tiny_skia/scan/
path.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use core::convert::TryFrom;

use tiny_skia_path::SaturateCast;

use crate::{FillRule, IntRect, LengthU32, Path, Rect};

use crate::blitter::Blitter;
use crate::edge::{Edge, LineEdge};
use crate::edge_builder::{BasicEdgeBuilder, ShiftedIntRect};
use crate::fixed_point::{fdot16, fdot6, FDot16};
use crate::geom::{IntRectExt, ScreenIntRect};

#[cfg(all(not(feature = "std"), feature = "no-std-float"))]
use tiny_skia_path::NoStdFloat;

pub fn fill_path(
    path: &Path,
    fill_rule: FillRule,
    clip: &ScreenIntRect,
    blitter: &mut dyn Blitter,
) {
    let ir = match conservative_round_to_int(&path.bounds()) {
        Some(v) => v,
        None => return,
    };

    let path_contained_in_clip = if let Some(bounds) = ir.to_screen_int_rect() {
        clip.contains(&bounds)
    } else {
        // If bounds cannot be converted into ScreenIntRect,
        // the path is out of clip.
        false
    };

    // TODO: SkScanClipper

    fill_path_impl(
        path,
        fill_rule,
        clip,
        ir.y(),
        ir.bottom(),
        0,
        path_contained_in_clip,
        blitter,
    );
}

// Conservative rounding function, which effectively nudges the int-rect to be slightly larger
// than Rect::round() might have produced. This is a safety-net for the scan-converter, which
// inspects the returned int-rect, and may disable clipping (for speed) if it thinks all of the
// edges will fit inside the clip's bounds. The scan-converter introduces slight numeric errors
// due to accumulated += of the slope, so this function is used to return a conservatively large
// int-bounds, and thus we will only disable clipping if we're sure the edges will stay in-bounds.
fn conservative_round_to_int(src: &Rect) -> Option<IntRect> {
    // We must use `from_ltrb`, otherwise rounding will be incorrect.
    IntRect::from_ltrb(
        round_down_to_int(src.left()),
        round_down_to_int(src.top()),
        round_up_to_int(src.right()),
        round_up_to_int(src.bottom()),
    )
}

// Bias used for conservative rounding of float rects to int rects, to nudge the irects a little
// larger, so we don't "think" a path's bounds are inside a clip, when (due to numeric drift in
// the scan-converter) we might walk beyond the predicted limits.
//
// This value has been determined trial and error: pick the smallest value (after the 0.5) that
// fixes any problematic cases (e.g. crbug.com/844457)
// NOTE: cubics appear to be the main reason for needing this slop. If we could (perhaps) have a
// more accurate walker for cubics, we may be able to reduce this fudge factor.
const CONSERVATIVE_ROUND_BIAS: f64 = 0.5 + 1.5 / fdot6::ONE as f64;

// Round the value down. This is used to round the top and left of a rectangle,
// and corresponds to the way the scan converter treats the top and left edges.
// It has a slight bias to make the "rounded" int smaller than a normal round, to create a more
// conservative int-bounds (larger) from a float rect.
fn round_down_to_int(x: f32) -> i32 {
    let mut xx = x as f64;
    xx -= CONSERVATIVE_ROUND_BIAS;
    i32::saturate_from(xx.ceil())
}

// Round the value up. This is used to round the right and bottom of a rectangle.
// It has a slight bias to make the "rounded" int smaller than a normal round, to create a more
// conservative int-bounds (larger) from a float rect.
fn round_up_to_int(x: f32) -> i32 {
    let mut xx = x as f64;
    xx += CONSERVATIVE_ROUND_BIAS;
    i32::saturate_from(xx.floor())
}

pub fn fill_path_impl(
    path: &Path,
    fill_rule: FillRule,
    clip_rect: &ScreenIntRect,
    mut start_y: i32,
    mut stop_y: i32,
    shift_edges_up: i32,
    path_contained_in_clip: bool,
    blitter: &mut dyn Blitter,
) {
    let shifted_clip = match ShiftedIntRect::new(clip_rect, shift_edges_up) {
        Some(v) => v,
        None => return,
    };

    let clip = if path_contained_in_clip {
        None
    } else {
        Some(&shifted_clip)
    };
    let mut edges = match BasicEdgeBuilder::build_edges(path, clip, shift_edges_up) {
        Some(v) => v,
        None => return, // no edges to render, just return
    };

    edges.sort_by(|a, b| {
        let mut value_a = a.as_line().first_y;
        let mut value_b = b.as_line().first_y;

        if value_a == value_b {
            value_a = a.as_line().x;
            value_b = b.as_line().x;
        }

        value_a.cmp(&value_b)
    });

    for i in 0..edges.len() {
        // 0 will be set later, so start with 1.
        edges[i].prev = Some(i as u32 + 0);
        edges[i].next = Some(i as u32 + 2);
    }

    const EDGE_HEAD_Y: i32 = i32::MIN;
    const EDGE_TAIL_Y: i32 = i32::MAX;

    edges.insert(
        0,
        Edge::Line(LineEdge {
            prev: None,
            next: Some(1),
            x: i32::MIN,
            first_y: EDGE_HEAD_Y,
            ..LineEdge::default()
        }),
    );

    edges.push(Edge::Line(LineEdge {
        prev: Some(edges.len() as u32 - 1),
        next: None,
        first_y: EDGE_TAIL_Y,
        ..LineEdge::default()
    }));

    start_y <<= shift_edges_up;
    stop_y <<= shift_edges_up;

    let top = shifted_clip.shifted().y() as i32;
    if !path_contained_in_clip && start_y < top {
        start_y = top;
    }

    let bottom = shifted_clip.shifted().bottom() as i32;
    if !path_contained_in_clip && stop_y > bottom {
        stop_y = bottom;
    }

    let start_y = match u32::try_from(start_y) {
        Ok(v) => v,
        Err(_) => return,
    };
    let stop_y = match u32::try_from(stop_y) {
        Ok(v) => v,
        Err(_) => return,
    };

    // TODO: walk_simple_edges

    walk_edges(
        fill_rule,
        start_y,
        stop_y,
        shifted_clip.shifted().right(),
        &mut edges,
        blitter,
    );
}

// TODO: simplify!
fn walk_edges(
    fill_rule: FillRule,
    start_y: u32,
    stop_y: u32,
    right_clip: u32,
    edges: &mut [Edge],
    blitter: &mut dyn Blitter,
) {
    let mut curr_y = start_y;
    let winding_mask = if fill_rule == FillRule::EvenOdd {
        1
    } else {
        -1
    };

    loop {
        let mut w = 0i32;
        let mut left = 0u32;
        let mut prev_x = edges[0].x;

        let mut curr_idx = edges[0].next.unwrap() as usize;
        while edges[curr_idx].first_y <= curr_y as i32 {
            debug_assert!(edges[curr_idx].last_y >= curr_y as i32);

            let x = fdot16::round_to_i32(edges[curr_idx].x) as u32; // TODO: check

            if (w & winding_mask) == 0 {
                // we're starting interval
                left = x;
            }

            w += i32::from(edges[curr_idx].winding);

            if (w & winding_mask) == 0 {
                // we finished an interval
                if let Some(width) = LengthU32::new(x - left) {
                    blitter.blit_h(left, curr_y, width);
                }
            }

            let next_idx = edges[curr_idx].next.unwrap();
            let new_x;

            if edges[curr_idx].last_y == curr_y as i32 {
                // are we done with this edge?
                match &mut edges[curr_idx] {
                    Edge::Line(_) => {
                        remove_edge(curr_idx, edges);
                    }
                    Edge::Quadratic(ref mut quad) => {
                        if quad.curve_count > 0 && quad.update() {
                            new_x = quad.line.x;

                            if new_x < prev_x {
                                // ripple current edge backwards until it is x-sorted
                                backward_insert_edge_based_on_x(curr_idx, edges);
                            } else {
                                prev_x = new_x;
                            }
                        } else {
                            remove_edge(curr_idx, edges);
                        }
                    }
                    Edge::Cubic(ref mut cubic) => {
                        if cubic.curve_count < 0 && cubic.update() {
                            debug_assert!(cubic.line.first_y == curr_y as i32 + 1);

                            new_x = cubic.line.x;

                            if new_x < prev_x {
                                // ripple current edge backwards until it is x-sorted
                                backward_insert_edge_based_on_x(curr_idx, edges);
                            } else {
                                prev_x = new_x;
                            }
                        } else {
                            remove_edge(curr_idx, edges);
                        }
                    }
                }
            } else {
                debug_assert!(edges[curr_idx].last_y > curr_y as i32);
                new_x = edges[curr_idx].x + edges[curr_idx].dx;
                edges[curr_idx].x = new_x;

                if new_x < prev_x {
                    // ripple current edge backwards until it is x-sorted
                    backward_insert_edge_based_on_x(curr_idx, edges);
                } else {
                    prev_x = new_x;
                }
            }

            curr_idx = next_idx as usize;
        }

        if (w & winding_mask) != 0 {
            // was our right-edge culled away?
            if let Some(width) = LengthU32::new(right_clip - left) {
                blitter.blit_h(left, curr_y, width);
            }
        }

        curr_y += 1;
        if curr_y >= stop_y {
            break;
        }

        // now current edge points to the first edge with a Yint larger than curr_y
        insert_new_edges(curr_idx, curr_y as i32, edges);
    }
}

fn remove_edge(curr_idx: usize, edges: &mut [Edge]) {
    let prev = edges[curr_idx].prev.unwrap();
    let next = edges[curr_idx].next.unwrap();

    edges[prev as usize].next = Some(next);
    edges[next as usize].prev = Some(prev);
}

fn backward_insert_edge_based_on_x(curr_idx: usize, edges: &mut [Edge]) {
    let x = edges[curr_idx].x;
    let mut prev_idx = edges[curr_idx].prev.unwrap() as usize;
    while prev_idx != 0 {
        if edges[prev_idx].x > x {
            prev_idx = edges[prev_idx].prev.unwrap() as usize;
        } else {
            break;
        }
    }

    let next_idx = edges[prev_idx].next.unwrap() as usize;
    if next_idx != curr_idx {
        remove_edge(curr_idx, edges);
        insert_edge_after(curr_idx, prev_idx, edges);
    }
}

fn insert_edge_after(curr_idx: usize, after_idx: usize, edges: &mut [Edge]) {
    edges[curr_idx].prev = Some(after_idx as u32);
    edges[curr_idx].next = edges[after_idx].next;

    let after_next_idx = edges[after_idx].next.unwrap() as usize;
    edges[after_next_idx].prev = Some(curr_idx as u32);
    edges[after_idx].next = Some(curr_idx as u32);
}

// Start from the right side, searching backwards for the point to begin the new edge list
// insertion, marching forwards from here. The implementation could have started from the left
// of the prior insertion, and search to the right, or with some additional caching, binary
// search the starting point. More work could be done to determine optimal new edge insertion.
fn backward_insert_start(mut prev_idx: usize, x: FDot16, edges: &mut [Edge]) -> usize {
    while let Some(prev) = edges[prev_idx].prev {
        prev_idx = prev as usize;
        if edges[prev_idx].x <= x {
            break;
        }
    }

    prev_idx
}

fn insert_new_edges(mut new_idx: usize, curr_y: i32, edges: &mut [Edge]) {
    if edges[new_idx].first_y != curr_y {
        return;
    }

    let prev_idx = edges[new_idx].prev.unwrap() as usize;
    if edges[prev_idx].x <= edges[new_idx].x {
        return;
    }

    // find first x pos to insert
    let mut start_idx = backward_insert_start(prev_idx, edges[new_idx].x, edges);
    // insert the lot, fixing up the links as we go
    loop {
        let next_idx = edges[new_idx].next.unwrap() as usize;
        let mut keep_edge = false;
        loop {
            let after_idx = edges[start_idx].next.unwrap() as usize;
            if after_idx == new_idx {
                keep_edge = true;
                break;
            }

            if edges[after_idx].x >= edges[new_idx].x {
                break;
            }

            start_idx = after_idx;
        }

        if !keep_edge {
            remove_edge(new_idx, edges);
            insert_edge_after(new_idx, start_idx, edges);
        }

        start_idx = new_idx;
        new_idx = next_idx;

        if edges[new_idx].first_y != curr_y {
            break;
        }
    }
}