1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
#![allow(clippy::upper_case_acronyms)]
//! Traits over unaligned little-endian data (ULE, pronounced "yule").
//!
//! The main traits for this module are [`ULE`], [`AsULE`] and, [`VarULE`].
//!
//! See [the design doc](https://github.com/unicode-org/icu4x/blob/main/utils/zerovec/design_doc.md) for details on how these traits
//! works under the hood.
mod chars;
#[cfg(doc)]
pub mod custom;
mod encode;
mod macros;
mod multi;
mod niche;
mod option;
mod plain;
mod slices;
mod unvalidated;
pub mod tuple;
pub use super::ZeroVecError;
pub use chars::CharULE;
pub use encode::{encode_varule_to_box, EncodeAsVarULE};
pub use multi::MultiFieldsULE;
pub use niche::{NicheBytes, NichedOption, NichedOptionULE};
pub use option::{OptionULE, OptionVarULE};
pub use plain::RawBytesULE;
pub use unvalidated::{UnvalidatedChar, UnvalidatedStr};
use alloc::alloc::Layout;
use alloc::borrow::ToOwned;
use alloc::boxed::Box;
use core::{mem, slice};
/// Fixed-width, byte-aligned data that can be cast to and from a little-endian byte slice.
///
/// If you need to implement this trait, consider using [`#[make_ule]`](crate::make_ule) or
/// [`#[derive(ULE)]`](macro@ULE) instead.
///
/// Types that are not fixed-width can implement [`VarULE`] instead.
///
/// "ULE" stands for "Unaligned little-endian"
///
/// # Safety
///
/// Safety checklist for `ULE`:
///
/// 1. The type *must not* include any uninitialized or padding bytes.
/// 2. The type must have an alignment of 1 byte.
/// 3. The impl of [`ULE::validate_byte_slice()`] *must* return an error if the given byte slice
/// would not represent a valid slice of this type.
/// 4. The impl of [`ULE::validate_byte_slice()`] *must* return an error if the given byte slice
/// cannot be used in its entirety (if its length is not a multiple of `size_of::<Self>()`).
/// 5. All other methods *must* be left with their default impl, or else implemented according to
/// their respective safety guidelines.
/// 6. Acknowledge the following note about the equality invariant.
///
/// If the ULE type is a struct only containing other ULE types (or other types which satisfy invariants 1 and 2,
/// like `[u8; N]`), invariants 1 and 2 can be achieved via `#[repr(C, packed)]` or `#[repr(transparent)]`.
///
/// # Equality invariant
///
/// A non-safety invariant is that if `Self` implements `PartialEq`, the it *must* be logically
/// equivalent to byte equality on [`Self::as_byte_slice()`].
///
/// It may be necessary to introduce a "canonical form" of the ULE if logical equality does not
/// equal byte equality. In such a case, [`Self::validate_byte_slice()`] should return an error
/// for any values that are not in canonical form. For example, the decimal strings "1.23e4" and
/// "12.3e3" are logically equal, but not byte-for-byte equal, so we could define a canonical form
/// where only a single digit is allowed before `.`.
///
/// Failure to follow this invariant will cause surprising behavior in `PartialEq`, which may
/// result in unpredictable operations on `ZeroVec`, `VarZeroVec`, and `ZeroMap`.
pub unsafe trait ULE
where
Self: Sized,
Self: Copy + 'static,
{
/// Validates a byte slice, `&[u8]`.
///
/// If `Self` is not well-defined for all possible bit values, the bytes should be validated.
/// If the bytes can be transmuted, *in their entirety*, to a valid slice of `Self`, then `Ok`
/// should be returned; otherwise, `Self::Error` should be returned.
fn validate_byte_slice(bytes: &[u8]) -> Result<(), ZeroVecError>;
/// Parses a byte slice, `&[u8]`, and return it as `&[Self]` with the same lifetime.
///
/// If `Self` is not well-defined for all possible bit values, the bytes should be validated,
/// and an error should be returned in the same cases as [`Self::validate_byte_slice()`].
///
/// The default implementation executes [`Self::validate_byte_slice()`] followed by
/// [`Self::from_byte_slice_unchecked`].
///
/// Note: The following equality should hold: `bytes.len() % size_of::<Self>() == 0`. This
/// means that the returned slice can span the entire byte slice.
fn parse_byte_slice(bytes: &[u8]) -> Result<&[Self], ZeroVecError> {
Self::validate_byte_slice(bytes)?;
debug_assert_eq!(bytes.len() % mem::size_of::<Self>(), 0);
Ok(unsafe { Self::from_byte_slice_unchecked(bytes) })
}
/// Takes a byte slice, `&[u8]`, and return it as `&[Self]` with the same lifetime, assuming
/// that this byte slice has previously been run through [`Self::parse_byte_slice()`] with
/// success.
///
/// The default implementation performs a pointer cast to the same region of memory.
///
/// # Safety
///
/// ## Callers
///
/// Callers of this method must take care to ensure that `bytes` was previously passed through
/// [`Self::validate_byte_slice()`] with success (and was not changed since then).
///
/// ## Implementors
///
/// Implementations of this method may call unsafe functions to cast the pointer to the correct
/// type, assuming the "Callers" invariant above.
///
/// Keep in mind that `&[Self]` and `&[u8]` may have different lengths.
///
/// Safety checklist:
///
/// 1. This method *must* return the same result as [`Self::parse_byte_slice()`].
/// 2. This method *must* return a slice to the same region of memory as the argument.
#[inline]
unsafe fn from_byte_slice_unchecked(bytes: &[u8]) -> &[Self] {
let data = bytes.as_ptr();
let len = bytes.len() / mem::size_of::<Self>();
debug_assert_eq!(bytes.len() % mem::size_of::<Self>(), 0);
core::slice::from_raw_parts(data as *const Self, len)
}
/// Given `&[Self]`, returns a `&[u8]` with the same lifetime.
///
/// The default implementation performs a pointer cast to the same region of memory.
///
/// # Safety
///
/// Implementations of this method should call potentially unsafe functions to cast the
/// pointer to the correct type.
///
/// Keep in mind that `&[Self]` and `&[u8]` may have different lengths.
#[inline]
#[allow(clippy::wrong_self_convention)] // https://github.com/rust-lang/rust-clippy/issues/7219
fn as_byte_slice(slice: &[Self]) -> &[u8] {
unsafe {
slice::from_raw_parts(slice as *const [Self] as *const u8, mem::size_of_val(slice))
}
}
}
/// A trait for any type that has a 1:1 mapping with an unaligned little-endian (ULE) type.
///
/// If you need to implement this trait, consider using [`#[make_ule]`](crate::make_ule) instead.
pub trait AsULE: Copy {
/// The ULE type corresponding to `Self`.
///
/// Types having infallible conversions from all bit values (Plain Old Data) can use
/// `RawBytesULE` with the desired width; for example, `u32` uses `RawBytesULE<4>`.
///
/// Types that are not well-defined for all bit values should implement a custom ULE.
type ULE: ULE;
/// Converts from `Self` to `Self::ULE`.
///
/// This function may involve byte order swapping (native-endian to little-endian).
///
/// For best performance, mark your implementation of this function `#[inline]`.
fn to_unaligned(self) -> Self::ULE;
/// Converts from `Self::ULE` to `Self`.
///
/// This function may involve byte order swapping (little-endian to native-endian).
///
/// For best performance, mark your implementation of this function `#[inline]`.
///
/// # Safety
///
/// This function is infallible because bit validation should have occurred when `Self::ULE`
/// was first constructed. An implementation may therefore involve an `unsafe{}` block, like
/// `from_bytes_unchecked()`.
fn from_unaligned(unaligned: Self::ULE) -> Self;
}
/// An [`EqULE`] type is one whose byte sequence equals the byte sequence of its ULE type on
/// little-endian platforms. This enables certain performance optimizations, such as
/// [`ZeroVec::try_from_slice`](crate::ZeroVec::try_from_slice).
///
/// # Implementation safety
///
/// This trait is safe to implement if the type's ULE (as defined by `impl `[`AsULE`]` for T`)
/// has an equal byte sequence as the type itself on little-endian platforms; i.e., one where
/// `*const T` can be cast to a valid `*const T::ULE`.
pub unsafe trait EqULE: AsULE {}
/// A trait for a type where aligned slices can be cast to unaligned slices.
///
/// Auto-implemented on all types implementing [`EqULE`].
pub trait SliceAsULE
where
Self: AsULE + Sized,
{
/// Converts from `&[Self]` to `&[Self::ULE]` if possible.
///
/// In general, this function returns `Some` on little-endian and `None` on big-endian.
fn slice_to_unaligned(slice: &[Self]) -> Option<&[Self::ULE]>;
}
#[cfg(target_endian = "little")]
impl<T> SliceAsULE for T
where
T: EqULE,
{
#[inline]
fn slice_to_unaligned(slice: &[Self]) -> Option<&[Self::ULE]> {
// This is safe because on little-endian platforms, the byte sequence of &[T]
// is equivalent to the byte sequence of &[T::ULE] by the contract of EqULE,
// and &[T::ULE] has equal or looser alignment than &[T].
let ule_slice =
unsafe { core::slice::from_raw_parts(slice.as_ptr() as *const Self::ULE, slice.len()) };
Some(ule_slice)
}
}
#[cfg(not(target_endian = "little"))]
impl<T> SliceAsULE for T
where
T: EqULE,
{
#[inline]
fn slice_to_unaligned(_: &[Self]) -> Option<&[Self::ULE]> {
None
}
}
/// Variable-width, byte-aligned data that can be cast to and from a little-endian byte slice.
///
/// If you need to implement this trait, consider using [`#[make_varule]`](crate::make_varule) or
/// [`#[derive(VarULE)]`](macro@VarULE) instead.
///
/// This trait is mostly for unsized types like `str` and `[T]`. It can be implemented on sized types;
/// however, it is much more preferable to use [`ULE`] for that purpose. The [`custom`] module contains
/// additional documentation on how this type can be implemented on custom types.
///
/// If deserialization with `VarZeroVec` is desired is recommended to implement `Deserialize` for
/// `Box<T>` (serde does not do this automatically for unsized `T`).
///
/// For convenience it is typically desired to implement [`EncodeAsVarULE`] and [`ZeroFrom`](zerofrom::ZeroFrom)
/// on some stack type to convert to and from the ULE type efficiently when necessary.
///
/// # Safety
///
/// Safety checklist for `VarULE`:
///
/// 1. The type *must not* include any uninitialized or padding bytes.
/// 2. The type must have an alignment of 1 byte.
/// 3. The impl of [`VarULE::validate_byte_slice()`] *must* return an error if the given byte slice
/// would not represent a valid slice of this type.
/// 4. The impl of [`VarULE::validate_byte_slice()`] *must* return an error if the given byte slice
/// cannot be used in its entirety.
/// 5. The impl of [`VarULE::from_byte_slice_unchecked()`] must produce a reference to the same
/// underlying data assuming that the given bytes previously passed validation.
/// 6. All other methods *must* be left with their default impl, or else implemented according to
/// their respective safety guidelines.
/// 7. Acknowledge the following note about the equality invariant.
///
/// If the ULE type is a struct only containing other ULE/VarULE types (or other types which satisfy invariants 1 and 2,
/// like `[u8; N]`), invariants 1 and 2 can be achieved via `#[repr(C, packed)]` or `#[repr(transparent)]`.
///
/// # Equality invariant
///
/// A non-safety invariant is that if `Self` implements `PartialEq`, the it *must* be logically
/// equivalent to byte equality on [`Self::as_byte_slice()`].
///
/// It may be necessary to introduce a "canonical form" of the ULE if logical equality does not
/// equal byte equality. In such a case, [`Self::validate_byte_slice()`] should return an error
/// for any values that are not in canonical form. For example, the decimal strings "1.23e4" and
/// "12.3e3" are logically equal, but not byte-for-byte equal, so we could define a canonical form
/// where only a single digit is allowed before `.`.
///
/// There may also be cases where a `VarULE` has muiltiple canonical forms, such as a faster
/// version and a smaller version. The cleanest way to handle this case would be separate types.
/// However, if this is not feasible, then the application should ensure that the data it is
/// deserializing is in the expected form. For example, if the data is being loaded from an
/// external source, then requests could carry information about the expected form of the data.
///
/// Failure to follow this invariant will cause surprising behavior in `PartialEq`, which may
/// result in unpredictable operations on `ZeroVec`, `VarZeroVec`, and `ZeroMap`.
pub unsafe trait VarULE: 'static {
/// Validates a byte slice, `&[u8]`.
///
/// If `Self` is not well-defined for all possible bit values, the bytes should be validated.
/// If the bytes can be transmuted, *in their entirety*, to a valid `&Self`, then `Ok` should
/// be returned; otherwise, `Self::Error` should be returned.
fn validate_byte_slice(_bytes: &[u8]) -> Result<(), ZeroVecError>;
/// Parses a byte slice, `&[u8]`, and return it as `&Self` with the same lifetime.
///
/// If `Self` is not well-defined for all possible bit values, the bytes should be validated,
/// and an error should be returned in the same cases as [`Self::validate_byte_slice()`].
///
/// The default implementation executes [`Self::validate_byte_slice()`] followed by
/// [`Self::from_byte_slice_unchecked`].
///
/// Note: The following equality should hold: `size_of_val(result) == size_of_val(bytes)`,
/// where `result` is the successful return value of the method. This means that the return
/// value spans the entire byte slice.
fn parse_byte_slice(bytes: &[u8]) -> Result<&Self, ZeroVecError> {
Self::validate_byte_slice(bytes)?;
let result = unsafe { Self::from_byte_slice_unchecked(bytes) };
debug_assert_eq!(mem::size_of_val(result), mem::size_of_val(bytes));
Ok(result)
}
/// Takes a byte slice, `&[u8]`, and return it as `&Self` with the same lifetime, assuming
/// that this byte slice has previously been run through [`Self::parse_byte_slice()`] with
/// success.
///
/// # Safety
///
/// ## Callers
///
/// Callers of this method must take care to ensure that `bytes` was previously passed through
/// [`Self::validate_byte_slice()`] with success (and was not changed since then).
///
/// ## Implementors
///
/// Implementations of this method may call unsafe functions to cast the pointer to the correct
/// type, assuming the "Callers" invariant above.
///
/// Safety checklist:
///
/// 1. This method *must* return the same result as [`Self::parse_byte_slice()`].
/// 2. This method *must* return a slice to the same region of memory as the argument.
unsafe fn from_byte_slice_unchecked(bytes: &[u8]) -> &Self;
/// Given `&Self`, returns a `&[u8]` with the same lifetime.
///
/// The default implementation performs a pointer cast to the same region of memory.
///
/// # Safety
///
/// Implementations of this method should call potentially unsafe functions to cast the
/// pointer to the correct type.
#[inline]
fn as_byte_slice(&self) -> &[u8] {
unsafe { slice::from_raw_parts(self as *const Self as *const u8, mem::size_of_val(self)) }
}
/// Allocate on the heap as a `Box<T>`
#[inline]
fn to_boxed(&self) -> Box<Self> {
let bytesvec = self.as_byte_slice().to_owned().into_boxed_slice();
let bytesvec = mem::ManuallyDrop::new(bytesvec);
unsafe {
// Get the pointer representation
let ptr: *mut Self =
Self::from_byte_slice_unchecked(&bytesvec) as *const Self as *mut Self;
assert_eq!(Layout::for_value(&*ptr), Layout::for_value(&**bytesvec));
// Transmute the pointer to an owned pointer
Box::from_raw(ptr)
}
}
}
// Proc macro reexports
//
// These exist so that our docs can use intra-doc links.
// Due to quirks of how rustdoc does documentation on reexports, these must be in this module and not reexported from
// a submodule
/// Custom derive for [`ULE`].
///
/// This can be attached to [`Copy`] structs containing only [`ULE`] types.
///
/// Most of the time, it is recommended one use [`#[make_ule]`](crate::make_ule) instead of defining
/// a custom ULE type.
#[cfg(feature = "derive")]
pub use zerovec_derive::ULE;
/// Custom derive for [`VarULE`]
///
/// This can be attached to structs containing only [`ULE`] types with one [`VarULE`] type at the end.
///
/// Most of the time, it is recommended one use [`#[make_varule]`](crate::make_varule) instead of defining
/// a custom [`VarULE`] type.
#[cfg(feature = "derive")]
pub use zerovec_derive::VarULE;