Struct cosmic::iced_runtime::futures::subscription::Subscription
source · pub struct Subscription<T> { /* private fields */ }
Expand description
A request to listen to external events.
Besides performing async actions on demand with Task
, most
applications also need to listen to external events passively.
A Subscription
is normally provided to some runtime, like a Task
,
and it will generate events as long as the user keeps requesting it.
For instance, you can use a Subscription
to listen to a WebSocket
connection, keyboard presses, mouse events, time ticks, etc.
§The Lifetime of a Subscription
Much like a Future
or a Stream
, a Subscription
does not produce any effects
on its own. For a Subscription
to run, it must be returned to the iced runtime—normally
in the subscription
function of an application
or a daemon
.
When a Subscription
is provided to the runtime for the first time, the runtime will
start running it asynchronously. Running a Subscription
consists in building its underlying
Stream
and executing it in an async runtime.
Therefore, you can think of a Subscription
as a “stream builder”. It simply represents a way
to build a certain Stream
together with some way to identify it.
Identification is important because when a specific Subscription
stops being returned to the
iced runtime, the runtime will kill its associated Stream
. The runtime uses the identity of a
Subscription
to keep track of it.
This way, iced allows you to declaratively subscribe to particular streams of data temporarily and whenever necessary.
use iced::time::{self, Duration, Instant};
use iced::Subscription;
struct State {
timer_enabled: bool,
}
fn subscription(state: &State) -> Subscription<Instant> {
if state.timer_enabled {
time::every(Duration::from_secs(1))
} else {
Subscription::none()
}
}
Implementations§
source§impl<T> Subscription<T>
impl<T> Subscription<T>
sourcepub fn none() -> Subscription<T>
pub fn none() -> Subscription<T>
Returns an empty Subscription
that will not produce any output.
sourcepub fn run<S>(builder: fn() -> S) -> Subscription<T>
pub fn run<S>(builder: fn() -> S) -> Subscription<T>
Returns a Subscription
that will call the given function to create and
asynchronously run the given Stream
.
§Creating an asynchronous worker with bidirectional communication
You can leverage this helper to create a Subscription
that spawns
an asynchronous worker in the background and establish a channel of
communication with an iced
application.
You can achieve this by creating an mpsc
channel inside the closure
and returning the Sender
as a Message
for the Application
:
use iced::futures::channel::mpsc;
use iced::futures::sink::SinkExt;
use iced::futures::Stream;
use iced::stream;
use iced::Subscription;
pub enum Event {
Ready(mpsc::Sender<Input>),
WorkFinished,
// ...
}
enum Input {
DoSomeWork,
// ...
}
fn some_worker() -> impl Stream<Item = Event> {
stream::channel(100, |mut output| async move {
// Create channel
let (sender, mut receiver) = mpsc::channel(100);
// Send the sender back to the application
output.send(Event::Ready(sender)).await;
loop {
use iced_futures::futures::StreamExt;
// Read next input sent from `Application`
let input = receiver.select_next_some().await;
match input {
Input::DoSomeWork => {
// Do some async work...
// Finally, we can optionally produce a message to tell the
// `Application` the work is done
output.send(Event::WorkFinished).await;
}
}
}
})
}
fn subscription() -> Subscription<Event> {
Subscription::run(some_worker)
}
Check out the websocket
example, which showcases this pattern to maintain a WebSocket
connection open.
sourcepub fn run_with_id<I, S>(id: I, stream: S) -> Subscription<T>
pub fn run_with_id<I, S>(id: I, stream: S) -> Subscription<T>
Returns a Subscription
that will create and asynchronously run the
given Stream
.
The id
will be used to uniquely identify the Subscription
.
sourcepub fn batch(
subscriptions: impl IntoIterator<Item = Subscription<T>>,
) -> Subscription<T>
pub fn batch( subscriptions: impl IntoIterator<Item = Subscription<T>>, ) -> Subscription<T>
Batches all the provided subscriptions and returns the resulting
Subscription
.
sourcepub fn with<A>(self, value: A) -> Subscription<(A, T)>
pub fn with<A>(self, value: A) -> Subscription<(A, T)>
Adds a value to the Subscription
context.
The value will be part of the identity of a Subscription
.
sourcepub fn map<F, A>(self, f: F) -> Subscription<A>
pub fn map<F, A>(self, f: F) -> Subscription<A>
Transforms the Subscription
output with the given function.
§Panics
The closure provided must be a non-capturing closure. The method will panic in debug mode otherwise.
Trait Implementations§
Auto Trait Implementations§
impl<T> Freeze for Subscription<T>
impl<T> !RefUnwindSafe for Subscription<T>
impl<T> !Send for Subscription<T>
impl<T> !Sync for Subscription<T>
impl<T> Unpin for Subscription<T>
impl<T> !UnwindSafe for Subscription<T>
Blanket Implementations§
source§impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for Swhere
T: Real + Zero + Arithmetics + Clone,
Swp: WhitePoint<T>,
Dwp: WhitePoint<T>,
D: AdaptFrom<S, Swp, Dwp, T>,
impl<S, D, Swp, Dwp, T> AdaptInto<D, Swp, Dwp, T> for Swhere
T: Real + Zero + Arithmetics + Clone,
Swp: WhitePoint<T>,
Dwp: WhitePoint<T>,
D: AdaptFrom<S, Swp, Dwp, T>,
source§fn adapt_into_using<M>(self, method: M) -> Dwhere
M: TransformMatrix<T>,
fn adapt_into_using<M>(self, method: M) -> Dwhere
M: TransformMatrix<T>,
source§fn adapt_into(self) -> D
fn adapt_into(self) -> D
source§impl<T, Res> Apply<Res> for Twhere
T: ?Sized,
impl<T, Res> Apply<Res> for Twhere
T: ?Sized,
source§impl<T, C> ArraysFrom<C> for Twhere
C: IntoArrays<T>,
impl<T, C> ArraysFrom<C> for Twhere
C: IntoArrays<T>,
source§fn arrays_from(colors: C) -> T
fn arrays_from(colors: C) -> T
source§impl<T, C> ArraysInto<C> for Twhere
C: FromArrays<T>,
impl<T, C> ArraysInto<C> for Twhere
C: FromArrays<T>,
source§fn arrays_into(self) -> C
fn arrays_into(self) -> C
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<WpParam, T, U> Cam16IntoUnclamped<WpParam, T> for Uwhere
T: FromCam16Unclamped<WpParam, U>,
impl<WpParam, T, U> Cam16IntoUnclamped<WpParam, T> for Uwhere
T: FromCam16Unclamped<WpParam, U>,
source§type Scalar = <T as FromCam16Unclamped<WpParam, U>>::Scalar
type Scalar = <T as FromCam16Unclamped<WpParam, U>>::Scalar
parameters
when converting.source§fn cam16_into_unclamped(
self,
parameters: BakedParameters<WpParam, <U as Cam16IntoUnclamped<WpParam, T>>::Scalar>,
) -> T
fn cam16_into_unclamped( self, parameters: BakedParameters<WpParam, <U as Cam16IntoUnclamped<WpParam, T>>::Scalar>, ) -> T
self
into C
, using the provided parameters.source§impl<T, C> ComponentsFrom<C> for Twhere
C: IntoComponents<T>,
impl<T, C> ComponentsFrom<C> for Twhere
C: IntoComponents<T>,
source§fn components_from(colors: C) -> T
fn components_from(colors: C) -> T
source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.source§impl<T> FromAngle<T> for T
impl<T> FromAngle<T> for T
source§fn from_angle(angle: T) -> T
fn from_angle(angle: T) -> T
angle
.source§impl<T, U> FromStimulus<U> for Twhere
U: IntoStimulus<T>,
impl<T, U> FromStimulus<U> for Twhere
U: IntoStimulus<T>,
source§fn from_stimulus(other: U) -> T
fn from_stimulus(other: U) -> T
other
into Self
, while performing the appropriate scaling,
rounding and clamping.source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
source§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
source§impl<T, U> IntoAngle<U> for Twhere
U: FromAngle<T>,
impl<T, U> IntoAngle<U> for Twhere
U: FromAngle<T>,
source§fn into_angle(self) -> U
fn into_angle(self) -> U
T
.source§impl<WpParam, T, U> IntoCam16Unclamped<WpParam, T> for Uwhere
T: Cam16FromUnclamped<WpParam, U>,
impl<WpParam, T, U> IntoCam16Unclamped<WpParam, T> for Uwhere
T: Cam16FromUnclamped<WpParam, U>,
source§type Scalar = <T as Cam16FromUnclamped<WpParam, U>>::Scalar
type Scalar = <T as Cam16FromUnclamped<WpParam, U>>::Scalar
parameters
when converting.source§fn into_cam16_unclamped(
self,
parameters: BakedParameters<WpParam, <U as IntoCam16Unclamped<WpParam, T>>::Scalar>,
) -> T
fn into_cam16_unclamped( self, parameters: BakedParameters<WpParam, <U as IntoCam16Unclamped<WpParam, T>>::Scalar>, ) -> T
self
into C
, using the provided parameters.source§impl<T, U> IntoColor<U> for Twhere
U: FromColor<T>,
impl<T, U> IntoColor<U> for Twhere
U: FromColor<T>,
source§fn into_color(self) -> U
fn into_color(self) -> U
source§impl<T, U> IntoColorUnclamped<U> for Twhere
U: FromColorUnclamped<T>,
impl<T, U> IntoColorUnclamped<U> for Twhere
U: FromColorUnclamped<T>,
source§fn into_color_unclamped(self) -> U
fn into_color_unclamped(self) -> U
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§impl<T> IntoStimulus<T> for T
impl<T> IntoStimulus<T> for T
source§fn into_stimulus(self) -> T
fn into_stimulus(self) -> T
self
into T
, while performing the appropriate scaling,
rounding and clamping.source§impl<T> Pointable for T
impl<T> Pointable for T
source§impl<T, C> TryComponentsInto<C> for Twhere
C: TryFromComponents<T>,
impl<T, C> TryComponentsInto<C> for Twhere
C: TryFromComponents<T>,
source§type Error = <C as TryFromComponents<T>>::Error
type Error = <C as TryFromComponents<T>>::Error
try_into_colors
fails to cast.source§fn try_components_into(self) -> Result<C, <T as TryComponentsInto<C>>::Error>
fn try_components_into(self) -> Result<C, <T as TryComponentsInto<C>>::Error>
source§impl<T, U> TryIntoColor<U> for Twhere
U: TryFromColor<T>,
impl<T, U> TryIntoColor<U> for Twhere
U: TryFromColor<T>,
source§fn try_into_color(self) -> Result<U, OutOfBounds<U>>
fn try_into_color(self) -> Result<U, OutOfBounds<U>>
OutOfBounds
error is returned which contains
the unclamped color. Read more