tiny_xlib/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
// SPDX-License-Identifier: MIT OR Apache-2.0 OR Zlib

// Copyright 2023 John Nunley
//
// Licensed under the Apache License, Version 2.0, the MIT License, and
// the Zlib license. You may not use this software except in compliance
// with at least one of these licenses. You should have received a copy
// of these licenses with this software. You may also find them at:
//
//     http://www.apache.org/licenses/LICENSE-2.0
//     https://opensource.org/licenses/MIT
//     https://opensource.org/licenses/Zlib
//
// Unless required by applicable law or agreed to in writing, software
// distributed under these licenses is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the licenses for the specific language governing permissions and
// limitations under the licenses.

//! A tiny set of bindings to the [Xlib] library.
//!
//! The primary contemporary library for handling [Xlib] is the [`x11-dl`] crate. However, there are three
//! primary issues.
//!
//! 1. **You should not be using Xlib in 2023.** [Xlib] is legacy code, and even that doesn't get across
//!     how poor the API decisions that it's locked itself into are. It has a global error hook for
//!     some reason, thread-safety is a mess, and it has so many soundness holes it might as well be made
//!     out of swiss cheese. You should not be using [Xlib]. If you *have* to use [Xlib], you should just
//!     run all of your logic using the much more sound [XCB] library, or, even more ideally, something
//!     like [`x11rb`]. Then, you take the `Display` pointer and use it for whatever legacy API you've
//!     locked yourself into, and use [XCB] or [`x11rb`] for everything else. Yes, I just called [GLX]
//!     a legacy API. It's the 2020's now. [Vulkan] and [`wgpu`] run everywhere aside from legacy machines.
//!     Not to mention, they support [XCB].
//!
//! 2. Even if you manage to use [`x11-dl`] without tripping over the legacy API, it is a massive crate.
//!     [Xlib] comes with quite a few functions, most of which are unnecessary in the 21st century.
//!     Even if you don't use any of these and just stick to [XCB], you still pay the price for it.
//!     Binaries that use [`x11-dl`] need to dedicate a significant amount of their binary and memory
//!     space to the library. Even on Release builds, I have recorded [`x11-dl`] taking up to seven
//!     percent of the binary.
//!
//! 3. Global error handling. [Xlib] has a single global error hook. This is reminiscent of the Unix
//!     signal handling API, in that it makes it difficult to create well-modularized programs
//!     since they will fight with each-other over the error handlers. However, unlike the signal
//!     handling API, there is no way to tell if you're replacing an existing error hook.
//!
//! `tiny-xlib` aims to solve all of these problems. It provides a safe API around [Xlib] that is
//! conducive to being handed off to both [XCB] APIs and legacy [Xlib] APIs. The library only
//! imports absolutely necessary functions. In addition, it also provides a common API for
//! handling errors in a safe, modular way.
//!
//! # Features
//!
//! - Safe API around [Xlib]. See the [`Display`] structure.
//! - Minimal set of dependencies.
//! - Implements [`AsRawXcbConnection`], which allows it to be used with [XCB] APIs.
//! - Modular error handling.
//!
//! # Non-Features
//!
//! - Any API outside of opening [`Display`]s and handling errors. If this library doesn't support some
//!   feature, it's probably intentional. You should use [XCB] or [`x11rb`] instead. This includes:
//!  - Window management.
//!  - Any extensions outside of `Xlib-xcb`.
//!  - IME handling.
//!  - Hardware rendering.
//!
//! # Examples
//!
//! ```no_run
//! use as_raw_xcb_connection::AsRawXcbConnection;
//! use tiny_xlib::Display;
//!
//! use x11rb::connection::Connection;
//! use x11rb::xcb_ffi::XCBConnection;
//!
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! // Open a display.
//! let display = Display::new(None)?;
//!
//! // Get the XCB connection.
//! let xcb_conn = display.as_raw_xcb_connection();
//!
//! // Use that pointer to create a new XCB connection.
//! let xcb_conn = unsafe {
//!     XCBConnection::from_raw_xcb_connection(xcb_conn.cast(), false)?
//! };
//!
//! // Register a handler for X11 errors.
//! tiny_xlib::register_error_handler(Box::new(|_, error| {
//!     println!("X11 error: {:?}", error);
//!     false
//! }));
//!
//! // Do whatever you want with the XCB connection.
//! loop {
//!     println!("Event: {:?}", xcb_conn.wait_for_event()?);
//! }
//! # Ok(()) }
//! ```
//!
//! # Optional Features
//!
//! - `tracing`, enabled by default, enables telemetry using the [`tracing`] crate.
//! - `dlopen` uses the [`libloading`] library to load the X11 libraries instead of linking to them
//!   directly.
//!
//! [Xlib]: https://en.wikipedia.org/wiki/Xlib
//! [XCB]: https://xcb.freedesktop.org/
//! [`x11-dl`]: https://crates.io/crates/x11-dl
//! [`x11rb`]: https://crates.io/crates/x11rb
//! [GLX]: https://en.wikipedia.org/wiki/GLX
//! [Vulkan]: https://www.khronos.org/vulkan/
//! [`wgpu`]: https://crates.io/crates/wgpu
//! [`Display`]: struct.Display.html
//! [`AsRawXcbConnection`]: https://docs.rs/as_raw_xcb_connection/latest/as_raw_xcb_connection/trait.AsRawXcbConnection.html
//! [`tracing`]: https://crates.io/crates/tracing
//! [`libloading`]: https://crates.io/crates/libloading

#![allow(unused_unsafe)]
#![cfg_attr(coverage, feature(no_coverage))]

mod ffi;

use std::cell::Cell;
use std::ffi::CStr;
use std::fmt;
use std::io;
use std::marker::PhantomData;
use std::mem::{self, ManuallyDrop};
use std::os::raw::{c_int, c_void};
use std::ptr::{self, NonNull};
use std::sync::{Mutex, MutexGuard, Once, PoisonError};

macro_rules! lock {
    ($e:expr) => {{
        // Make sure this isn't flagged with coverage.
        #[cfg_attr(coverage, no_coverage)]
        fn unwrapper<T>(guard: PoisonError<MutexGuard<'_, T>>) -> MutexGuard<'_, T> {
            guard.into_inner()
        }

        ($e).lock().unwrap_or_else(unwrapper)
    }};
}

ctor_lite::ctor! {
    unsafe static XLIB: io::Result<ffi::Xlib> = {
        #[cfg_attr(coverage, no_coverage)]
        unsafe fn load_xlib_with_error_hook() -> io::Result<ffi::Xlib> {
            // Here's a puzzle: how do you *safely* add an error hook to Xlib? Like signal handling, there
            // is a single global error hook. Therefore, we need to make sure that we economize on the
            // single slot that we have by offering a way to set it. However, unlike signal handling, there
            // is no way to tell if we're replacing an existing error hook. If we replace another library's
            // error hook, we could cause unsound behavior if it assumes that it is the only error hook.
            //
            // However, we don't want to call the default error hook, because it exits the program. So, in
            // order to tell if the error hook is the default one, we need to compare it to the default
            // error hook. However, we can't just compare the function pointers, because the default error
            // hook is a private function that we can't access.
            //
            // In order to access it, before anything else runs, this function is called. It loads Xlib,
            // sets the error hook to a dummy function, reads the resulting error hook into a static
            // variable, and then resets the error hook to the default function. This allows us to read
            // the default error hook and compare it to the one that we're setting.
            #[cfg_attr(coverage, no_coverage)]
            fn error(e: impl std::error::Error) -> io::Error {
                io::Error::new(io::ErrorKind::Other, format!("failed to load Xlib: {}", e))
            }
            let xlib = ffi::Xlib::load().map_err(error)?;

            // Dummy function we use to set the error hook.
            #[cfg_attr(coverage, no_coverage)]
            unsafe extern "C" fn dummy(
                _display: *mut ffi::Display,
                _error: *mut ffi::XErrorEvent,
            ) -> std::os::raw::c_int {
                0
            }

            // Set the error hook to the dummy function.
            let default_hook = xlib.set_error_handler(Some(dummy));

            // Read the error hook into a static variable.
            // SAFETY: This should only run once at the start of the program, no need to worry about
            // multithreading.
            DEFAULT_ERROR_HOOK.set(default_hook);

            // Set the error hook back to the default function.
            xlib.set_error_handler(default_hook);

            Ok(xlib)
        }

        unsafe { load_xlib_with_error_hook() }
    };
}

#[inline]
fn get_xlib(sym: &io::Result<ffi::Xlib>) -> io::Result<&ffi::Xlib> {
    // Eat coverage on the error branch.
    #[cfg_attr(coverage, no_coverage)]
    fn error(e: &io::Error) -> io::Error {
        io::Error::new(e.kind(), e.to_string())
    }

    sym.as_ref().map_err(error)
}

/// The default error hook to compare against.
static DEFAULT_ERROR_HOOK: ErrorHookSlot = ErrorHookSlot::new();

/// An error handling hook.
type ErrorHook = Box<dyn FnMut(&Display, &ErrorEvent) -> bool + Send + Sync + 'static>;

/// List of error hooks to invoke.
static ERROR_HANDLERS: Mutex<HandlerList> = Mutex::new(HandlerList::new());

/// Global error handler for X11.
unsafe extern "C" fn error_handler(
    display: *mut ffi::Display,
    error: *mut ffi::XErrorEvent,
) -> c_int {
    // Abort the program if the error hook panics.
    struct AbortOnPanic;
    impl Drop for AbortOnPanic {
        #[cfg_attr(coverage, no_coverage)]
        #[cold]
        #[inline(never)]
        fn drop(&mut self) {
            std::process::abort();
        }
    }

    let bomb = AbortOnPanic;

    let mut handlers = lock!(ERROR_HANDLERS);

    let prev = handlers.prev;
    if let Some(prev) = prev {
        // Drop the mutex lock to make sure no deadlocks occur. Otherwise, if the prev handlers
        // tries to add its own handler, we'll deadlock.
        drop(handlers);

        unsafe {
            // Run the previous error hook, if any.
            prev(display, error);
        }

        // Restore the mutex lock.
        handlers = lock!(ERROR_HANDLERS);
    }

    // Read out the variables.
    // SAFETY: Guaranteed to be a valid display setup.
    let display_ptr = unsafe { Display::from_ptr(display.cast()) };
    let event = ErrorEvent(ptr::read(error));

    #[cfg(feature = "tracing")]
    tracing::error!(
        display = ?&*display_ptr,
        error = ?event,
        "got Xlib error",
    );

    // Invoke the error hooks.
    handlers.iter_mut().any(|(_i, handler)| {
        #[cfg(feature = "tracing")]
        tracing::trace!(key = _i, "invoking error handler");

        let stop_going = (handler)(&display_ptr, &event);

        #[cfg(feature = "tracing")]
        {
            if stop_going {
                tracing::trace!("error handler returned true, stopping");
            } else {
                tracing::trace!("error handler returned false, continuing");
            }
        }

        stop_going
    });

    // Defuse the bomb.
    mem::forget(bomb);

    // Apparently the return value here has no effect.
    0
}

/// Register the error handler.
fn setup_error_handler(xlib: &ffi::Xlib) {
    static REGISTERED: Once = Once::new();
    REGISTERED.call_once(move || {
        // Make sure threads are initialized here.
        unsafe {
            xlib.init_threads();
        }

        // Get the previous error handler.
        let prev = unsafe { xlib.set_error_handler(Some(error_handler)) };

        // If it isn't the default error handler, then we need to store it.
        // SAFETY: DEFAULT_ERROR_HOOK is not set after the program starts, so this is safe.
        let default_hook = unsafe { DEFAULT_ERROR_HOOK.get() };
        if prev != default_hook.flatten() && prev != Some(error_handler) {
            lock!(ERROR_HANDLERS).prev = prev;
        }
    });
}

/// A key to the error handler list that can be used to remove handlers.
#[derive(Debug, Copy, Clone)]
pub struct HandlerKey(usize);

/// The error event type.
#[derive(Clone)]
pub struct ErrorEvent(ffi::XErrorEvent);

// SAFETY: With XInitThreads, ErrorEvent is both Send and Sync.
unsafe impl Send for ErrorEvent {}
unsafe impl Sync for ErrorEvent {}

impl ErrorEvent {
    /// Get the serial number of the failed request.
    #[allow(clippy::unnecessary_cast)]
    pub fn serial(&self) -> u64 {
        self.0.serial as u64
    }

    /// Get the error code.
    pub fn error_code(&self) -> u8 {
        self.0.error_code
    }

    /// Get the request code.
    pub fn request_code(&self) -> u8 {
        self.0.request_code
    }

    /// Get the minor opcode of the failed request.
    pub fn minor_code(&self) -> u8 {
        self.0.minor_code
    }

    /// Get the resource ID of the failed request.
    pub fn resource_id(&self) -> usize {
        self.0.resourceid as usize
    }
}

impl fmt::Debug for ErrorEvent {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("ErrorEvent")
            .field("serial", &self.serial())
            .field("error_code", &self.error_code())
            .field("request_code", &self.request_code())
            .field("minor_code", &self.minor_code())
            .field("resource_id", &self.resource_id())
            .finish_non_exhaustive()
    }
}

/// The display pointer.
pub struct Display {
    /// The display pointer.
    ptr: NonNull<ffi::Display>,

    /// This owns the memory that the display pointer points to.
    _marker: PhantomData<Box<ffi::Display>>,
}

// SAFETY: With XInitThreads, Display is both Send and Sync.
unsafe impl Send for Display {}
unsafe impl Sync for Display {}

impl fmt::Debug for Display {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("Display").field(&self.ptr.as_ptr()).finish()
    }
}

impl Display {
    /// Open a new display.
    pub fn new(name: Option<&CStr>) -> io::Result<Self> {
        let xlib = get_xlib(&XLIB)?;

        // Make sure the error handler is registered.
        setup_error_handler(xlib);

        let name = name.map_or(std::ptr::null(), |n| n.as_ptr());
        let pointer = unsafe { xlib.open_display(name) };

        NonNull::new(pointer)
            .map(|ptr| Self {
                ptr,
                _marker: PhantomData,
            })
            .ok_or_else(|| io::Error::new(io::ErrorKind::Other, "failed to open display"))
    }

    /// Create a new `Display` from a pointer.
    ///
    /// # Safety
    ///
    /// The pointer must be a valid pointer to an Xlib display. In addition, it should only be dropped if the
    /// user logically owns the display.
    pub unsafe fn from_ptr(ptr: *mut c_void) -> ManuallyDrop<Self> {
        ManuallyDrop::new(Self {
            // SAFETY: "valid" implies non-null
            ptr: NonNull::new_unchecked(ptr.cast()),
            _marker: PhantomData,
        })
    }

    /// Get the pointer to the display.
    pub fn as_ptr(&self) -> *mut c_void {
        self.ptr.as_ptr().cast()
    }

    /// Get the default screen index for this display.
    pub fn screen_index(&self) -> usize {
        let xlib = get_xlib(&XLIB).expect("failed to load Xlib");

        // SAFETY: Valid display pointer.
        let index = unsafe { xlib.default_screen(self.ptr.as_ptr()) };

        // Cast down to usize.
        index.try_into().unwrap_or_else(|_| {
            #[cfg(feature = "tracing")]
            tracing::error!(
                "XDefaultScreen returned a value out of usize range (how?!), returning zero"
            );
            0
        })
    }
}

unsafe impl as_raw_xcb_connection::AsRawXcbConnection for Display {
    fn as_raw_xcb_connection(&self) -> *mut as_raw_xcb_connection::xcb_connection_t {
        let xlib = get_xlib(&XLIB).expect("failed to load Xlib");
        unsafe { xlib.get_xcb_connection(self.ptr.as_ptr()) }
    }
}

impl Drop for Display {
    fn drop(&mut self) {
        // SAFETY: We own the display pointer, so we can drop it.
        if let Ok(xlib) = get_xlib(&XLIB) {
            unsafe {
                xlib.close_display(self.ptr.as_ptr());
            }
        }
    }
}

/// Insert an error handler into the list.
pub fn register_error_handler(handler: ErrorHook) -> io::Result<HandlerKey> {
    // Make sure the error handler is registered.
    setup_error_handler(get_xlib(&XLIB)?);

    // Insert the handler into the list.
    let mut handlers = lock!(ERROR_HANDLERS);
    let key = handlers.insert(handler);
    Ok(HandlerKey(key))
}

/// Remove an error handler from the list.
pub fn unregister_error_handler(key: HandlerKey) {
    // Remove the handler from the list.
    let mut handlers = lock!(ERROR_HANDLERS);
    handlers.remove(key.0);
}

/// The list of error handlers.
struct HandlerList {
    /// The inner list of slots.
    slots: Vec<Slot>,

    /// The number of filled slots.
    filled: usize,

    /// The first unfilled slot.
    unfilled: usize,

    /// The last error handler hook.
    prev: ffi::XErrorHook,
}

/// A slot in the error handler list.
enum Slot {
    /// A slot that is filled.
    Filled(ErrorHook),

    /// A slot that is unfilled.
    ///
    /// This value points to the next unfilled slot.
    Unfilled(usize),
}

impl HandlerList {
    /// Create a new handler list.
    #[cfg_attr(coverage, no_coverage)]
    const fn new() -> Self {
        Self {
            slots: vec![],
            filled: 0,
            unfilled: 0,
            prev: None,
        }
    }

    /// Push a new error handler.
    ///
    /// Returns the index of the handler.
    fn insert(&mut self, handler: ErrorHook) -> usize {
        // Eat the coverage for the unreachable branch.
        #[cfg_attr(coverage, no_coverage)]
        #[inline(always)]
        fn unwrapper(slot: &Slot) -> usize {
            match slot {
                Slot::Filled(_) => unreachable!(),
                Slot::Unfilled(next) => *next,
            }
        }

        let index = self.filled;

        if self.unfilled == self.slots.len() {
            self.slots.push(Slot::Filled(handler));
            self.unfilled += 1;
        } else {
            let unfilled = self.unfilled;
            self.unfilled = unwrapper(&self.slots[unfilled]);
            self.slots[unfilled] = Slot::Filled(handler);
        }

        self.filled += 1;

        index
    }

    /// Remove an error handler.
    fn remove(&mut self, index: usize) {
        let slot = &mut self.slots[index];

        if let Slot::Filled(_) = slot {
            *slot = Slot::Unfilled(self.unfilled);
            self.unfilled = index;
            self.filled -= 1;
        }
    }

    /// Iterate over the error handlers.
    fn iter_mut(&mut self) -> impl Iterator<Item = (usize, &mut ErrorHook)> {
        self.slots
            .iter_mut()
            .enumerate()
            .filter_map(|(i, slot)| match slot {
                Slot::Filled(handler) => Some((i, handler)),
                _ => None,
            })
    }
}

/// Static unsafe error hook slot.
struct ErrorHookSlot(Cell<Option<ffi::XErrorHook>>);

unsafe impl Sync for ErrorHookSlot {}

impl ErrorHookSlot {
    #[cfg_attr(coverage, no_coverage)]
    const fn new() -> Self {
        Self(Cell::new(None))
    }

    unsafe fn get(&self) -> Option<ffi::XErrorHook> {
        self.0.get()
    }

    #[cfg_attr(coverage, no_coverage)]
    unsafe fn set(&self, hook: ffi::XErrorHook) {
        self.0.set(Some(hook));
    }
}