tiny_skia/scan/
hairline.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use core::convert::TryInto;

use tiny_skia_path::{f32x2, PathVerb, SaturateCast, Scalar};

use crate::{IntRect, LineCap, Path, PathSegment, Point, Rect};

use crate::blitter::Blitter;
use crate::fixed_point::{fdot16, fdot6};
use crate::geom::ScreenIntRect;
use crate::line_clipper;
use crate::math::LENGTH_U32_ONE;
use crate::path_geometry;

#[cfg(all(not(feature = "std"), feature = "no-std-float"))]
use tiny_skia_path::NoStdFloat;

const FLOAT_PI: f32 = 3.14159265;

pub type LineProc = fn(&[Point], Option<&ScreenIntRect>, &mut dyn Blitter);

const MAX_CUBIC_SUBDIVIDE_LEVEL: u8 = 9;
const MAX_QUAD_SUBDIVIDE_LEVEL: u8 = 5;

pub fn stroke_path(
    path: &Path,
    line_cap: LineCap,
    clip: &ScreenIntRect,
    blitter: &mut dyn Blitter,
) {
    super::hairline::stroke_path_impl(path, line_cap, clip, hair_line_rgn, blitter)
}

fn hair_line_rgn(points: &[Point], clip: Option<&ScreenIntRect>, blitter: &mut dyn Blitter) {
    let max = 32767.0;
    let fixed_bounds = Rect::from_ltrb(-max, -max, max, max).unwrap();

    let clip_bounds = clip.map(|c| c.to_rect());

    for i in 0..points.len() - 1 {
        let mut pts = [Point::zero(); 2];

        // We have to pre-clip the line to fit in a Fixed, so we just chop the line.
        if !line_clipper::intersect(&[points[i], points[i + 1]], &fixed_bounds, &mut pts) {
            continue;
        }

        if let Some(clip_bounds) = clip_bounds {
            let tmp = pts.clone();
            // Perform a clip in scalar space, so we catch huge values which might
            // be missed after we convert to FDot6 (overflow).
            if !line_clipper::intersect(&tmp, &clip_bounds, &mut pts) {
                continue;
            }
        }

        let mut x0 = fdot6::from_f32(pts[0].x);
        let mut y0 = fdot6::from_f32(pts[0].y);
        let mut x1 = fdot6::from_f32(pts[1].x);
        let mut y1 = fdot6::from_f32(pts[1].y);

        debug_assert!(fdot6::can_convert_to_fdot16(x0));
        debug_assert!(fdot6::can_convert_to_fdot16(y0));
        debug_assert!(fdot6::can_convert_to_fdot16(x1));
        debug_assert!(fdot6::can_convert_to_fdot16(y1));

        let dx = x1 - x0;
        let dy = y1 - y0;

        if dx.abs() > dy.abs() {
            // mostly horizontal

            if x0 > x1 {
                // we want to go left-to-right
                core::mem::swap(&mut x0, &mut x1);
                core::mem::swap(&mut y0, &mut y1);
            }

            let mut ix0 = fdot6::round(x0);
            let ix1 = fdot6::round(x1);
            if ix0 == ix1 {
                // too short to draw
                continue;
            }

            let slope = fdot16::div(dy, dx);
            #[allow(clippy::precedence)]
            let mut start_y = fdot6::to_fdot16(y0) + (slope * ((32 - x0) & 63) >> 6);

            // In some cases, probably due to precision/rounding issues,
            // `start_y` can become equal to the image height,
            // which will lead to panic, because we would be accessing pixels outside
            // the current memory buffer.
            // This is tiny-skia specific issue. Skia handles this part differently.
            let max_y = if let Some(clip_bounds) = clip_bounds {
                fdot16::from_f32(clip_bounds.bottom())
            } else {
                i32::MAX
            };

            debug_assert!(ix0 < ix1);
            loop {
                if ix0 >= 0 && start_y >= 0 && start_y < max_y {
                    blitter.blit_h(ix0 as u32, (start_y >> 16) as u32, LENGTH_U32_ONE);
                }

                start_y += slope;
                ix0 += 1;
                if ix0 >= ix1 {
                    break;
                }
            }
        } else {
            // mostly vertical

            if y0 > y1 {
                // we want to go top-to-bottom
                core::mem::swap(&mut x0, &mut x1);
                core::mem::swap(&mut y0, &mut y1);
            }

            let mut iy0 = fdot6::round(y0);
            let iy1 = fdot6::round(y1);
            if iy0 == iy1 {
                // too short to draw
                continue;
            }

            let slope = fdot16::div(dx, dy);
            #[allow(clippy::precedence)]
            let mut start_x = fdot6::to_fdot16(x0) + (slope * ((32 - y0) & 63) >> 6);

            debug_assert!(iy0 < iy1);
            loop {
                if start_x >= 0 && iy0 >= 0 {
                    blitter.blit_h((start_x >> 16) as u32, iy0 as u32, LENGTH_U32_ONE);
                }

                start_x += slope;
                iy0 += 1;
                if iy0 >= iy1 {
                    break;
                }
            }
        }
    }
}

pub fn stroke_path_impl(
    path: &Path,
    line_cap: LineCap,
    clip: &ScreenIntRect,
    line_proc: LineProc,
    blitter: &mut dyn Blitter,
) {
    let mut inset_clip = None;
    let mut outset_clip = None;

    {
        let cap_out = if line_cap == LineCap::Butt { 1.0 } else { 2.0 };
        let ibounds = match path
            .bounds()
            .outset(cap_out, cap_out)
            .and_then(|r| r.round_out())
        {
            Some(v) => v,
            None => return,
        };
        if clip.to_int_rect().intersect(&ibounds).is_none() {
            return;
        }

        if !clip.to_int_rect().contains(&ibounds) {
            // We now cache two scalar rects, to use for culling per-segment (e.g. cubic).
            // Since we're hairlining, the "bounds" of the control points isn't necessairly the
            // limit of where a segment can draw (it might draw up to 1 pixel beyond in aa-hairs).
            //
            // Compute the pt-bounds per segment is easy, so we do that, and then inversely adjust
            // the culling bounds so we can just do a straight compare per segment.
            //
            // insetClip is use for quick-accept (i.e. the segment is not clipped), so we inset
            // it from the clip-bounds (since segment bounds can be off by 1).
            //
            // outsetClip is used for quick-reject (i.e. the segment is entirely outside), so we
            // outset it from the clip-bounds.
            match clip.to_int_rect().make_outset(1, 1) {
                Some(v) => outset_clip = Some(v),
                None => return,
            }
            match clip.to_int_rect().inset(1, 1) {
                Some(v) => inset_clip = Some(v),
                None => return,
            }
        }
    }

    let clip = Some(clip);
    let mut prev_verb = PathVerb::Move;
    let mut first_pt = Point::zero();
    let mut last_pt = Point::zero();

    let mut iter = path.segments();
    while let Some(segment) = iter.next() {
        let verb = iter.curr_verb();
        let next_verb = iter.next_verb();
        let last_pt2;
        match segment {
            PathSegment::MoveTo(p) => {
                first_pt = p;
                last_pt = p;
                last_pt2 = p;
            }
            PathSegment::LineTo(p) => {
                let mut points = [last_pt, p];
                if line_cap != LineCap::Butt {
                    extend_pts(line_cap, prev_verb, next_verb, &mut points);
                }

                line_proc(&points, clip, blitter);
                last_pt = p;
                last_pt2 = points[0];
            }
            PathSegment::QuadTo(p0, p1) => {
                let mut points = [last_pt, p0, p1];
                if line_cap != LineCap::Butt {
                    extend_pts(line_cap, prev_verb, next_verb, &mut points);
                }

                hair_quad(
                    &points,
                    clip,
                    inset_clip.as_ref(),
                    outset_clip.as_ref(),
                    compute_quad_level(&points),
                    line_proc,
                    blitter,
                );

                last_pt = p1;
                last_pt2 = points[0];
            }
            PathSegment::CubicTo(p0, p1, p2) => {
                let mut points = [last_pt, p0, p1, p2];
                if line_cap != LineCap::Butt {
                    extend_pts(line_cap, prev_verb, next_verb, &mut points);
                }

                hair_cubic(
                    &points,
                    clip,
                    inset_clip.as_ref(),
                    outset_clip.as_ref(),
                    line_proc,
                    blitter,
                );

                last_pt = p2;
                last_pt2 = points[0];
            }
            PathSegment::Close => {
                let mut points = [last_pt, first_pt];
                if line_cap != LineCap::Butt && prev_verb == PathVerb::Move {
                    // cap moveTo/close to match svg expectations for degenerate segments
                    extend_pts(line_cap, prev_verb, next_verb, &mut points);
                }
                line_proc(&points, clip, blitter);
                last_pt2 = points[0];
            }
        }

        if line_cap != LineCap::Butt {
            if prev_verb == PathVerb::Move
                && matches!(verb, PathVerb::Line | PathVerb::Quad | PathVerb::Cubic)
            {
                first_pt = last_pt2; // the curve moved the initial point, so close to it instead
            }

            prev_verb = verb;
        }
    }
}

/// Extend the points in the direction of the starting or ending tangent by 1/2 unit to
/// account for a round or square cap.
///
/// If there's no distance between the end point and
/// the control point, use the next control point to create a tangent. If the curve
/// is degenerate, move the cap out 1/2 unit horizontally.
fn extend_pts(
    line_cap: LineCap,
    prev_verb: PathVerb,
    next_verb: Option<PathVerb>,
    points: &mut [Point],
) {
    debug_assert!(!points.is_empty()); // TODO: use non-zero slice
    debug_assert!(line_cap != LineCap::Butt);

    // The area of a circle is PI*R*R. For a unit circle, R=1/2, and the cap covers half of that.
    let cap_outset = if line_cap == LineCap::Square {
        0.5
    } else {
        FLOAT_PI / 8.0
    };
    if prev_verb == PathVerb::Move {
        let first = points[0];
        let mut offset = 0;
        let mut controls = points.len() - 1;
        let mut tangent;
        loop {
            offset += 1;
            tangent = first - points[offset];

            if !tangent.is_zero() {
                break;
            }

            controls -= 1;
            if controls == 0 {
                break;
            }
        }

        if tangent.is_zero() {
            tangent = Point::from_xy(1.0, 0.0);
            controls = points.len() - 1; // If all points are equal, move all but one.
        } else {
            tangent.normalize();
        }

        offset = 0;
        loop {
            // If the end point and control points are equal, loop to move them in tandem.
            points[offset].x += tangent.x * cap_outset;
            points[offset].y += tangent.y * cap_outset;

            offset += 1;
            controls += 1;
            if controls >= points.len() {
                break;
            }
        }
    }

    if matches!(
        next_verb,
        Some(PathVerb::Move) | Some(PathVerb::Close) | None
    ) {
        let last = points.last().unwrap().clone();
        let mut offset = points.len() - 1;
        let mut controls = points.len() - 1;
        let mut tangent;
        loop {
            offset -= 1;
            tangent = last - points[offset];

            if !tangent.is_zero() {
                break;
            }

            controls -= 1;
            if controls == 0 {
                break;
            }
        }

        if tangent.is_zero() {
            tangent = Point::from_xy(-1.0, 0.0);
            controls = points.len() - 1;
        } else {
            tangent.normalize();
        }

        offset = points.len() - 1;
        loop {
            points[offset].x += tangent.x * cap_outset;
            points[offset].y += tangent.y * cap_outset;

            offset -= 1;
            controls += 1;
            if controls >= points.len() {
                break;
            }
        }
    }
}

fn hair_quad(
    points: &[Point; 3],
    mut clip: Option<&ScreenIntRect>,
    inset_clip: Option<&IntRect>,
    outset_clip: Option<&IntRect>,
    level: u8,
    line_proc: LineProc,
    blitter: &mut dyn Blitter,
) {
    if let Some(inset_clip) = inset_clip {
        debug_assert!(outset_clip.is_some());
        let inset_clip = inset_clip.to_rect();
        let outset_clip = match outset_clip {
            Some(v) => v.to_rect(),
            None => return,
        };

        let bounds = match compute_nocheck_quad_bounds(points) {
            Some(v) => v,
            None => return,
        };
        if !geometric_overlap(&outset_clip, &bounds) {
            return; // nothing to do
        } else if geometric_contains(&inset_clip, &bounds) {
            clip = None;
        }
    }

    hair_quad2(points, clip, level, line_proc, blitter);
}

fn compute_nocheck_quad_bounds(points: &[Point; 3]) -> Option<Rect> {
    debug_assert!(points[0].is_finite());
    debug_assert!(points[1].is_finite());
    debug_assert!(points[2].is_finite());

    let mut min = points[0].to_f32x2();
    let mut max = min;
    for i in 1..3 {
        let pair = points[i].to_f32x2();
        min = min.min(pair);
        max = max.max(pair);
    }

    Rect::from_ltrb(min.x(), min.y(), max.x(), max.y())
}

fn geometric_overlap(a: &Rect, b: &Rect) -> bool {
    a.left() < b.right() && b.left() < a.right() && a.top() < b.bottom() && b.top() < a.bottom()
}

fn geometric_contains(outer: &Rect, inner: &Rect) -> bool {
    inner.right() <= outer.right()
        && inner.left() >= outer.left()
        && inner.bottom() <= outer.bottom()
        && inner.top() >= outer.top()
}

fn hair_quad2(
    points: &[Point; 3],
    clip: Option<&ScreenIntRect>,
    level: u8,
    line_proc: LineProc,
    blitter: &mut dyn Blitter,
) {
    debug_assert!(level <= MAX_QUAD_SUBDIVIDE_LEVEL); // TODO: to type

    let coeff = path_geometry::QuadCoeff::from_points(points);

    const MAX_POINTS: usize = (1 << MAX_QUAD_SUBDIVIDE_LEVEL) + 1;
    let lines = 1 << level;
    debug_assert!(lines < MAX_POINTS);

    let mut tmp = [Point::zero(); MAX_POINTS];
    tmp[0] = points[0];

    let mut t = f32x2::default();
    let dt = f32x2::splat(1.0 / lines as f32);
    for i in 1..lines {
        t = t + dt;
        let v = (coeff.a * t + coeff.b) * t + coeff.c;
        tmp[i] = Point::from_xy(v.x(), v.y());
    }

    tmp[lines] = points[2];
    line_proc(&tmp[0..lines + 1], clip, blitter);
}

fn compute_quad_level(points: &[Point; 3]) -> u8 {
    let d = compute_int_quad_dist(points);
    // Quadratics approach the line connecting their start and end points
    // 4x closer with each subdivision, so we compute the number of
    // subdivisions to be the minimum need to get that distance to be less
    // than a pixel.
    let mut level = (33 - d.leading_zeros()) >> 1;
    // sanity check on level (from the previous version)
    if level > MAX_QUAD_SUBDIVIDE_LEVEL as u32 {
        level = MAX_QUAD_SUBDIVIDE_LEVEL as u32;
    }

    level as u8
}

fn compute_int_quad_dist(points: &[Point; 3]) -> u32 {
    // compute the vector between the control point ([1]) and the middle of the
    // line connecting the start and end ([0] and [2])
    let dx = ((points[0].x + points[2].x).half() - points[1].x).abs();
    let dy = ((points[0].y + points[2].y).half() - points[1].y).abs();

    // convert to whole pixel values (use ceiling to be conservative).
    // assign to unsigned so we can safely add 1/2 of the smaller and still fit in
    // u32, since T::saturate_from() returns 31 bits at most.
    let idx = i32::saturate_from(dx.ceil()) as u32;
    let idy = i32::saturate_from(dy.ceil()) as u32;

    // use the cheap approx for distance
    if idx > idy {
        idx + (idy >> 1)
    } else {
        idy + (idx >> 1)
    }
}

fn hair_cubic(
    points: &[Point; 4],
    mut clip: Option<&ScreenIntRect>,
    inset_clip: Option<&IntRect>,
    outset_clip: Option<&IntRect>,
    line_proc: LineProc,
    blitter: &mut dyn Blitter,
) {
    if let Some(inset_clip) = inset_clip {
        debug_assert!(outset_clip.is_some());
        let inset_clip = inset_clip.to_rect();
        let outset_clip = match outset_clip {
            Some(v) => v.to_rect(),
            None => return,
        };

        let bounds = match compute_nocheck_cubic_bounds(points) {
            Some(v) => v,
            None => return,
        };
        if !geometric_overlap(&outset_clip, &bounds) {
            return; // noting to do
        } else if geometric_contains(&inset_clip, &bounds) {
            clip = None;
        }
    }

    if quick_cubic_niceness_check(points) {
        hair_cubic2(points, clip, line_proc, blitter);
    } else {
        let mut tmp = [Point::zero(); 13];
        let mut t_values = path_geometry::new_t_values();

        let count = path_geometry::chop_cubic_at_max_curvature(points, &mut t_values, &mut tmp);
        for i in 0..count {
            let offset = i * 3;
            let new_points: [Point; 4] = tmp[offset..offset + 4].try_into().unwrap();
            hair_cubic2(&new_points, clip, line_proc, blitter);
        }
    }
}

fn compute_nocheck_cubic_bounds(points: &[Point; 4]) -> Option<Rect> {
    debug_assert!(points[0].is_finite());
    debug_assert!(points[1].is_finite());
    debug_assert!(points[2].is_finite());
    debug_assert!(points[3].is_finite());

    let mut min = points[0].to_f32x2();
    let mut max = min;
    for i in 1..4 {
        let pair = points[i].to_f32x2();
        min = min.min(pair);
        max = max.max(pair);
    }

    Rect::from_ltrb(min.x(), min.y(), max.x(), max.y())
}

// The off-curve points are "inside" the limits of the on-curve points.
fn quick_cubic_niceness_check(points: &[Point; 4]) -> bool {
    lt_90(points[1], points[0], points[3])
        && lt_90(points[2], points[0], points[3])
        && lt_90(points[1], points[3], points[0])
        && lt_90(points[2], points[3], points[0])
}

fn lt_90(p0: Point, pivot: Point, p2: Point) -> bool {
    (p0 - pivot).dot(p2 - pivot) >= 0.0
}

fn hair_cubic2(
    points: &[Point; 4],
    clip: Option<&ScreenIntRect>,
    line_proc: LineProc,
    blitter: &mut dyn Blitter,
) {
    let lines = compute_cubic_segments(points);
    debug_assert!(lines > 0);
    if lines == 1 {
        line_proc(&[points[0], points[3]], clip, blitter);
        return;
    }

    let coeff = path_geometry::CubicCoeff::from_points(points);

    const MAX_POINTS: usize = (1 << MAX_CUBIC_SUBDIVIDE_LEVEL) + 1;
    debug_assert!(lines < MAX_POINTS);
    let mut tmp = [Point::zero(); MAX_POINTS];

    let dt = f32x2::splat(1.0 / lines as f32);
    let mut t = f32x2::default();

    tmp[0] = points[0];
    for i in 1..lines {
        t = t + dt;
        tmp[i] = Point::from_f32x2(((coeff.a * t + coeff.b) * t + coeff.c) * t + coeff.d);
    }

    if tmp.iter().all(|p| p.is_finite()) {
        tmp[lines] = points[3];
        line_proc(&tmp[0..lines + 1], clip, blitter);
    } else {
        // else some point(s) are non-finite, so don't draw
    }
}

fn compute_cubic_segments(points: &[Point; 4]) -> usize {
    let p0 = points[0].to_f32x2();
    let p1 = points[1].to_f32x2();
    let p2 = points[2].to_f32x2();
    let p3 = points[3].to_f32x2();

    let one_third = f32x2::splat(1.0 / 3.0);
    let two_third = f32x2::splat(2.0 / 3.0);

    let p13 = one_third * p3 + two_third * p0;
    let p23 = one_third * p0 + two_third * p3;

    let diff = (p1 - p13).abs().max((p2 - p23).abs()).max_component();
    let mut tol = 1.0 / 8.0;

    for i in 0..MAX_CUBIC_SUBDIVIDE_LEVEL {
        if diff < tol {
            return 1 << i;
        }

        tol *= 4.0;
    }

    1 << MAX_CUBIC_SUBDIVIDE_LEVEL
}