tiny_skia_path/
path_builder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// NOTE: this is not SkPathBuilder, but rather a reimplementation of SkPath.

use alloc::vec;
use alloc::vec::Vec;

use crate::{Path, Point, Rect};

use crate::path::PathVerb;
use crate::path_geometry;
use crate::scalar::{Scalar, SCALAR_ROOT_2_OVER_2};

#[derive(Copy, Clone, PartialEq, Debug)]
pub(crate) enum PathDirection {
    /// Clockwise direction for adding closed contours.
    CW,
    /// Counter-clockwise direction for adding closed contours.
    CCW,
}

/// A path builder.
#[derive(Clone, Default, Debug)]
pub struct PathBuilder {
    pub(crate) verbs: Vec<PathVerb>,
    pub(crate) points: Vec<Point>,
    pub(crate) last_move_to_index: usize,
    pub(crate) move_to_required: bool,
}

impl PathBuilder {
    /// Creates a new builder.
    pub fn new() -> Self {
        PathBuilder {
            verbs: Vec::new(),
            points: Vec::new(),
            last_move_to_index: 0,
            move_to_required: true,
        }
    }

    /// Creates a new builder with a specified capacity.
    ///
    /// Number of points depends on a verb type:
    ///
    /// - Move - 1
    /// - Line - 1
    /// - Quad - 2
    /// - Cubic - 3
    /// - Close - 0
    pub fn with_capacity(verbs_capacity: usize, points_capacity: usize) -> Self {
        PathBuilder {
            verbs: Vec::with_capacity(verbs_capacity),
            points: Vec::with_capacity(points_capacity),
            last_move_to_index: 0,
            move_to_required: true,
        }
    }

    /// Creates a new `Path` from `Rect`.
    ///
    /// Never fails since `Rect` is always valid.
    ///
    /// Segments are created clockwise: TopLeft -> TopRight -> BottomRight -> BottomLeft
    ///
    /// The contour is closed.
    pub fn from_rect(rect: Rect) -> Path {
        let verbs = vec![
            PathVerb::Move,
            PathVerb::Line,
            PathVerb::Line,
            PathVerb::Line,
            PathVerb::Close,
        ];

        let points = vec![
            Point::from_xy(rect.left(), rect.top()),
            Point::from_xy(rect.right(), rect.top()),
            Point::from_xy(rect.right(), rect.bottom()),
            Point::from_xy(rect.left(), rect.bottom()),
        ];

        Path {
            bounds: rect,
            verbs,
            points,
        }
    }

    /// Creates a new `Path` from a circle.
    ///
    /// See [`PathBuilder::push_circle`] for details.
    pub fn from_circle(cx: f32, cy: f32, radius: f32) -> Option<Path> {
        let mut b = PathBuilder::new();
        b.push_circle(cx, cy, radius);
        b.finish()
    }

    /// Creates a new `Path` from an oval.
    ///
    /// See [`PathBuilder::push_oval`] for details.
    pub fn from_oval(oval: Rect) -> Option<Path> {
        let mut b = PathBuilder::new();
        b.push_oval(oval);
        b.finish()
    }

    pub(crate) fn reserve(&mut self, additional_verbs: usize, additional_points: usize) {
        self.verbs.reserve(additional_verbs);
        self.points.reserve(additional_points);
    }

    /// Returns the current number of segments in the builder.
    pub fn len(&self) -> usize {
        self.verbs.len()
    }

    /// Checks if the builder has any segments added.
    pub fn is_empty(&self) -> bool {
        self.verbs.is_empty()
    }

    /// Adds beginning of a contour.
    ///
    /// Multiple continuous MoveTo segments are not allowed.
    /// If the previous segment was also MoveTo, it will be overwritten with the current one.
    pub fn move_to(&mut self, x: f32, y: f32) {
        if let Some(PathVerb::Move) = self.verbs.last() {
            let last_idx = self.points.len() - 1;
            self.points[last_idx] = Point::from_xy(x, y);
        } else {
            self.last_move_to_index = self.points.len();
            self.move_to_required = false;

            self.verbs.push(PathVerb::Move);
            self.points.push(Point::from_xy(x, y));
        }
    }

    fn inject_move_to_if_needed(&mut self) {
        if self.move_to_required {
            match self.points.get(self.last_move_to_index).cloned() {
                Some(p) => self.move_to(p.x, p.y),
                None => self.move_to(0.0, 0.0),
            }
        }
    }

    /// Adds a line from the last point.
    ///
    /// - If `Path` is empty - adds Move(0, 0) first.
    /// - If `Path` ends with Close - adds Move(last_x, last_y) first.
    pub fn line_to(&mut self, x: f32, y: f32) {
        self.inject_move_to_if_needed();

        self.verbs.push(PathVerb::Line);
        self.points.push(Point::from_xy(x, y));
    }

    /// Adds a quad curve from the last point to `x`, `y`.
    ///
    /// - If `Path` is empty - adds Move(0, 0) first.
    /// - If `Path` ends with Close - adds Move(last_x, last_y) first.
    pub fn quad_to(&mut self, x1: f32, y1: f32, x: f32, y: f32) {
        self.inject_move_to_if_needed();

        self.verbs.push(PathVerb::Quad);
        self.points.push(Point::from_xy(x1, y1));
        self.points.push(Point::from_xy(x, y));
    }

    pub(crate) fn quad_to_pt(&mut self, p1: Point, p: Point) {
        self.quad_to(p1.x, p1.y, p.x, p.y);
    }

    // We do not support conic segments, but Skia still relies on them from time to time.
    // This method will simply convert the input data into quad segments.
    pub(crate) fn conic_to(&mut self, x1: f32, y1: f32, x: f32, y: f32, weight: f32) {
        // check for <= 0 or NaN with this test
        if !(weight > 0.0) {
            self.line_to(x, y);
        } else if !weight.is_finite() {
            self.line_to(x1, y1);
            self.line_to(x, y);
        } else if weight == 1.0 {
            self.quad_to(x1, y1, x, y);
        } else {
            self.inject_move_to_if_needed();

            let last = self.last_point().unwrap();
            let quadder = path_geometry::AutoConicToQuads::compute(
                last,
                Point::from_xy(x1, y1),
                Point::from_xy(x, y),
                weight,
            );
            if let Some(quadder) = quadder {
                // Points are ordered as: 0 - 1 2 - 3 4 - 5 6 - ..
                // `count` is a number of pairs +1
                let mut offset = 1;
                for _ in 0..quadder.len {
                    let pt1 = quadder.points[offset + 0];
                    let pt2 = quadder.points[offset + 1];
                    self.quad_to(pt1.x, pt1.y, pt2.x, pt2.y);
                    offset += 2;
                }
            }
        }
    }

    pub(crate) fn conic_points_to(&mut self, pt1: Point, pt2: Point, weight: f32) {
        self.conic_to(pt1.x, pt1.y, pt2.x, pt2.y, weight);
    }

    /// Adds a cubic curve from the last point to `x`, `y`.
    ///
    /// - If `Path` is empty - adds Move(0, 0) first.
    /// - If `Path` ends with Close - adds Move(last_x, last_y) first.
    pub fn cubic_to(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x: f32, y: f32) {
        self.inject_move_to_if_needed();

        self.verbs.push(PathVerb::Cubic);
        self.points.push(Point::from_xy(x1, y1));
        self.points.push(Point::from_xy(x2, y2));
        self.points.push(Point::from_xy(x, y));
    }

    pub(crate) fn cubic_to_pt(&mut self, p1: Point, p2: Point, p: Point) {
        self.cubic_to(p1.x, p1.y, p2.x, p2.y, p.x, p.y);
    }

    /// Closes the current contour.
    ///
    /// A closed contour connects the first and the last Point
    /// with a line, forming a continuous loop.
    ///
    /// Does nothing when `Path` is empty or already closed.
    ///
    /// Open and closed contour will be filled the same way.
    /// Stroking an open contour will add LineCap at contour's start and end.
    /// Stroking an closed contour will add LineJoin at contour's start and end.
    pub fn close(&mut self) {
        // don't add a close if it's the first verb or a repeat
        if !self.verbs.is_empty() {
            if self.verbs.last().cloned() != Some(PathVerb::Close) {
                self.verbs.push(PathVerb::Close);
            }
        }

        self.move_to_required = true;
    }

    /// Returns the last point if any.
    pub fn last_point(&self) -> Option<Point> {
        self.points.last().cloned()
    }

    pub(crate) fn set_last_point(&mut self, pt: Point) {
        match self.points.last_mut() {
            Some(last) => *last = pt,
            None => self.move_to(pt.x, pt.y),
        }
    }

    pub(crate) fn is_zero_length_since_point(&self, start_pt_index: usize) -> bool {
        let count = self.points.len() - start_pt_index;
        if count < 2 {
            return true;
        }

        let first = self.points[start_pt_index];
        for i in 1..count {
            if first != self.points[start_pt_index + i] {
                return false;
            }
        }

        true
    }

    /// Adds a rectangle contour.
    ///
    /// The contour is closed and has a clock-wise direction.
    pub fn push_rect(&mut self, rect: Rect) {
        self.move_to(rect.left(), rect.top());
        self.line_to(rect.right(), rect.top());
        self.line_to(rect.right(), rect.bottom());
        self.line_to(rect.left(), rect.bottom());
        self.close();
    }

    /// Adds an oval contour bounded by the provided rectangle.
    ///
    /// The contour is closed and has a clock-wise direction.
    pub fn push_oval(&mut self, oval: Rect) {
        let cx = oval.left().half() + oval.right().half();
        let cy = oval.top().half() + oval.bottom().half();

        let oval_points = [
            Point::from_xy(cx, oval.bottom()),
            Point::from_xy(oval.left(), cy),
            Point::from_xy(cx, oval.top()),
            Point::from_xy(oval.right(), cy),
        ];

        let rect_points = [
            Point::from_xy(oval.right(), oval.bottom()),
            Point::from_xy(oval.left(), oval.bottom()),
            Point::from_xy(oval.left(), oval.top()),
            Point::from_xy(oval.right(), oval.top()),
        ];

        let weight = SCALAR_ROOT_2_OVER_2;
        self.move_to(oval_points[3].x, oval_points[3].y);
        for (p1, p2) in rect_points.iter().zip(oval_points.iter()) {
            self.conic_points_to(*p1, *p2, weight);
        }
        self.close();
    }

    /// Adds a circle contour.
    ///
    /// The contour is closed and has a clock-wise direction.
    ///
    /// Does nothing when:
    /// - `radius` <= 0
    /// - any value is not finite or really large
    pub fn push_circle(&mut self, x: f32, y: f32, r: f32) {
        if let Some(r) = Rect::from_xywh(x - r, y - r, r + r, r + r) {
            self.push_oval(r);
        }
    }

    /// Adds a path.
    pub fn push_path(&mut self, other: &Path) {
        self.last_move_to_index = self.points.len();

        self.verbs.extend_from_slice(&other.verbs);
        self.points.extend_from_slice(&other.points);
    }

    pub(crate) fn push_path_builder(&mut self, other: &PathBuilder) {
        if other.is_empty() {
            return;
        }

        if self.last_move_to_index != 0 {
            self.last_move_to_index = self.points.len() + other.last_move_to_index;
        }

        self.verbs.extend_from_slice(&other.verbs);
        self.points.extend_from_slice(&other.points);
    }

    /// Appends, in a reverse order, the first contour of path ignoring path's last point.
    pub(crate) fn reverse_path_to(&mut self, other: &PathBuilder) {
        if other.is_empty() {
            return;
        }

        debug_assert_eq!(other.verbs[0], PathVerb::Move);

        let mut points_offset = other.points.len() - 1;
        for verb in other.verbs.iter().rev() {
            match verb {
                PathVerb::Move => {
                    // if the path has multiple contours, stop after reversing the last
                    break;
                }
                PathVerb::Line => {
                    // We're moving one point back manually, to prevent points_offset overflow.
                    let pt = other.points[points_offset - 1];
                    points_offset -= 1;
                    self.line_to(pt.x, pt.y);
                }
                PathVerb::Quad => {
                    let pt1 = other.points[points_offset - 1];
                    let pt2 = other.points[points_offset - 2];
                    points_offset -= 2;
                    self.quad_to(pt1.x, pt1.y, pt2.x, pt2.y);
                }
                PathVerb::Cubic => {
                    let pt1 = other.points[points_offset - 1];
                    let pt2 = other.points[points_offset - 2];
                    let pt3 = other.points[points_offset - 3];
                    points_offset -= 3;
                    self.cubic_to(pt1.x, pt1.y, pt2.x, pt2.y, pt3.x, pt3.y);
                }
                PathVerb::Close => {}
            }
        }
    }

    /// Reset the builder.
    ///
    /// Memory is not deallocated.
    pub fn clear(&mut self) {
        self.verbs.clear();
        self.points.clear();
        self.last_move_to_index = 0;
        self.move_to_required = true;
    }

    /// Finishes the builder and returns a `Path`.
    ///
    /// Returns `None` when `Path` is empty or has invalid bounds.
    pub fn finish(self) -> Option<Path> {
        if self.is_empty() {
            return None;
        }

        // Just a move to? Bail.
        if self.verbs.len() == 1 {
            return None;
        }

        let bounds = Rect::from_points(&self.points)?;

        Some(Path {
            bounds,
            verbs: self.verbs,
            points: self.points,
        })
    }
}