tiny_skia/scan/path.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use core::convert::TryFrom;
use tiny_skia_path::SaturateCast;
use crate::{FillRule, IntRect, LengthU32, Path, Rect};
use crate::blitter::Blitter;
use crate::edge::{Edge, LineEdge};
use crate::edge_builder::{BasicEdgeBuilder, ShiftedIntRect};
use crate::fixed_point::{fdot16, fdot6, FDot16};
use crate::geom::{IntRectExt, ScreenIntRect};
#[cfg(all(not(feature = "std"), feature = "no-std-float"))]
use tiny_skia_path::NoStdFloat;
pub fn fill_path(
path: &Path,
fill_rule: FillRule,
clip: &ScreenIntRect,
blitter: &mut dyn Blitter,
) {
let ir = match conservative_round_to_int(&path.bounds()) {
Some(v) => v,
None => return,
};
let path_contained_in_clip = if let Some(bounds) = ir.to_screen_int_rect() {
clip.contains(&bounds)
} else {
// If bounds cannot be converted into ScreenIntRect,
// the path is out of clip.
false
};
// TODO: SkScanClipper
fill_path_impl(
path,
fill_rule,
clip,
ir.y(),
ir.bottom(),
0,
path_contained_in_clip,
blitter,
);
}
// Conservative rounding function, which effectively nudges the int-rect to be slightly larger
// than Rect::round() might have produced. This is a safety-net for the scan-converter, which
// inspects the returned int-rect, and may disable clipping (for speed) if it thinks all of the
// edges will fit inside the clip's bounds. The scan-converter introduces slight numeric errors
// due to accumulated += of the slope, so this function is used to return a conservatively large
// int-bounds, and thus we will only disable clipping if we're sure the edges will stay in-bounds.
fn conservative_round_to_int(src: &Rect) -> Option<IntRect> {
// We must use `from_ltrb`, otherwise rounding will be incorrect.
IntRect::from_ltrb(
round_down_to_int(src.left()),
round_down_to_int(src.top()),
round_up_to_int(src.right()),
round_up_to_int(src.bottom()),
)
}
// Bias used for conservative rounding of float rects to int rects, to nudge the irects a little
// larger, so we don't "think" a path's bounds are inside a clip, when (due to numeric drift in
// the scan-converter) we might walk beyond the predicted limits.
//
// This value has been determined trial and error: pick the smallest value (after the 0.5) that
// fixes any problematic cases (e.g. crbug.com/844457)
// NOTE: cubics appear to be the main reason for needing this slop. If we could (perhaps) have a
// more accurate walker for cubics, we may be able to reduce this fudge factor.
const CONSERVATIVE_ROUND_BIAS: f64 = 0.5 + 1.5 / fdot6::ONE as f64;
// Round the value down. This is used to round the top and left of a rectangle,
// and corresponds to the way the scan converter treats the top and left edges.
// It has a slight bias to make the "rounded" int smaller than a normal round, to create a more
// conservative int-bounds (larger) from a float rect.
fn round_down_to_int(x: f32) -> i32 {
let mut xx = x as f64;
xx -= CONSERVATIVE_ROUND_BIAS;
i32::saturate_from(xx.ceil())
}
// Round the value up. This is used to round the right and bottom of a rectangle.
// It has a slight bias to make the "rounded" int smaller than a normal round, to create a more
// conservative int-bounds (larger) from a float rect.
fn round_up_to_int(x: f32) -> i32 {
let mut xx = x as f64;
xx += CONSERVATIVE_ROUND_BIAS;
i32::saturate_from(xx.floor())
}
pub fn fill_path_impl(
path: &Path,
fill_rule: FillRule,
clip_rect: &ScreenIntRect,
mut start_y: i32,
mut stop_y: i32,
shift_edges_up: i32,
path_contained_in_clip: bool,
blitter: &mut dyn Blitter,
) {
let shifted_clip = match ShiftedIntRect::new(clip_rect, shift_edges_up) {
Some(v) => v,
None => return,
};
let clip = if path_contained_in_clip {
None
} else {
Some(&shifted_clip)
};
let mut edges = match BasicEdgeBuilder::build_edges(path, clip, shift_edges_up) {
Some(v) => v,
None => return, // no edges to render, just return
};
edges.sort_by(|a, b| {
let mut value_a = a.as_line().first_y;
let mut value_b = b.as_line().first_y;
if value_a == value_b {
value_a = a.as_line().x;
value_b = b.as_line().x;
}
value_a.cmp(&value_b)
});
for i in 0..edges.len() {
// 0 will be set later, so start with 1.
edges[i].prev = Some(i as u32 + 0);
edges[i].next = Some(i as u32 + 2);
}
const EDGE_HEAD_Y: i32 = i32::MIN;
const EDGE_TAIL_Y: i32 = i32::MAX;
edges.insert(
0,
Edge::Line(LineEdge {
prev: None,
next: Some(1),
x: i32::MIN,
first_y: EDGE_HEAD_Y,
..LineEdge::default()
}),
);
edges.push(Edge::Line(LineEdge {
prev: Some(edges.len() as u32 - 1),
next: None,
first_y: EDGE_TAIL_Y,
..LineEdge::default()
}));
start_y <<= shift_edges_up;
stop_y <<= shift_edges_up;
let top = shifted_clip.shifted().y() as i32;
if !path_contained_in_clip && start_y < top {
start_y = top;
}
let bottom = shifted_clip.shifted().bottom() as i32;
if !path_contained_in_clip && stop_y > bottom {
stop_y = bottom;
}
let start_y = match u32::try_from(start_y) {
Ok(v) => v,
Err(_) => return,
};
let stop_y = match u32::try_from(stop_y) {
Ok(v) => v,
Err(_) => return,
};
// TODO: walk_simple_edges
walk_edges(
fill_rule,
start_y,
stop_y,
shifted_clip.shifted().right(),
&mut edges,
blitter,
);
}
// TODO: simplify!
fn walk_edges(
fill_rule: FillRule,
start_y: u32,
stop_y: u32,
right_clip: u32,
edges: &mut [Edge],
blitter: &mut dyn Blitter,
) {
let mut curr_y = start_y;
let winding_mask = if fill_rule == FillRule::EvenOdd {
1
} else {
-1
};
loop {
let mut w = 0i32;
let mut left = 0u32;
let mut prev_x = edges[0].x;
let mut curr_idx = edges[0].next.unwrap() as usize;
while edges[curr_idx].first_y <= curr_y as i32 {
debug_assert!(edges[curr_idx].last_y >= curr_y as i32);
let x = fdot16::round_to_i32(edges[curr_idx].x) as u32; // TODO: check
if (w & winding_mask) == 0 {
// we're starting interval
left = x;
}
w += i32::from(edges[curr_idx].winding);
if (w & winding_mask) == 0 {
// we finished an interval
if let Some(width) = LengthU32::new(x - left) {
blitter.blit_h(left, curr_y, width);
}
}
let next_idx = edges[curr_idx].next.unwrap();
let new_x;
if edges[curr_idx].last_y == curr_y as i32 {
// are we done with this edge?
match &mut edges[curr_idx] {
Edge::Line(_) => {
remove_edge(curr_idx, edges);
}
Edge::Quadratic(ref mut quad) => {
if quad.curve_count > 0 && quad.update() {
new_x = quad.line.x;
if new_x < prev_x {
// ripple current edge backwards until it is x-sorted
backward_insert_edge_based_on_x(curr_idx, edges);
} else {
prev_x = new_x;
}
} else {
remove_edge(curr_idx, edges);
}
}
Edge::Cubic(ref mut cubic) => {
if cubic.curve_count < 0 && cubic.update() {
debug_assert!(cubic.line.first_y == curr_y as i32 + 1);
new_x = cubic.line.x;
if new_x < prev_x {
// ripple current edge backwards until it is x-sorted
backward_insert_edge_based_on_x(curr_idx, edges);
} else {
prev_x = new_x;
}
} else {
remove_edge(curr_idx, edges);
}
}
}
} else {
debug_assert!(edges[curr_idx].last_y > curr_y as i32);
new_x = edges[curr_idx].x + edges[curr_idx].dx;
edges[curr_idx].x = new_x;
if new_x < prev_x {
// ripple current edge backwards until it is x-sorted
backward_insert_edge_based_on_x(curr_idx, edges);
} else {
prev_x = new_x;
}
}
curr_idx = next_idx as usize;
}
if (w & winding_mask) != 0 {
// was our right-edge culled away?
if let Some(width) = LengthU32::new(right_clip - left) {
blitter.blit_h(left, curr_y, width);
}
}
curr_y += 1;
if curr_y >= stop_y {
break;
}
// now current edge points to the first edge with a Yint larger than curr_y
insert_new_edges(curr_idx, curr_y as i32, edges);
}
}
fn remove_edge(curr_idx: usize, edges: &mut [Edge]) {
let prev = edges[curr_idx].prev.unwrap();
let next = edges[curr_idx].next.unwrap();
edges[prev as usize].next = Some(next);
edges[next as usize].prev = Some(prev);
}
fn backward_insert_edge_based_on_x(curr_idx: usize, edges: &mut [Edge]) {
let x = edges[curr_idx].x;
let mut prev_idx = edges[curr_idx].prev.unwrap() as usize;
while prev_idx != 0 {
if edges[prev_idx].x > x {
prev_idx = edges[prev_idx].prev.unwrap() as usize;
} else {
break;
}
}
let next_idx = edges[prev_idx].next.unwrap() as usize;
if next_idx != curr_idx {
remove_edge(curr_idx, edges);
insert_edge_after(curr_idx, prev_idx, edges);
}
}
fn insert_edge_after(curr_idx: usize, after_idx: usize, edges: &mut [Edge]) {
edges[curr_idx].prev = Some(after_idx as u32);
edges[curr_idx].next = edges[after_idx].next;
let after_next_idx = edges[after_idx].next.unwrap() as usize;
edges[after_next_idx].prev = Some(curr_idx as u32);
edges[after_idx].next = Some(curr_idx as u32);
}
// Start from the right side, searching backwards for the point to begin the new edge list
// insertion, marching forwards from here. The implementation could have started from the left
// of the prior insertion, and search to the right, or with some additional caching, binary
// search the starting point. More work could be done to determine optimal new edge insertion.
fn backward_insert_start(mut prev_idx: usize, x: FDot16, edges: &mut [Edge]) -> usize {
while let Some(prev) = edges[prev_idx].prev {
prev_idx = prev as usize;
if edges[prev_idx].x <= x {
break;
}
}
prev_idx
}
fn insert_new_edges(mut new_idx: usize, curr_y: i32, edges: &mut [Edge]) {
if edges[new_idx].first_y != curr_y {
return;
}
let prev_idx = edges[new_idx].prev.unwrap() as usize;
if edges[prev_idx].x <= edges[new_idx].x {
return;
}
// find first x pos to insert
let mut start_idx = backward_insert_start(prev_idx, edges[new_idx].x, edges);
// insert the lot, fixing up the links as we go
loop {
let next_idx = edges[new_idx].next.unwrap() as usize;
let mut keep_edge = false;
loop {
let after_idx = edges[start_idx].next.unwrap() as usize;
if after_idx == new_idx {
keep_edge = true;
break;
}
if edges[after_idx].x >= edges[new_idx].x {
break;
}
start_idx = after_idx;
}
if !keep_edge {
remove_edge(new_idx, edges);
insert_edge_after(new_idx, start_idx, edges);
}
start_idx = new_idx;
new_idx = next_idx;
if edges[new_idx].first_y != curr_y {
break;
}
}
}