.
    pub(crate) const fn from_rgba_unchecked(r: u8, g: u8, b: u8, a: u8) -> Self {
        PremultipliedColorU8([r, g, b, a])
    }

    /// Returns color's red component.
    ///
    /// The value is <= alpha.
    pub const fn red(self) -> u8 {
        self.0[0]
    }

    /// Returns color's green component.
    ///
    /// The value is <= alpha.
    pub const fn green(self) -> u8 {
        self.0[1]
    }

    /// Returns color's blue component.
    ///
    /// The value is <= alpha.
    pub const fn blue(self) -> u8 {
        self.0[2]
    }

    /// Returns color's alpha component.
    pub const fn alpha(self) -> u8 {
        self.0[3]
    }

    /// Check that color is opaque.
    ///
    /// Alpha == 255
    pub fn is_opaque(&self) -> bool {
        self.alpha() == ALPHA_U8_OPAQUE
    }

    /// Returns a demultiplied color.
    pub fn demultiply(&self) -> ColorU8 {
        let alpha = self.alpha();
        if alpha == ALPHA_U8_OPAQUE {
            ColorU8(self.0)
        } else {
            let a = alpha as f64 / 255.0;
            ColorU8::from_rgba(
                (self.red() as f64 / a + 0.5) as u8,
                (self.green() as f64 / a + 0.5) as u8,
                (self.blue() as f64 / a + 0.5) as u8,
                alpha,
            )
        }
    }
}

impl core::fmt::Debug for PremultipliedColorU8 {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("PremultipliedColorU8")
            .field("r", &self.red())
            .field("g", &self.green())
            .field("b", &self.blue())
            .field("a", &self.alpha())
            .finish()
    }
}

/// An RGBA color value, holding four floating point components.
///
/// # Guarantees
///
/// - All values are in 0..=1 range.
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct Color {
    r: NormalizedF32,
    g: NormalizedF32,
    b: NormalizedF32,
    a: NormalizedF32,
}

const NV_ZERO: NormalizedF32 = NormalizedF32::ZERO;
const NV_ONE: NormalizedF32 = NormalizedF32::ONE;

impl Color {
    /// A transparent color.
    pub const TRANSPARENT: Color = Color {
        r: NV_ZERO,
        g: NV_ZERO,
        b: NV_ZERO,
        a: NV_ZERO,
    };
    /// A black color.
    pub const BLACK: Color = Color {
        r: NV_ZERO,
        g: NV_ZERO,
        b: NV_ZERO,
        a: NV_ONE,
    };
    /// A white color.
    pub const WHITE: Color = Color {
        r: NV_ONE,
        g: NV_ONE,
        b: NV_ONE,
        a: NV_ONE,
    };

    /// Creates a new color from 4 components.
    ///
    /// All values must be in 0..=1 range.
    pub fn from_rgba(r: f32, g: f32, b: f32, a: f32) -> Option<Self> {
        Some(Color {
            r: NormalizedF32::new(r)?,
            g: NormalizedF32::new(g)?,
            b: NormalizedF32::new(b)?,
            a: NormalizedF32::new(a)?,
        })
    }

    /// Creates a new color from 4 components.
    ///
    /// u8 will be divided by 255 to get the float component.
    pub fn from_rgba8(r: u8, g: u8, b: u8, a: u8) -> Self {
        Color {
            r: NormalizedF32::new_u8(r),
            g: NormalizedF32::new_u8(g),
            b: NormalizedF32::new_u8(b),
            a: NormalizedF32::new_u8(a),
        }
    }

    /// Returns color's red component.
    ///
    /// The value is guarantee to be in a 0..=1 range.
    pub fn red(&self) -> f32 {
        self.r.get()
    }

    /// Returns color's green component.
    ///
    /// The value is guarantee to be in a 0..=1 range.
    pub fn green(&self) -> f32 {
        self.g.get()
    }

    /// Returns color's blue component.
    ///
    /// The value is guarantee to be in a 0..=1 range.
    pub fn blue(&self) -> f32 {
        self.b.get()
    }

    /// Returns color's alpha component.
    ///
    /// The value is guarantee to be in a 0..=1 range.
    pub fn alpha(&self) -> f32 {
        self.a.get()
    }

    /// Sets the red component value.
    ///
    /// The new value will be clipped to the 0..=1 range.
    pub fn set_red(&mut self, c: f32) {
        self.r = NormalizedF32::new_clamped(c);
    }

    /// Sets the green component value.
    ///
    /// The new value will be clipped to the 0..=1 range.
    pub fn set_green(&mut self, c: f32) {
        self.g = NormalizedF32::new_clamped(c);
    }

    /// Sets the blue component value.
    ///
    /// The new value will be clipped to the 0..=1 range.
    pub fn set_blue(&mut self, c: f32) {
        self.b = NormalizedF32::new_clamped(c);
    }

    /// Sets the alpha component value.
    ///
    /// The new value will be clipped to the 0..=1 range.
    pub fn set_alpha(&mut self, c: f32) {
        self.a = NormalizedF32::new_clamped(c);
    }

    /// Shifts color's opacity.
    ///
    /// Essentially, multiplies color's alpha by opacity.
    ///
    /// `opacity` will be clamped to the 0..=1 range first.
    /// The final alpha will also be clamped.
    pub fn apply_opacity(&mut self, opacity: f32) {
        self.a = NormalizedF32::new_clamped(self.a.get() * opacity.bound(0.0, 1.0));
    }

    /// Check that color is opaque.
    ///
    /// Alpha == 1.0
    pub fn is_opaque(&self) -> bool {
        self.a == ALPHA_OPAQUE
    }

    /// Converts into a premultiplied color.
    pub fn premultiply(&self) -> PremultipliedColor {
        if self.is_opaque() {
            PremultipliedColor {
                r: self.r,
                g: self.g,
                b: self.b,
                a: self.a,
            }
        } else {
            PremultipliedColor {
                r: NormalizedF32::new_clamped(self.r.get() * self.a.get()),
                g: NormalizedF32::new_clamped(self.g.get() * self.a.get()),
                b: NormalizedF32::new_clamped(self.b.get() * self.a.get()),
                a: self.a,
            }
        }
    }

    /// Converts into `ColorU8`.
    pub fn to_color_u8(&self) -> ColorU8 {
        let c = color_f32_to_u8(self.r, self.g, self.b, self.a);
        ColorU8::from_rgba(c[0], c[1], c[2], c[3])
    }
}

/// A premultiplied RGBA color value, holding four floating point components.
///
/// # Guarantees
///
/// - All values are in 0..=1 range.
/// - RGB components are <= A.
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct PremultipliedColor {
    r: NormalizedF32,
    g: NormalizedF32,
    b: NormalizedF32,
    a: NormalizedF32,
}

impl PremultipliedColor {
    /// Returns color's red component.
    ///
    /// - The value is guarantee to be in a 0..=1 range.
    /// - The value is <= alpha.
    pub fn red(&self) -> f32 {
        self.r.get()
    }

    /// Returns color's green component.
    ///
    /// - The value is guarantee to be in a 0..=1 range.
    /// - The value is <= alpha.
    pub fn green(&self) -> f32 {
        self.g.get()
    }

    /// Returns color's blue component.
    ///
    /// - The value is guarantee to be in a 0..=1 range.
    /// - The value is <= alpha.
    pub fn blue(&self) -> f32 {
        self.b.get()
    }

    /// Returns color's alpha component.
    ///
    /// - The value is guarantee to be in a 0..=1 range.
    pub fn alpha(&self) -> f32 {
        self.a.get()
    }

    /// Returns a demultiplied color.
    pub fn demultiply(&self) -> Color {
        let a = self.a.get();
        if a == 0.0 {
            Color::TRANSPARENT
        } else {
            Color {
                r: NormalizedF32::new_clamped(self.r.get() / a),
                g: NormalizedF32::new_clamped(self.g.get() / a),
                b: NormalizedF32::new_clamped(self.b.get() / a),
                a: self.a,
            }
        }
    }

    /// Converts into `PremultipliedColorU8`.
    pub fn to_color_u8(&self) -> PremultipliedColorU8 {
        let c = color_f32_to_u8(self.r, self.g, self.b, self.a);
        PremultipliedColorU8::from_rgba_unchecked(c[0], c[1], c[2], c[3])
    }
}

/// Return a*b/255, rounding any fractional bits.
pub fn premultiply_u8(c: u8, a: u8) -> u8 {
    let prod = u32::from(c) * u32::from(a) + 128;
    ((prod + (prod >> 8)) >> 8) as u8
}

fn color_f32_to_u8(
    r: NormalizedF32,
    g: NormalizedF32,
    b: NormalizedF32,
    a: NormalizedF32,
) -> [u8; 4] {
    [
        (r.get() * 255.0 + 0.5) as u8,
        (g.get() * 255.0 + 0.5) as u8,
        (b.get() * 255.0 + 0.5) as u8,
        (a.get() * 255.0 + 0.5) as u8,
    ]
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn premultiply_u8() {
        assert_eq!(
            ColorU8::from_rgba(10, 20, 30, 40).premultiply(),
            PremultipliedColorU8::from_rgba_unchecked(2, 3, 5, 40)
        );
    }

    #[test]
    fn premultiply_u8_opaque() {
        assert_eq!(
            ColorU8::from_rgba(10, 20, 30, 255).premultiply(),
            PremultipliedColorU8::from_rgba_unchecked(10, 20, 30, 255)
        );
    }

    #[test]
    fn demultiply_u8_1() {
        assert_eq!(
            PremultipliedColorU8::from_rgba_unchecked(2, 3, 5, 40).demultiply(),
            ColorU8::from_rgba(13, 19, 32, 40)
        );
    }

    #[test]
    fn demultiply_u8_2() {
        assert_eq!(
            PremultipliedColorU8::from_rgba_unchecked(10, 20, 30, 255).demultiply(),
            ColorU8::from_rgba(10, 20, 30, 255)
        );
    }

    #[test]
    fn demultiply_u8_3() {
        assert_eq!(
            PremultipliedColorU8::from_rgba_unchecked(153, 99, 54, 180).demultiply(),
            ColorU8::from_rgba(217, 140, 77, 180)
        );
    }

    #[test]
    fn bytemuck_casts_rgba() {
        let slice = &[
            PremultipliedColorU8::from_rgba_unchecked(0, 1, 2, 3),
            PremultipliedColorU8::from_rgba_unchecked(10, 11, 12, 13),
        ];
        let bytes: &[u8] = bytemuck::cast_slice(slice);
        assert_eq!(bytes, &[0, 1, 2, 3, 10, 11, 12, 13]);
    }
}