zune_inflate/decoder.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
#![allow(unused_imports)]
use alloc::vec::Vec;
use alloc::{format, vec};
use crate::bitstream::BitStreamReader;
use crate::constants::{
DEFLATE_BLOCKTYPE_DYNAMIC_HUFFMAN, DEFLATE_BLOCKTYPE_RESERVED, DEFLATE_BLOCKTYPE_STATIC,
DEFLATE_BLOCKTYPE_UNCOMPRESSED, DEFLATE_MAX_CODEWORD_LENGTH,
DEFLATE_MAX_LITLEN_CODEWORD_LENGTH, DEFLATE_MAX_NUM_SYMS, DEFLATE_MAX_OFFSET_CODEWORD_LENGTH,
DEFLATE_MAX_PRE_CODEWORD_LEN, DEFLATE_NUM_LITLEN_SYMS, DEFLATE_NUM_OFFSET_SYMS,
DEFLATE_NUM_PRECODE_SYMS, DEFLATE_PRECODE_LENS_PERMUTATION, DELFATE_MAX_LENS_OVERRUN,
FASTCOPY_BYTES, FASTLOOP_MAX_BYTES_WRITTEN, HUFFDEC_END_OF_BLOCK, HUFFDEC_EXCEPTIONAL,
HUFFDEC_LITERAL, HUFFDEC_SUITABLE_POINTER, LITLEN_DECODE_BITS, LITLEN_DECODE_RESULTS,
LITLEN_ENOUGH, LITLEN_TABLE_BITS, OFFSET_DECODE_RESULTS, OFFSET_ENOUGH, OFFSET_TABLEBITS,
PRECODE_DECODE_RESULTS, PRECODE_ENOUGH, PRECODE_TABLE_BITS
};
use crate::errors::{DecodeErrorStatus, InflateDecodeErrors};
#[cfg(feature = "gzip")]
use crate::gzip_constants::{
GZIP_CM_DEFLATE, GZIP_FCOMMENT, GZIP_FEXTRA, GZIP_FHCRC, GZIP_FNAME, GZIP_FOOTER_SIZE,
GZIP_FRESERVED, GZIP_ID1, GZIP_ID2
};
use crate::utils::{copy_rep_matches, fixed_copy_within, make_decode_table_entry};
struct DeflateHeaderTables
{
litlen_decode_table: [u32; LITLEN_ENOUGH],
offset_decode_table: [u32; OFFSET_ENOUGH]
}
impl Default for DeflateHeaderTables
{
fn default() -> Self
{
DeflateHeaderTables {
litlen_decode_table: [0; LITLEN_ENOUGH],
offset_decode_table: [0; OFFSET_ENOUGH]
}
}
}
/// Options that can influence decompression
/// in Deflate/Zlib/Gzip
///
/// To use them, pass a customized options to
/// the deflate decoder.
#[derive(Copy, Clone)]
pub struct DeflateOptions
{
limit: usize,
confirm_checksum: bool,
size_hint: usize
}
impl Default for DeflateOptions
{
fn default() -> Self
{
DeflateOptions {
limit: 1 << 30,
confirm_checksum: true,
size_hint: 37000
}
}
}
impl DeflateOptions
{
/// Get deflate/zlib limit option
///
/// The decoder won't extend the inbuilt limit and will
/// return an error if the limit is exceeded
///
/// # Returns
/// The currently set limit of the instance
/// # Note
/// This is provided as a best effort, correctly quiting
/// is detrimental to speed and hence this should not be relied too much.
pub const fn get_limit(&self) -> usize
{
self.limit
}
/// Set a limit to the internal vector
/// used to store decoded zlib/deflate output.
///
/// # Arguments
/// limit: The new decompressor limit
/// # Returns
/// A modified version of DeflateDecoder
///
/// # Note
/// This is provided as a best effort, correctly quiting
/// is detrimental to speed and hence this should not be relied too much
#[must_use]
pub fn set_limit(mut self, limit: usize) -> Self
{
self.limit = limit;
self
}
/// Get whether the decoder will confirm a checksum
/// after decoding
pub const fn get_confirm_checksum(&self) -> bool
{
self.confirm_checksum
}
/// Set whether the decoder should confirm a checksum
/// after decoding
///
/// Note, you should definitely confirm your checksum, use
/// this with caution, otherwise data returned may be corrupt
///
/// # Arguments
/// - yes: When true, the decoder will confirm checksum
/// when false, the decoder will skip checksum verification
/// # Notes
/// This does not have an influence for deflate decoding as
/// it does not have a checksum
pub fn set_confirm_checksum(mut self, yes: bool) -> Self
{
self.confirm_checksum = yes;
self
}
/// Get the default set size hint for the decompressor
///
/// The decompressor initializes the internal storage for decompressed bytes
/// with this size and will reallocate the vec if the decompressed size becomes bigger
/// than this, but when the user currently knows how big the output will be, can be used
/// to prevent unnecessary re-allocations
pub const fn get_size_hint(&self) -> usize
{
self.size_hint
}
/// Set the size hint for the decompressor
///
/// This can be used to prevent multiple re-allocations
#[must_use]
pub const fn set_size_hint(mut self, hint: usize) -> Self
{
self.size_hint = hint;
self
}
}
/// A deflate decoder instance.
///
/// The decoder manages output buffer as opposed to requiring the caller to provide a pre-allocated buffer
/// it tracks number of bytes written and on successfully reaching the
/// end of the block, will return a vector with exactly
/// the number of decompressed bytes.
///
/// This means that it may use up huge amounts of memory if not checked, but
/// there are [options] that can prevent that
///
/// [options]: DeflateOptions
pub struct DeflateDecoder<'a>
{
data: &'a [u8],
position: usize,
stream: BitStreamReader<'a>,
is_last_block: bool,
static_codes_loaded: bool,
deflate_header_tables: DeflateHeaderTables,
options: DeflateOptions
}
impl<'a> DeflateDecoder<'a>
{
/// Create a new decompressor that will read compressed
/// data from `data` and return a new vector containing new data
///
/// # Arguments
/// - `data`: The compressed data. Data can be of any type
/// gzip,zlib or raw deflate.
///
/// # Returns
/// A decoder instance which will pull compressed data from `data` to inflate the output output
///
/// # Note
///
/// The default output size limit is **1 GiB.**
/// this is to protect the end user against ddos attacks as deflate does not specify it's
/// output size upfront
///
/// The checksum will be verified depending on the called function.
/// this only works for zlib and gzip since deflate does not have a checksum
///
/// These defaults can be overridden via [new_with_options()](Self::new_with_options).
pub fn new(data: &'a [u8]) -> DeflateDecoder<'a>
{
let options = DeflateOptions::default();
Self::new_with_options(data, options)
}
/// Create new decoder with specified options
///
/// This can be used to fine tune the decoder to the user's
/// needs.
///
///
/// # Arguments
/// - `data`: The compressed data. Data can be of any format i.e
/// gzip, zlib or raw deflate.
/// - `options` : A set of user defined options which tune how the decompressor
///
/// # Returns
/// A decoder instance which will pull compressed data from `data` to inflate output
///
/// # Example
/// ```no_run
/// use zune_inflate::{DeflateDecoder, DeflateOptions};
/// let data = [37];
/// let options = DeflateOptions::default()
/// .set_confirm_checksum(true) // confirm the checksum for zlib and gzip
/// .set_limit(1000); // how big I think the input will be
/// let mut decoder = DeflateDecoder::new_with_options(&data,options);
/// // do some stuff and then call decode
/// let data = decoder.decode_zlib();
///
/// ```
pub fn new_with_options(data: &'a [u8], options: DeflateOptions) -> DeflateDecoder<'a>
{
// create stream
DeflateDecoder {
data,
position: 0,
stream: BitStreamReader::new(data),
is_last_block: false,
static_codes_loaded: false,
deflate_header_tables: DeflateHeaderTables::default(),
options
}
}
/// Decode zlib-encoded data returning the uncompressed in a `Vec<u8>`
/// or an error if something went wrong.
///
/// Bytes consumed will be from the data passed when the
/// `new` method was called.
///
/// # Arguments
/// - None
/// # Returns
/// Result type containing the decoded data.
///
/// - `Ok(Vec<u8>)`: Decoded vector containing the uncompressed bytes
/// - `Err(InflateDecodeErrors)`: Error that occurred during decoding
///
/// It's possible to recover bytes even after an error occurred, bytes up
/// to when error was encountered are stored in [InflateDecodeErrors]
///
///
/// # Note
/// This needs the `zlib` feature enabled to be available otherwise it's a
/// compile time error
///
/// [InflateDecodeErrors]:crate::errors::InflateDecodeErrors
///
#[cfg(feature = "zlib")]
pub fn decode_zlib(&mut self) -> Result<Vec<u8>, InflateDecodeErrors>
{
use crate::utils::calc_adler_hash;
if self.data.len()
< 2 /* zlib header */
+ 4
/* Deflate */
{
return Err(InflateDecodeErrors::new_with_error(
DecodeErrorStatus::InsufficientData
));
}
// Zlib flags
// See https://www.ietf.org/rfc/rfc1950.txt for
// the RFC
let cmf = self.data[0];
let flg = self.data[1];
let cm = cmf & 0xF;
let cinfo = cmf >> 4;
// let fcheck = flg & 0xF;
// let fdict = (flg >> 4) & 1;
// let flevel = flg >> 5;
// confirm we have the right deflate methods
if cm != 8
{
if cm == 15
{
return Err(InflateDecodeErrors::new_with_error(DecodeErrorStatus::Generic(
"CM of 15 is preserved by the standard,currently don't know how to handle it"
)));
}
return Err(InflateDecodeErrors::new_with_error(
DecodeErrorStatus::GenericStr(format!("Unknown zlib compression method {cm}"))
));
}
if cinfo > 7
{
return Err(InflateDecodeErrors::new_with_error(
DecodeErrorStatus::GenericStr(format!(
"Unknown cinfo `{cinfo}` greater than 7, not allowed"
))
));
}
let flag_checks = (u16::from(cmf) * 256) + u16::from(flg);
if flag_checks % 31 != 0
{
return Err(InflateDecodeErrors::new_with_error(
DecodeErrorStatus::Generic("FCHECK integrity not preserved")
));
}
self.position = 2;
let data = self.decode_deflate()?;
if self.options.confirm_checksum
{
// Get number of consumed bytes from the input
let out_pos = self.stream.get_position() + self.position + self.stream.over_read;
// read adler
if let Some(adler) = self.data.get(out_pos..out_pos + 4)
{
let adler_bits: [u8; 4] = adler.try_into().unwrap();
let adler32_expected = u32::from_be_bytes(adler_bits);
let adler32_found = calc_adler_hash(&data);
if adler32_expected != adler32_found
{
let err_msg =
DecodeErrorStatus::MismatchedAdler(adler32_expected, adler32_found);
let err = InflateDecodeErrors::new(err_msg, data);
return Err(err);
}
}
else
{
let err = InflateDecodeErrors::new(DecodeErrorStatus::InsufficientData, data);
return Err(err);
}
}
Ok(data)
}
/// Decode a gzip encoded data and return the uncompressed data in a
/// `Vec<u8>` or an error if something went wrong
///
/// Bytes consumed will be from the data passed when the
/// `new` method was called.
///
/// # Arguments
/// - None
/// # Returns
/// Result type containing the decoded data.
///
/// - `Ok(Vec<u8>)`: Decoded vector containing the uncompressed bytes
/// - `Err(InflateDecodeErrors)`: Error that occurred during decoding
///
/// It's possible to recover bytes even after an error occurred, bytes up
/// to when error was encountered are stored in [InflateDecodeErrors]
///
/// # Note
/// This needs the `gzip` feature enabled to be available, otherwise it's a
/// compile time error
///
/// [InflateDecodeErrors]:crate::errors::InflateDecodeErrors
///
#[cfg(feature = "gzip")]
pub fn decode_gzip(&mut self) -> Result<Vec<u8>, InflateDecodeErrors>
{
if self.data.len() < 18
{
return Err(InflateDecodeErrors::new_with_error(
DecodeErrorStatus::InsufficientData
));
}
if self.data[self.position] != GZIP_ID1
{
return Err(InflateDecodeErrors::new_with_error(
DecodeErrorStatus::CorruptData
));
}
self.position += 1;
if self.data[self.position] != GZIP_ID2
{
return Err(InflateDecodeErrors::new_with_error(
DecodeErrorStatus::CorruptData
));
}
self.position += 1;
if self.data[self.position] != GZIP_CM_DEFLATE
{
return Err(InflateDecodeErrors::new_with_error(
DecodeErrorStatus::CorruptData
));
}
self.position += 1;
let flg = self.data[self.position];
self.position += 1;
// skip mtime
self.position += 4;
// skip xfl
self.position += 1;
// skip os
self.position += 1;
if (flg & GZIP_FRESERVED) != 0
{
return Err(InflateDecodeErrors::new_with_error(
DecodeErrorStatus::CorruptData
));
}
// extra field
if (flg & GZIP_FEXTRA) != 0
{
let len_bytes = self.data[self.position..self.position + 2]
.try_into()
.unwrap();
let xlen = usize::from(u16::from_le_bytes(len_bytes));
self.position += 2;
if self.data.len().saturating_sub(self.position) < xlen + GZIP_FOOTER_SIZE
{
return Err(InflateDecodeErrors::new_with_error(
DecodeErrorStatus::CorruptData
));
}
self.position += xlen;
}
// original file name zero terminated
if (flg & GZIP_FNAME) != 0
{
loop
{
if let Some(byte) = self.data.get(self.position)
{
self.position += 1;
if *byte == 0
{
break;
}
}
else
{
return Err(InflateDecodeErrors::new_with_error(
DecodeErrorStatus::InsufficientData
));
}
}
}
// File comment zero terminated
if (flg & GZIP_FCOMMENT) != 0
{
loop
{
if let Some(byte) = self.data.get(self.position)
{
self.position += 1;
if *byte == 0
{
break;
}
}
else
{
return Err(InflateDecodeErrors::new_with_error(
DecodeErrorStatus::InsufficientData
));
}
}
}
// crc16 for gzip header
if (flg & GZIP_FHCRC) != 0
{
self.position += 2;
}
if self.position + GZIP_FOOTER_SIZE > self.data.len()
{
return Err(InflateDecodeErrors::new_with_error(
DecodeErrorStatus::InsufficientData
));
}
let data = self.decode_deflate()?;
let mut out_pos = self.stream.get_position() + self.position + self.stream.over_read;
if self.options.confirm_checksum
{
// Get number of consumed bytes from the input
if let Some(crc) = self.data.get(out_pos..out_pos + 4)
{
let crc_bits: [u8; 4] = crc.try_into().unwrap();
let crc32_expected = u32::from_le_bytes(crc_bits);
let crc32_found = !crate::crc::crc32(&data, !0);
if crc32_expected != crc32_found
{
let err_msg = DecodeErrorStatus::MismatchedCRC(crc32_expected, crc32_found);
let err = InflateDecodeErrors::new(err_msg, data);
return Err(err);
}
}
else
{
let err = InflateDecodeErrors::new(DecodeErrorStatus::InsufficientData, data);
return Err(err);
}
}
//checksum
out_pos += 4;
if let Some(val) = self.data.get(out_pos..out_pos + 4)
{
let actual_bytes: [u8; 4] = val.try_into().unwrap();
let ac = u32::from_le_bytes(actual_bytes) as usize;
if data.len() != ac
{
let err = DecodeErrorStatus::Generic("ISIZE does not match actual bytes");
let err = InflateDecodeErrors::new(err, data);
return Err(err);
}
}
else
{
let err = InflateDecodeErrors::new(DecodeErrorStatus::InsufficientData, data);
return Err(err);
}
Ok(data)
}
/// Decode a deflate stream returning the data as `Vec<u8>` or an error
/// indicating what went wrong.
/// # Arguments
/// - None
/// # Returns
/// Result type containing the decoded data.
///
/// - `Ok(Vec<u8>)`: Decoded vector containing the uncompressed bytes
/// - `Err(InflateDecodeErrors)`: Error that occurred during decoding
///
/// It's possible to recover bytes even after an error occurred, bytes up
/// to when error was encountered are stored in [InflateDecodeErrors]
///
///
/// # Example
/// ```no_run
/// let data = [42]; // answer to life, the universe and everything
///
/// let mut decoder = zune_inflate::DeflateDecoder::new(&data);
/// let bytes = decoder.decode_deflate().unwrap();
/// ```
///
/// [InflateDecodeErrors]:crate::errors::InflateDecodeErrors
pub fn decode_deflate(&mut self) -> Result<Vec<u8>, InflateDecodeErrors>
{
self.start_deflate_block()
}
/// Main inner loop for decompressing deflate data
#[allow(unused_assignments)]
fn start_deflate_block(&mut self) -> Result<Vec<u8>, InflateDecodeErrors>
{
// start deflate decode
// re-read the stream so that we can remove code read by zlib
self.stream = BitStreamReader::new(&self.data[self.position..]);
self.stream.refill();
// Output space for our decoded bytes.
let mut out_block = vec![0; self.options.size_hint];
// bits used
let mut src_offset = 0;
let mut dest_offset = 0;
loop
{
self.stream.refill();
self.is_last_block = self.stream.get_bits(1) == 1;
let block_type = self.stream.get_bits(2);
if block_type == DEFLATE_BLOCKTYPE_UNCOMPRESSED
{
/*
* Uncompressed block: copy 'len' bytes literally from the input
* buffer to the output buffer.
*/
/*
* The RFC says that
* skip any remaining bits in current partially
* processed byte
* read LEN and NLEN (see next section)
* copy LEN bytes of data to output
*/
if self.stream.over_read > usize::from(self.stream.get_bits_left() >> 3)
{
out_block.truncate(dest_offset);
let err_msg = DecodeErrorStatus::Generic("over-read stream");
let error = InflateDecodeErrors::new(err_msg, out_block);
return Err(error);
}
let partial_bits = self.stream.get_bits_left() & 7;
self.stream.drop_bits(partial_bits);
let len = self.stream.get_bits(16) as u16;
let nlen = self.stream.get_bits(16) as u16;
// copy to deflate
if len != !nlen
{
out_block.truncate(dest_offset);
let err_msg = DecodeErrorStatus::Generic("Len and nlen do not match");
let error = InflateDecodeErrors::new(err_msg, out_block);
return Err(error);
}
let len = len as usize;
let start = self.stream.get_position() + self.position + self.stream.over_read;
// ensure there is enough space for a fast copy
if dest_offset + len + FASTCOPY_BYTES > out_block.len()
{
// and if there is not, resize
let new_len = out_block.len() + RESIZE_BY + len;
out_block.resize(new_len, 0);
}
if self.data.get((start + len).saturating_sub(1)).is_none()
{
out_block.truncate(dest_offset);
let err_msg = DecodeErrorStatus::CorruptData;
let error = InflateDecodeErrors::new(err_msg, out_block);
return Err(error);
}
if dest_offset > self.options.limit
{
out_block.truncate(dest_offset);
let err_msg =
DecodeErrorStatus::OutputLimitExceeded(self.options.limit, out_block.len());
let error = InflateDecodeErrors::new(err_msg, out_block);
return Err(error);
}
out_block[dest_offset..dest_offset + len]
.copy_from_slice(&self.data[start..start + len]);
dest_offset += len;
// get the new position to write.
self.stream.position =
len + (self.stream.position - usize::from(self.stream.bits_left >> 3));
self.stream.reset();
if self.is_last_block
{
break;
}
continue;
}
else if block_type == DEFLATE_BLOCKTYPE_RESERVED
{
out_block.truncate(dest_offset);
let err_msg = DecodeErrorStatus::Generic("Reserved block type 0b11 encountered");
let error = InflateDecodeErrors::new(err_msg, out_block);
return Err(error);
}
// build decode tables for static and dynamic tables
match self.build_decode_table(block_type)
{
Ok(_) => (),
Err(value) =>
{
out_block.truncate(dest_offset);
let err_msg = value;
let error = InflateDecodeErrors::new(err_msg, out_block);
return Err(error);
}
};
// Tables are mutated into the struct, so at this point we know the tables
// are loaded, take a reference to them
let litlen_decode_table = &self.deflate_header_tables.litlen_decode_table;
let offset_decode_table = &self.deflate_header_tables.offset_decode_table;
/*
* This is the "fast loop" for decoding literals and matches. It does
* bounds checks on in_next and out_next in the loop conditions so that
* additional bounds checks aren't needed inside the loop body.
*
* To reduce latency, the bit-buffer is refilled and the next litlen
* decode table entry is preloaded before each loop iteration.
*/
let (mut literal, mut length, mut offset, mut entry) = (0, 0, 0, 0);
let mut saved_bitbuf;
'decode: loop
{
let close_src = 3 * FASTCOPY_BYTES < self.stream.remaining_bytes();
if close_src
{
self.stream.refill_inner_loop();
let lit_mask = self.stream.peek_bits::<LITLEN_DECODE_BITS>();
entry = litlen_decode_table[lit_mask];
'sequence: loop
{
// Resize the output vector here to ensure we can always have
// enough space for sloppy copies
if dest_offset + FASTLOOP_MAX_BYTES_WRITTEN > out_block.len()
{
let curr_len = out_block.len();
out_block.resize(curr_len + FASTLOOP_MAX_BYTES_WRITTEN + RESIZE_BY, 0)
}
// At this point entry contains the next value of the litlen
// This will always be the case so meaning all our exit paths need
// to load in the next entry.
// recheck after every sequence
// when we hit continue, we need to recheck this
// as we are trying to emulate a do while
let new_check = self.stream.src.len() < self.stream.position + 8;
if new_check
{
break 'sequence;
}
self.stream.refill_inner_loop();
/*
* Consume the bits for the litlen decode table entry. Save the
* original bit-buf for later, in case the extra match length
* bits need to be extracted from it.
*/
saved_bitbuf = self.stream.buffer;
self.stream.drop_bits((entry & 0xFF) as u8);
/*
* Begin by checking for a "fast" literal, i.e. a literal that
* doesn't need a subtable.
*/
if (entry & HUFFDEC_LITERAL) != 0
{
/*
* On 64-bit platforms, we decode up to 2 extra fast
* literals in addition to the primary item, as this
* increases performance and still leaves enough bits
* remaining for what follows. We could actually do 3,
* assuming LITLEN_TABLEBITS=11, but that actually
* decreases performance slightly (perhaps by messing
* with the branch prediction of the conditional refill
* that happens later while decoding the match offset).
*/
literal = entry >> 16;
let new_pos = self.stream.peek_bits::<LITLEN_DECODE_BITS>();
entry = litlen_decode_table[new_pos];
saved_bitbuf = self.stream.buffer;
self.stream.drop_bits(entry as u8);
let out: &mut [u8; 2] = out_block
.get_mut(dest_offset..dest_offset + 2)
.unwrap()
.try_into()
.unwrap();
out[0] = literal as u8;
dest_offset += 1;
if (entry & HUFFDEC_LITERAL) != 0
{
/*
* Another fast literal, but this one is in lieu of the
* primary item, so it doesn't count as one of the extras.
*/
// load in the next entry.
literal = entry >> 16;
let new_pos = self.stream.peek_bits::<LITLEN_DECODE_BITS>();
entry = litlen_decode_table[new_pos];
out[1] = literal as u8;
dest_offset += 1;
continue;
}
}
/*
* It's not a literal entry, so it can be a length entry, a
* subtable pointer entry, or an end-of-block entry. Detect the
* two unlikely cases by testing the HUFFDEC_EXCEPTIONAL flag.
*/
if (entry & HUFFDEC_EXCEPTIONAL) != 0
{
// Subtable pointer or end of block entry
if (entry & HUFFDEC_END_OF_BLOCK) != 0
{
// block done
break 'decode;
}
/*
* A subtable is required. Load and consume the
* subtable entry. The subtable entry can be of any
* type: literal, length, or end-of-block.
*/
let entry_position = ((entry >> 8) & 0x3F) as usize;
let mut pos = (entry >> 16) as usize;
saved_bitbuf = self.stream.buffer;
pos += self.stream.peek_var_bits(entry_position);
entry = litlen_decode_table[pos.min(LITLEN_ENOUGH - 1)];
self.stream.drop_bits(entry as u8);
if (entry & HUFFDEC_LITERAL) != 0
{
// decode a literal that required a sub table
let new_pos = self.stream.peek_bits::<LITLEN_DECODE_BITS>();
literal = entry >> 16;
entry = litlen_decode_table[new_pos];
*out_block.get_mut(dest_offset).unwrap_or(&mut 0) =
(literal & 0xFF) as u8;
dest_offset += 1;
continue;
}
if (entry & HUFFDEC_END_OF_BLOCK) != 0
{
break 'decode;
}
}
// At this point,we dropped at most 22 bits(LITLEN_DECODE is 11 and we
// can do it twice), we now just have 34 bits min remaining.
/*
* Decode the match length: the length base value associated
* with the litlen symbol (which we extract from the decode
* table entry), plus the extra length bits. We don't need to
* consume the extra length bits here, as they were included in
* the bits consumed by the entry earlier. We also don't need
* to check for too-long matches here, as this is inside the
* fast loop where it's already been verified that the output
* buffer has enough space remaining to copy a max-length match.
*/
let entry_dup = entry;
entry = offset_decode_table[self.stream.peek_bits::<OFFSET_TABLEBITS>()];
length = (entry_dup >> 16) as usize;
let mask = (1 << entry_dup as u8) - 1;
length += (saved_bitbuf & mask) as usize >> ((entry_dup >> 8) as u8);
// offset requires a subtable
if (entry & HUFFDEC_EXCEPTIONAL) != 0
{
self.stream.drop_bits(OFFSET_TABLEBITS as u8);
let extra = self.stream.peek_var_bits(((entry >> 8) & 0x3F) as usize);
entry = offset_decode_table[((entry >> 16) as usize + extra) & 511];
// refill to handle some weird edge case where we have
// less bits than needed for reading the lit-len
}
saved_bitbuf = self.stream.buffer;
self.stream.drop_bits((entry & 0xFF) as u8);
let mask = (1 << entry as u8) - 1;
offset = (entry >> 16) as usize;
offset += (saved_bitbuf & mask) as usize >> (((entry >> 8) & 0xFF) as u8);
if offset > dest_offset
{
out_block.truncate(dest_offset);
let err_msg = DecodeErrorStatus::CorruptData;
let error = InflateDecodeErrors::new(err_msg, out_block);
return Err(error);
}
src_offset = dest_offset - offset;
if self.stream.bits_left < 11
{
self.stream.refill_inner_loop();
}
// Copy some bytes unconditionally
// This makes us copy smaller match lengths quicker because we don't need
// a loop + don't send too much pressure to the Memory unit.
fixed_copy_within::<FASTCOPY_BYTES>(
&mut out_block,
src_offset,
dest_offset
);
entry = litlen_decode_table[self.stream.peek_bits::<LITLEN_DECODE_BITS>()];
let mut current_position = dest_offset;
dest_offset += length;
if offset == 1
{
// RLE fill with a single byte
let byte_to_repeat = out_block[src_offset];
out_block[current_position..dest_offset].fill(byte_to_repeat);
}
else if offset <= FASTCOPY_BYTES
&& current_position + offset < dest_offset
{
// The second conditional ensures we only come
// here if the first copy didn't succeed to copy just enough bytes for a rep
// match to be valid, i.e we want this path to be taken the least amount
// of times possible
// the unconditional copy above copied some bytes
// don't let it go into waste
// Increment the position we are in by the number of correct bytes
// currently copied
let mut src_position = src_offset + offset;
let mut dest_position = current_position + offset;
// loop copying offset bytes in place
// notice this loop does fixed copies but increments in offset bytes :)
// that is intentional.
loop
{
fixed_copy_within::<FASTCOPY_BYTES>(
&mut out_block,
src_position,
dest_position
);
src_position += offset;
dest_position += offset;
if dest_position > dest_offset
{
break;
}
}
}
else if length > FASTCOPY_BYTES
{
current_position += FASTCOPY_BYTES;
// fast non-overlapping copy
//
// We have enough space to write the ML+FAST_COPY bytes ahead
// so we know this won't come to shoot us in the foot.
//
// An optimization is to copy FAST_COPY_BITS per invocation
// Currently FASTCOPY_BYTES is 16, this fits in nicely as we
// it's a single SIMD instruction on a lot of things, i.e x86,Arm and even
// wasm.
// current position of the match
let mut dest_src_offset = src_offset + FASTCOPY_BYTES;
// Number of bytes we are to copy
// copy in batches of FAST_BYTES
'match_lengths: loop
{
// Safety: We resized out_block hence we know it can handle
// sloppy copies without it being out of bounds
//
// Reason: This is a latency critical loop, even branches start
// to matter
fixed_copy_within::<FASTCOPY_BYTES>(
&mut out_block,
dest_src_offset,
current_position
);
dest_src_offset += FASTCOPY_BYTES;
current_position += FASTCOPY_BYTES;
if current_position > dest_offset
{
break 'match_lengths;
}
}
}
if dest_offset > self.options.limit
{
out_block.truncate(dest_offset);
let err_msg = DecodeErrorStatus::OutputLimitExceeded(
self.options.limit,
dest_offset
);
let error = InflateDecodeErrors::new(err_msg, out_block);
return Err(error);
}
if self.stream.src.len() < self.stream.position + 8
{
// close to input end, move to the slower one
break 'sequence;
}
}
}
// generic loop that does things a bit slower but it's okay since it doesn't
// deal with a lot of things
// We can afford to be more careful here, checking that we do
// not drop non-existent bits etc etc as we do not have the
// assurances of the fast loop bits above.
loop
{
self.stream.refill();
if self.stream.over_read > usize::from(self.stream.bits_left >> 3)
{
out_block.truncate(dest_offset);
let err_msg = DecodeErrorStatus::CorruptData;
let error = InflateDecodeErrors::new(err_msg, out_block);
return Err(error);
}
let literal_mask = self.stream.peek_bits::<LITLEN_DECODE_BITS>();
entry = litlen_decode_table[literal_mask];
saved_bitbuf = self.stream.buffer;
self.stream.drop_bits((entry & 0xFF) as u8);
if (entry & HUFFDEC_SUITABLE_POINTER) != 0
{
let extra = self.stream.peek_var_bits(((entry >> 8) & 0x3F) as usize);
entry = litlen_decode_table[(entry >> 16) as usize + extra];
saved_bitbuf = self.stream.buffer;
self.stream.drop_bits((entry & 0xFF) as u8);
}
length = (entry >> 16) as usize;
if (entry & HUFFDEC_LITERAL) != 0
{
resize_and_push(&mut out_block, dest_offset, length as u8);
dest_offset += 1;
continue;
}
if (entry & HUFFDEC_END_OF_BLOCK) != 0
{
break 'decode;
}
let mask = (1 << entry as u8) - 1;
length += (saved_bitbuf & mask) as usize >> ((entry >> 8) as u8);
self.stream.refill();
entry = offset_decode_table[self.stream.peek_bits::<OFFSET_TABLEBITS>()];
if (entry & HUFFDEC_EXCEPTIONAL) != 0
{
// offset requires a subtable
self.stream.drop_bits(OFFSET_TABLEBITS as u8);
let extra = self.stream.peek_var_bits(((entry >> 8) & 0x3F) as usize);
entry = offset_decode_table[((entry >> 16) as usize + extra) & 511];
}
// ensure there is enough space for a fast copy
if dest_offset + length + FASTCOPY_BYTES > out_block.len()
{
let new_len = out_block.len() + RESIZE_BY + length;
out_block.resize(new_len, 0);
}
saved_bitbuf = self.stream.buffer;
let mask = (1 << (entry & 0xFF) as u8) - 1;
offset = (entry >> 16) as usize;
offset += (saved_bitbuf & mask) as usize >> ((entry >> 8) as u8);
if offset > dest_offset
{
out_block.truncate(dest_offset);
let err_msg = DecodeErrorStatus::CorruptData;
let error = InflateDecodeErrors::new(err_msg, out_block);
return Err(error);
}
src_offset = dest_offset - offset;
self.stream.drop_bits(entry as u8);
let (dest_src, dest_ptr) = out_block.split_at_mut(dest_offset);
if src_offset + length + FASTCOPY_BYTES > dest_offset
{
// overlapping copy
// do a simple rep match
copy_rep_matches(&mut out_block, src_offset, dest_offset, length);
}
else
{
dest_ptr[0..length]
.copy_from_slice(&dest_src[src_offset..src_offset + length]);
}
dest_offset += length;
if dest_offset > self.options.limit
{
out_block.truncate(dest_offset);
let err_msg =
DecodeErrorStatus::OutputLimitExceeded(self.options.limit, dest_offset);
let error = InflateDecodeErrors::new(err_msg, out_block);
return Err(error);
}
}
}
/*
* If any of the implicit appended zero bytes were consumed (not just
* refilled) before hitting end of stream, then the data is bad.
*/
if self.stream.over_read > usize::from(self.stream.bits_left >> 3)
{
out_block.truncate(dest_offset);
let err_msg = DecodeErrorStatus::CorruptData;
let error = InflateDecodeErrors::new(err_msg, out_block);
return Err(error);
}
if self.is_last_block
{
break;
}
}
// decompression. DONE
// Truncate data to match the number of actual
// bytes written.
out_block.truncate(dest_offset);
Ok(out_block)
}
/// Build decode tables for static and dynamic
/// huffman blocks.
fn build_decode_table(&mut self, block_type: u64) -> Result<(), DecodeErrorStatus>
{
const COUNT: usize =
DEFLATE_NUM_LITLEN_SYMS + DEFLATE_NUM_OFFSET_SYMS + DELFATE_MAX_LENS_OVERRUN;
let mut lens = [0_u8; COUNT];
let mut precode_lens = [0; DEFLATE_NUM_PRECODE_SYMS];
let mut precode_decode_table = [0_u32; PRECODE_ENOUGH];
let mut litlen_decode_table = [0_u32; LITLEN_ENOUGH];
let mut offset_decode_table = [0; OFFSET_ENOUGH];
let mut num_litlen_syms = 0;
let mut num_offset_syms = 0;
if block_type == DEFLATE_BLOCKTYPE_DYNAMIC_HUFFMAN
{
const SINGLE_PRECODE: usize = 3;
self.static_codes_loaded = false;
// Dynamic Huffman block
// Read codeword lengths
if !self.stream.has(5 + 5 + 4)
{
return Err(DecodeErrorStatus::InsufficientData);
}
num_litlen_syms = 257 + (self.stream.get_bits(5)) as usize;
num_offset_syms = 1 + (self.stream.get_bits(5)) as usize;
let num_explicit_precode_lens = 4 + (self.stream.get_bits(4)) as usize;
self.stream.refill();
if !self.stream.has(3)
{
return Err(DecodeErrorStatus::InsufficientData);
}
let first_precode = self.stream.get_bits(3) as u8;
let expected = (SINGLE_PRECODE * num_explicit_precode_lens.saturating_sub(1)) as u8;
precode_lens[usize::from(DEFLATE_PRECODE_LENS_PERMUTATION[0])] = first_precode;
self.stream.refill();
if !self.stream.has(expected)
{
return Err(DecodeErrorStatus::InsufficientData);
}
for i in DEFLATE_PRECODE_LENS_PERMUTATION[1..]
.iter()
.take(num_explicit_precode_lens - 1)
{
let bits = self.stream.get_bits(3) as u8;
precode_lens[usize::from(*i)] = bits;
}
self.build_decode_table_inner(
&precode_lens,
&PRECODE_DECODE_RESULTS,
&mut precode_decode_table,
PRECODE_TABLE_BITS,
DEFLATE_NUM_PRECODE_SYMS,
DEFLATE_MAX_CODEWORD_LENGTH
)?;
/* Decode the litlen and offset codeword lengths. */
let mut i = 0;
loop
{
if i >= num_litlen_syms + num_offset_syms
{
// confirm here since with a continue loop stuff
// breaks
break;
}
let rep_val: u8;
let rep_count: u64;
if !self.stream.has(DEFLATE_MAX_PRE_CODEWORD_LEN + 7)
{
self.stream.refill();
}
// decode next pre-code symbol
let entry_pos = self
.stream
.peek_bits::<{ DEFLATE_MAX_PRE_CODEWORD_LEN as usize }>();
let entry = precode_decode_table[entry_pos];
let presym = entry >> 16;
if !self.stream.has(entry as u8)
{
return Err(DecodeErrorStatus::InsufficientData);
}
self.stream.drop_bits(entry as u8);
if presym < 16
{
// explicit codeword length
lens[i] = presym as u8;
i += 1;
continue;
}
/* Run-length encoded codeword lengths */
/*
* Note: we don't need verify that the repeat count
* doesn't overflow the number of elements, since we've
* sized the lens array to have enough extra space to
* allow for the worst-case overrun (138 zeroes when
* only 1 length was remaining).
*
* In the case of the small repeat counts (presyms 16
* and 17), it is fastest to always write the maximum
* number of entries. That gets rid of branches that
* would otherwise be required.
*
* It is not just because of the numerical order that
* our checks go in the order 'presym < 16', 'presym ==
* 16', and 'presym == 17'. For typical data this is
* ordered from most frequent to least frequent case.
*/
if presym == 16
{
if i == 0
{
return Err(DecodeErrorStatus::CorruptData);
}
if !self.stream.has(2)
{
return Err(DecodeErrorStatus::InsufficientData);
}
// repeat previous length three to 6 times
rep_val = lens[i - 1];
rep_count = 3 + self.stream.get_bits(2);
lens[i..i + 6].fill(rep_val);
i += rep_count as usize;
}
else if presym == 17
{
if !self.stream.has(3)
{
return Err(DecodeErrorStatus::InsufficientData);
}
/* Repeat zero 3 - 10 times. */
rep_count = 3 + self.stream.get_bits(3);
lens[i..i + 10].fill(0);
i += rep_count as usize;
}
else
{
if !self.stream.has(7)
{
return Err(DecodeErrorStatus::InsufficientData);
}
// repeat zero 11-138 times.
rep_count = 11 + self.stream.get_bits(7);
lens[i..i + rep_count as usize].fill(0);
i += rep_count as usize;
}
if i >= num_litlen_syms + num_offset_syms
{
break;
}
}
}
else if block_type == DEFLATE_BLOCKTYPE_STATIC
{
if self.static_codes_loaded
{
return Ok(());
}
self.static_codes_loaded = true;
lens[000..144].fill(8);
lens[144..256].fill(9);
lens[256..280].fill(7);
lens[280..288].fill(8);
lens[288..].fill(5);
num_litlen_syms = 288;
num_offset_syms = 32;
}
// build offset decode table
self.build_decode_table_inner(
&lens[num_litlen_syms..],
&OFFSET_DECODE_RESULTS,
&mut offset_decode_table,
OFFSET_TABLEBITS,
num_offset_syms,
DEFLATE_MAX_OFFSET_CODEWORD_LENGTH
)?;
self.build_decode_table_inner(
&lens,
&LITLEN_DECODE_RESULTS,
&mut litlen_decode_table,
LITLEN_TABLE_BITS,
num_litlen_syms,
DEFLATE_MAX_LITLEN_CODEWORD_LENGTH
)?;
self.deflate_header_tables.offset_decode_table = offset_decode_table;
self.deflate_header_tables.litlen_decode_table = litlen_decode_table;
Ok(())
}
/// Build the decode table for the precode
#[allow(clippy::needless_range_loop)]
fn build_decode_table_inner(
&mut self, lens: &[u8], decode_results: &[u32], decode_table: &mut [u32],
table_bits: usize, num_syms: usize, mut max_codeword_len: usize
) -> Result<(), DecodeErrorStatus>
{
const BITS: u32 = usize::BITS - 1;
let mut len_counts: [u32; DEFLATE_MAX_CODEWORD_LENGTH + 1] =
[0; DEFLATE_MAX_CODEWORD_LENGTH + 1];
let mut offsets: [u32; DEFLATE_MAX_CODEWORD_LENGTH + 1] =
[0; DEFLATE_MAX_CODEWORD_LENGTH + 1];
let mut sorted_syms: [u16; DEFLATE_MAX_NUM_SYMS] = [0; DEFLATE_MAX_NUM_SYMS];
let mut i;
// count how many codewords have each length, including 0.
for sym in 0..num_syms
{
len_counts[usize::from(lens[sym])] += 1;
}
/*
* Determine the actual maximum codeword length that was used, and
* decrease table_bits to it if allowed.
*/
while max_codeword_len > 1 && len_counts[max_codeword_len] == 0
{
max_codeword_len -= 1;
}
/*
* Sort the symbols primarily by increasing codeword length and
* A temporary array of length @num_syms.
* secondarily by increasing symbol value; or equivalently by their
* codewords in lexicographic order, since a canonical code is assumed.
*
* For efficiency, also compute 'codespace_used' in the same pass over
* 'len_counts[]' used to build 'offsets[]' for sorting.
*/
offsets[0] = 0;
offsets[1] = len_counts[0];
let mut codespace_used = 0_u32;
for len in 1..max_codeword_len
{
offsets[len + 1] = offsets[len] + len_counts[len];
codespace_used = (codespace_used << 1) + len_counts[len];
}
codespace_used = (codespace_used << 1) + len_counts[max_codeword_len];
for sym in 0..num_syms
{
let pos = usize::from(lens[sym]);
sorted_syms[offsets[pos] as usize] = sym as u16;
offsets[pos] += 1;
}
i = (offsets[0]) as usize;
/*
* Check whether the lengths form a complete code (exactly fills the
* codespace), an incomplete code (doesn't fill the codespace), or an
* overfull code (overflows the codespace). A codeword of length 'n'
* uses proportion '1/(2^n)' of the codespace. An overfull code is
* nonsensical, so is considered invalid. An incomplete code is
* considered valid only in two specific cases; see below.
*/
// Overfull code
if codespace_used > 1 << max_codeword_len
{
return Err(DecodeErrorStatus::Generic("Overflown code"));
}
// incomplete code
if codespace_used < 1 << max_codeword_len
{
let entry = if codespace_used == 0
{
/*
* An empty code is allowed. This can happen for the
* offset code in DEFLATE, since a dynamic Huffman block
* need not contain any matches.
*/
/* sym=0, len=1 (arbitrary) */
make_decode_table_entry(decode_results, 0, 1)
}
else
{
/*
* Allow codes with a single used symbol, with codeword
* length 1. The DEFLATE RFC is unclear regarding this
* case. What zlib's decompressor does is permit this
* for the litlen and offset codes and assume the
* codeword is '0' rather than '1'. We do the same
* except we allow this for precodes too, since there's
* no convincing reason to treat the codes differently.
* We also assign both codewords '0' and '1' to the
* symbol to avoid having to handle '1' specially.
*/
if codespace_used != 1 << (max_codeword_len - 1) || len_counts[1] != 1
{
return Err(DecodeErrorStatus::Generic(
"Cannot work with empty pre-code table"
));
}
make_decode_table_entry(decode_results, usize::from(sorted_syms[i]), 1)
};
/*
* Note: the decode table still must be fully initialized, in
* case the stream is malformed and contains bits from the part
* of the codespace the incomplete code doesn't use.
*/
decode_table.fill(entry);
return Ok(());
}
/*
* The lengths form a complete code. Now, enumerate the codewords in
* lexicographic order and fill the decode table entries for each one.
*
* First, process all codewords with len <= table_bits. Each one gets
* '2^(table_bits-len)' direct entries in the table.
*
* Since DEFLATE uses bit-reversed codewords, these entries aren't
* consecutive but rather are spaced '2^len' entries apart. This makes
* filling them naively somewhat awkward and inefficient, since strided
* stores are less cache-friendly and preclude the use of word or
* vector-at-a-time stores to fill multiple entries per instruction.
*
* To optimize this, we incrementally double the table size. When
* processing codewords with length 'len', the table is treated as
* having only '2^len' entries, so each codeword uses just one entry.
* Then, each time 'len' is incremented, the table size is doubled and
* the first half is copied to the second half. This significantly
* improves performance over naively doing strided stores.
*
* Note that some entries copied for each table doubling may not have
* been initialized yet, but it doesn't matter since they're guaranteed
* to be initialized later (because the Huffman code is complete).
*/
let mut codeword = 0;
let mut len = 1;
let mut count = len_counts[1];
while count == 0
{
len += 1;
if len >= len_counts.len()
{
break;
}
count = len_counts[len];
}
let mut curr_table_end = 1 << len;
while len <= table_bits
{
// Process all count codewords with length len
loop
{
let entry = make_decode_table_entry(
decode_results,
usize::from(sorted_syms[i]),
len as u32
);
i += 1;
// fill first entry for current codeword
decode_table[codeword] = entry;
if codeword == curr_table_end - 1
{
// last codeword (all 1's)
for _ in len..table_bits
{
decode_table.copy_within(0..curr_table_end, curr_table_end);
curr_table_end <<= 1;
}
return Ok(());
}
/*
* To advance to the lexicographically next codeword in
* the canonical code, the codeword must be incremented,
* then 0's must be appended to the codeword as needed
* to match the next codeword's length.
*
* Since the codeword is bit-reversed, appending 0's is
* a no-op. However, incrementing it is nontrivial. To
* do so efficiently, use the 'bsr' instruction to find
* the last (highest order) 0 bit in the codeword, set
* it, and clear any later (higher order) 1 bits. But
* 'bsr' actually finds the highest order 1 bit, so to
* use it first flip all bits in the codeword by XOR' ing
* it with (1U << len) - 1 == cur_table_end - 1.
*/
let adv = BITS - (codeword ^ (curr_table_end - 1)).leading_zeros();
let bit = 1 << adv;
codeword &= bit - 1;
codeword |= bit;
count -= 1;
if count == 0
{
break;
}
}
// advance to the next codeword length
loop
{
len += 1;
if len <= table_bits
{
// dest is decode_table[curr_table_end]
// source is decode_table(start of table);
// size is curr_table;
decode_table.copy_within(0..curr_table_end, curr_table_end);
//decode_table.copy_within(range, curr_table_end);
curr_table_end <<= 1;
}
count = len_counts[len];
if count != 0
{
break;
}
}
}
// process codewords with len > table_bits.
// Require sub-tables
curr_table_end = 1 << table_bits;
let mut subtable_prefix = usize::MAX;
let mut subtable_start = 0;
let mut subtable_bits;
loop
{
/*
* Start a new sub-table if the first 'table_bits' bits of the
* codeword don't match the prefix of the current subtable.
*/
if codeword & ((1_usize << table_bits) - 1) != subtable_prefix
{
subtable_prefix = codeword & ((1 << table_bits) - 1);
subtable_start = curr_table_end;
/*
* Calculate the subtable length. If the codeword has
* length 'table_bits + n', then the subtable needs
* '2^n' entries. But it may need more; if fewer than
* '2^n' codewords of length 'table_bits + n' remain,
* then the length will need to be incremented to bring
* in longer codewords until the subtable can be
* completely filled. Note that because the Huffman
* code is complete, it will always be possible to fill
* the sub-table eventually.
*/
subtable_bits = len - table_bits;
codespace_used = count;
while codespace_used < (1 << subtable_bits)
{
subtable_bits += 1;
if subtable_bits + table_bits > 15
{
return Err(DecodeErrorStatus::CorruptData);
}
codespace_used = (codespace_used << 1) + len_counts[table_bits + subtable_bits];
}
/*
* Create the entry that points from the main table to
* the subtable.
*/
decode_table[subtable_prefix] = (subtable_start as u32) << 16
| HUFFDEC_EXCEPTIONAL
| HUFFDEC_SUITABLE_POINTER
| (subtable_bits as u32) << 8
| table_bits as u32;
curr_table_end = subtable_start + (1 << subtable_bits);
}
/* Fill the sub-table entries for the current codeword. */
let stride = 1 << (len - table_bits);
let mut j = subtable_start + (codeword >> table_bits);
let entry = make_decode_table_entry(
decode_results,
sorted_syms[i] as usize,
(len - table_bits) as u32
);
i += 1;
while j < curr_table_end
{
decode_table[j] = entry;
j += stride;
}
//advance to the next codeword
if codeword == (1 << len) - 1
{
// last codeword
return Ok(());
}
let adv = BITS - (codeword ^ ((1 << len) - 1)).leading_zeros();
let bit = 1 << adv;
codeword &= bit - 1;
codeword |= bit;
count -= 1;
while count == 0
{
len += 1;
count = len_counts[len];
}
}
}
}
const RESIZE_BY: usize = 1024 * 4; // 4 kb
/// Resize vector if its current space wont
/// be able to store a new byte and then push an element to that new space
#[inline(always)]
fn resize_and_push(buf: &mut Vec<u8>, position: usize, elm: u8)
{
if buf.len() <= position
{
let new_len = buf.len() + RESIZE_BY;
buf.resize(new_len, 0);
}
buf[position] = elm;
}