1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use alloc::vec::Vec;
use tiny_skia_path::{NormalizedF32, Scalar};
use crate::{Color, SpreadMode, Transform};
use crate::pipeline::RasterPipelineBuilder;
use crate::pipeline::{self, EvenlySpaced2StopGradientCtx, GradientColor, GradientCtx};
// The default SCALAR_NEARLY_ZERO threshold of .0024 is too big and causes regressions for svg
// gradients defined in the wild.
pub const DEGENERATE_THRESHOLD: f32 = 1.0 / (1 << 15) as f32;
/// A gradient point.
#[allow(missing_docs)]
#[derive(Clone, Copy, PartialEq, Debug)]
pub struct GradientStop {
pub(crate) position: NormalizedF32,
pub(crate) color: Color,
}
impl GradientStop {
/// Creates a new gradient point.
///
/// `position` will be clamped to a 0..=1 range.
pub fn new(position: f32, color: Color) -> Self {
GradientStop {
position: NormalizedF32::new_clamped(position),
color,
}
}
}
#[derive(Clone, PartialEq, Debug)]
pub struct Gradient {
stops: Vec<GradientStop>,
tile_mode: SpreadMode,
pub(crate) transform: Transform,
points_to_unit: Transform,
pub(crate) colors_are_opaque: bool,
has_uniform_stops: bool,
}
impl Gradient {
pub fn new(
mut stops: Vec<GradientStop>,
tile_mode: SpreadMode,
transform: Transform,
points_to_unit: Transform,
) -> Self {
debug_assert!(stops.len() > 1);
// Note: we let the caller skip the first and/or last position.
// i.e. pos[0] = 0.3, pos[1] = 0.7
// In these cases, we insert dummy entries to ensure that the final data
// will be bracketed by [0, 1].
// i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1
let dummy_first = stops[0].position.get() != 0.0;
let dummy_last = stops[stops.len() - 1].position.get() != 1.0;
// Now copy over the colors, adding the dummies as needed.
if dummy_first {
stops.insert(0, GradientStop::new(0.0, stops[0].color));
}
if dummy_last {
stops.push(GradientStop::new(1.0, stops[stops.len() - 1].color));
}
let colors_are_opaque = stops.iter().all(|p| p.color.is_opaque());
// Pin the last value to 1.0, and make sure positions are monotonic.
let start_index = if dummy_first { 0 } else { 1 };
let mut prev = 0.0;
let mut has_uniform_stops = true;
let uniform_step = stops[start_index].position.get() - prev;
for i in start_index..stops.len() {
let curr = if i + 1 == stops.len() {
// The last one must be zero.
1.0
} else {
stops[i].position.get().bound(prev, 1.0)
};
has_uniform_stops &= uniform_step.is_nearly_equal(curr - prev);
stops[i].position = NormalizedF32::new_clamped(curr);
prev = curr;
}
Gradient {
stops,
tile_mode,
transform,
points_to_unit,
colors_are_opaque,
has_uniform_stops,
}
}
pub fn push_stages(
&self,
p: &mut RasterPipelineBuilder,
push_stages_pre: &dyn Fn(&mut RasterPipelineBuilder),
push_stages_post: &dyn Fn(&mut RasterPipelineBuilder),
) -> bool {
p.push(pipeline::Stage::SeedShader);
let ts = match self.transform.invert() {
Some(v) => v,
None => {
log::warn!("failed to invert a gradient transform. Nothing will be rendered");
return false;
}
};
let ts = ts.post_concat(self.points_to_unit);
p.push_transform(ts);
push_stages_pre(p);
match self.tile_mode {
SpreadMode::Reflect => {
p.push(pipeline::Stage::ReflectX1);
}
SpreadMode::Repeat => {
p.push(pipeline::Stage::RepeatX1);
}
SpreadMode::Pad => {
if self.has_uniform_stops {
// We clamp only when the stops are evenly spaced.
// If not, there may be hard stops, and clamping ruins hard stops at 0 and/or 1.
// In that case, we must make sure we're using the general "gradient" stage,
// which is the only stage that will correctly handle unclamped t.
p.push(pipeline::Stage::PadX1);
}
}
}
// The two-stop case with stops at 0 and 1.
if self.stops.len() == 2 {
debug_assert!(self.has_uniform_stops);
let c0 = self.stops[0].color;
let c1 = self.stops[1].color;
p.ctx.evenly_spaced_2_stop_gradient = EvenlySpaced2StopGradientCtx {
factor: GradientColor::new(
c1.red() - c0.red(),
c1.green() - c0.green(),
c1.blue() - c0.blue(),
c1.alpha() - c0.alpha(),
),
bias: GradientColor::from(c0),
};
p.push(pipeline::Stage::EvenlySpaced2StopGradient);
} else {
// Unlike Skia, we do not support the `evenly_spaced_gradient` stage.
// In our case, there is no performance difference.
let mut ctx = GradientCtx::default();
// Note: In order to handle clamps in search, the search assumes
// a stop conceptually placed at -inf.
// Therefore, the max number of stops is `self.points.len()+1`.
//
// We also need at least 16 values for lowp pipeline.
ctx.factors.reserve((self.stops.len() + 1).max(16));
ctx.biases.reserve((self.stops.len() + 1).max(16));
ctx.t_values.reserve(self.stops.len() + 1);
// Remove the dummy stops inserted by Gradient::new
// because they are naturally handled by the search method.
let (first_stop, last_stop) = if self.stops.len() > 2 {
let first = if self.stops[0].color != self.stops[1].color {
0
} else {
1
};
let len = self.stops.len();
let last = if self.stops[len - 2].color != self.stops[len - 1].color {
len - 1
} else {
len - 2
};
(first, last)
} else {
(0, 1)
};
let mut t_l = self.stops[first_stop].position.get();
let mut c_l = GradientColor::from(self.stops[first_stop].color);
ctx.push_const_color(c_l);
ctx.t_values.push(NormalizedF32::ZERO);
// N.B. lastStop is the index of the last stop, not one after.
for i in first_stop..last_stop {
let t_r = self.stops[i + 1].position.get();
let c_r = GradientColor::from(self.stops[i + 1].color);
debug_assert!(t_l <= t_r);
if t_l < t_r {
// For each stop we calculate a bias B and a scale factor F, such that
// for any t between stops n and n+1, the color we want is B[n] + F[n]*t.
let f = GradientColor::new(
(c_r.r - c_l.r) / (t_r - t_l),
(c_r.g - c_l.g) / (t_r - t_l),
(c_r.b - c_l.b) / (t_r - t_l),
(c_r.a - c_l.a) / (t_r - t_l),
);
ctx.factors.push(f);
ctx.biases.push(GradientColor::new(
c_l.r - f.r * t_l,
c_l.g - f.g * t_l,
c_l.b - f.b * t_l,
c_l.a - f.a * t_l,
));
ctx.t_values.push(NormalizedF32::new_clamped(t_l));
}
t_l = t_r;
c_l = c_r;
}
ctx.push_const_color(c_l);
ctx.t_values.push(NormalizedF32::new_clamped(t_l));
ctx.len = ctx.factors.len();
// All lists must have the same length.
debug_assert_eq!(ctx.factors.len(), ctx.t_values.len());
debug_assert_eq!(ctx.biases.len(), ctx.t_values.len());
// Will with zeros until we have enough data to fit into F32x16.
while ctx.factors.len() < 16 {
ctx.factors.push(GradientColor::default());
ctx.biases.push(GradientColor::default());
}
p.push(pipeline::Stage::Gradient);
p.ctx.gradient = ctx;
}
if !self.colors_are_opaque {
p.push(pipeline::Stage::Premultiply);
}
push_stages_post(p);
true
}
pub fn apply_opacity(&mut self, opacity: f32) {
for stop in &mut self.stops {
stop.color.apply_opacity(opacity);
}
self.colors_are_opaque = self.stops.iter().all(|p| p.color.is_opaque());
}
}