palette/
stimulus.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
//! Traits for working with stimulus colors and values, such as RGB and XYZ.

use crate::{
    clamp,
    num::{One, Real, Round, Zero},
};

/// Color components that represent a stimulus intensity.
///
/// The term "stimulus" comes from "tristimulus", literally a set of three
/// stimuli, which is a term for color spaces that measure the intensity of
/// three primary color values. Classic examples of tristimulus color space are
/// XYZ and RGB.
///
/// Stimulus values are expected to have these properties:
///  * Has a typical range from `0` to some finite maximum, the "max intensity".
///    This represents a range from `0%` to `100%`. For example `0u8` to
///    `255u8`, `0.0f32` to `1.0f32`.
///  * Values below `0` are considered invalid for display purposes, but may
///    still be used in calculations.
///  * Values above the "max intensity" are sometimes supported, depending on
///    the application. For example in 3D rendering, where high values represent
///    intense light.
///  * Unsigned integer values (`u8`, `u16`, `u32`, etc.) have a range from `0`
///    to their largest representable value. For example `0u8` to `255u8` or
///    `0u16` to `65535u16`.
///  * Real values (`f32`, `f64`, fixed point types, etc.) have a range from
///    `0.0` to `1.0`.
pub trait Stimulus: Zero {
    /// The highest displayable value this component type can reach. Integers
    /// types are expected to return their maximum value, while real numbers
    /// (like floats) return 1.0. Higher values are allowed, but they may be
    /// lowered to this before converting to another format.
    #[must_use]
    fn max_intensity() -> Self;
}

impl<T> Stimulus for T
where
    T: Real + One + Zero,
{
    #[inline]
    fn max_intensity() -> Self {
        Self::one()
    }
}

macro_rules! impl_uint_components {
    ($($ty: ident),+) => {
        $(
            impl Stimulus for $ty {
                #[inline]
                fn max_intensity() -> Self {
                    $ty::MAX
                }
            }
        )*
    };
}

impl_uint_components!(u8, u16, u32, u64, u128);

/// A marker trait for colors where all components are stimuli.
///
/// Typical stimulus colors are RGB and XYZ.
pub trait StimulusColor {}

/// Converts from a stimulus color component type, while performing the
/// appropriate scaling, rounding and clamping.
///
/// ```
/// use palette::stimulus::FromStimulus;
///
/// // Scales the value up to u8::MAX while converting.
/// let u8_component = u8::from_stimulus(1.0f32);
/// assert_eq!(u8_component, 255);
/// ```
pub trait FromStimulus<T> {
    /// Converts `other` into `Self`, while performing the appropriate scaling,
    /// rounding and clamping.
    #[must_use]
    fn from_stimulus(other: T) -> Self;
}

impl<T, U: IntoStimulus<T>> FromStimulus<U> for T {
    #[inline]
    fn from_stimulus(other: U) -> T {
        other.into_stimulus()
    }
}

/// Converts into a stimulus color component type, while performing the
/// appropriate scaling, rounding and clamping.
///
/// ```
/// use palette::stimulus::IntoStimulus;
///
/// // Scales the value up to u8::MAX while converting.
/// let u8_component: u8 = 1.0f32.into_stimulus();
/// assert_eq!(u8_component, 255);
/// ```
pub trait IntoStimulus<T> {
    /// Converts `self` into `T`, while performing the appropriate scaling,
    /// rounding and clamping.
    #[must_use]
    fn into_stimulus(self) -> T;
}

impl<T> IntoStimulus<T> for T {
    #[inline]
    fn into_stimulus(self) -> T {
        self
    }
}

// C23 = 2^23, in f32
// C52 = 2^52, in f64
const C23: u32 = 0x4b00_0000;
const C52: u64 = 0x4330_0000_0000_0000;

// Float to uint conversion with rounding to nearest even number. Formula
// follows the form (x_f32 + C23_f32) - C23_u32, where x is the component. From
// Hacker's Delight, p. 378-380.
// Works on the range of [-0.25, 2^23] for f32, [-0.25, 2^52] for f64.
//
// Special cases:
// NaN -> uint::MAX
// inf -> uint::MAX
// -inf -> 0
// Greater than 2^23 for f64, 2^52 for f64 -> uint::MAX
macro_rules! convert_float_to_uint {
    ($float: ident; direct ($($direct_target: ident),+); $(via $temporary: ident ($($target: ident),+);)*) => {
        $(
            impl IntoStimulus<$direct_target> for $float {
                #[inline]
                fn into_stimulus(self) -> $direct_target {
                    let max = $direct_target::max_intensity() as $float;
                    let scaled = (self * max).min(max);
                    let f = scaled + f32::from_bits(C23);
                    (f.to_bits().saturating_sub(C23)) as $direct_target
                }
            }
        )+

        $(
            $(
                impl IntoStimulus<$target> for $float {
                    #[inline]
                    fn into_stimulus(self) -> $target {
                        let max = $target::max_intensity() as $temporary;
                        let scaled = (self as $temporary * max).min(max);
                        let f = scaled + f64::from_bits(C52);
                        (f.to_bits().saturating_sub(C52)) as  $target
                    }
                }
            )+
        )*
    };
}

// Double to uint conversion with rounding to nearest even number. Formula
// follows the form (x_f64 + C52_f64) - C52_u64, where x is the component.
macro_rules! convert_double_to_uint {
    ($double: ident; direct ($($direct_target: ident),+);) => {
        $(
            impl IntoStimulus<$direct_target> for $double {
                #[inline]
                fn into_stimulus(self) -> $direct_target {
                    let max = $direct_target::max_intensity() as $double;
                    let scaled = (self * max).min(max);
                    let f = scaled + f64::from_bits(C52);
                    (f.to_bits().saturating_sub(C52)) as $direct_target
                }
            }
        )+
    };
}

// Uint to float conversion with the formula (x_u32 + C23_u32) - C23_f32, where
// x is the component. We convert the component to f32 then multiply it by the
// reciprocal of the float representation max value for u8.
// Works on the range of [0, 2^23] for f32, [0, 2^52 - 1] for f64.
impl IntoStimulus<f32> for u8 {
    #[inline]
    fn into_stimulus(self) -> f32 {
        let comp_u = u32::from(self) + C23;
        let comp_f = f32::from_bits(comp_u) - f32::from_bits(C23);
        let max_u = u32::from(u8::MAX) + C23;
        let max_f = (f32::from_bits(max_u) - f32::from_bits(C23)).recip();
        comp_f * max_f
    }
}

// Uint to f64 conversion with the formula (x_u64 + C23_u64) - C23_f64.
impl IntoStimulus<f64> for u8 {
    #[inline]
    fn into_stimulus(self) -> f64 {
        let comp_u = u64::from(self) + C52;
        let comp_f = f64::from_bits(comp_u) - f64::from_bits(C52);
        let max_u = u64::from(u8::MAX) + C52;
        let max_f = (f64::from_bits(max_u) - f64::from_bits(C52)).recip();
        comp_f * max_f
    }
}

macro_rules! convert_uint_to_float {
    ($uint: ident; $(via $temporary: ident ($($target: ident),+);)*) => {
        $(
            $(
                impl IntoStimulus<$target> for $uint {
                    #[inline]
                    fn into_stimulus(self) -> $target {
                        let max = $uint::max_intensity() as $temporary;
                        let scaled = self as $temporary / max;
                        scaled as $target
                    }
                }
            )+
        )*
    };
}

macro_rules! convert_uint_to_uint {
    ($uint: ident; $(via $temporary: ident ($($target: ident),+);)*) => {
        $(
            $(
                impl IntoStimulus<$target> for $uint {
                    #[inline]
                    fn into_stimulus(self) -> $target {
                        let target_max = $target::max_intensity() as $temporary;
                        let own_max = $uint::max_intensity() as $temporary;
                        let scaled = (self as $temporary / own_max) * target_max;
                        clamp(Round::round(scaled), 0.0, target_max) as $target
                    }
                }
            )+
        )*
    };
}

impl IntoStimulus<f64> for f32 {
    #[inline]
    fn into_stimulus(self) -> f64 {
        f64::from(self)
    }
}
convert_float_to_uint!(f32; direct (u8, u16); via f64 (u32, u64, u128););

impl IntoStimulus<f32> for f64 {
    #[inline]
    fn into_stimulus(self) -> f32 {
        self as f32
    }
}
convert_double_to_uint!(f64; direct (u8, u16, u32, u64, u128););

convert_uint_to_uint!(u8; via f32 (u16); via f64 (u32, u64, u128););

convert_uint_to_float!(u16; via f32 (f32); via f64 (f64););
convert_uint_to_uint!(u16; via f32 (u8); via f64 (u32, u64, u128););

convert_uint_to_float!(u32; via f64 (f32, f64););
convert_uint_to_uint!(u32; via f64 (u8, u16, u64, u128););

convert_uint_to_float!(u64; via f64 (f32, f64););
convert_uint_to_uint!(u64; via f64 (u8, u16, u32, u128););

convert_uint_to_float!(u128; via f64 (f32, f64););
convert_uint_to_uint!(u128; via f64 (u8, u16, u32, u64););

#[cfg(test)]
mod test {
    use crate::stimulus::IntoStimulus;

    #[test]
    fn float_to_uint() {
        let data = vec![
            -800.0,
            -0.3,
            0.0,
            0.005,
            0.024983,
            0.01,
            0.15,
            0.3,
            0.5,
            0.6,
            0.7,
            0.8,
            0.8444,
            0.9,
            0.955,
            0.999,
            1.0,
            1.4,
            f32::from_bits(0x4b44_0000),
            core::f32::MAX,
            core::f32::MIN,
            core::f32::NAN,
            core::f32::INFINITY,
            core::f32::NEG_INFINITY,
        ];

        let expected = vec![
            0u8, 0, 0, 1, 6, 3, 38, 76, 128, 153, 178, 204, 215, 230, 244, 255, 255, 255, 255, 255,
            0, 255, 255, 0,
        ];

        for (d, e) in data.into_iter().zip(expected) {
            assert_eq!(IntoStimulus::<u8>::into_stimulus(d), e);
        }
    }

    #[test]
    fn double_to_uint() {
        let data = vec![
            -800.0,
            -0.3,
            0.0,
            0.005,
            0.024983,
            0.01,
            0.15,
            0.3,
            0.5,
            0.6,
            0.7,
            0.8,
            0.8444,
            0.9,
            0.955,
            0.999,
            1.0,
            1.4,
            f64::from_bits(0x4334_0000_0000_0000),
            core::f64::MAX,
            core::f64::MIN,
            core::f64::NAN,
            core::f64::INFINITY,
            core::f64::NEG_INFINITY,
        ];

        let expected = vec![
            0u8, 0, 0, 1, 6, 3, 38, 76, 128, 153, 178, 204, 215, 230, 244, 255, 255, 255, 255, 255,
            0, 255, 255, 0,
        ];

        for (d, e) in data.into_iter().zip(expected) {
            assert_eq!(IntoStimulus::<u8>::into_stimulus(d), e);
        }
    }

    #[cfg(feature = "approx")]
    #[test]
    fn uint_to_float() {
        fn into_stimulus_old(n: u8) -> f32 {
            let max = u8::MAX as f32;
            n as f32 / max
        }

        for n in (0..=255).step_by(5) {
            assert_relative_eq!(IntoStimulus::<f32>::into_stimulus(n), into_stimulus_old(n))
        }
    }

    #[cfg(feature = "approx")]
    #[test]
    fn uint_to_double() {
        fn into_stimulus_old(n: u8) -> f64 {
            let max = u8::MAX as f64;
            n as f64 / max
        }

        for n in (0..=255).step_by(5) {
            assert_relative_eq!(IntoStimulus::<f64>::into_stimulus(n), into_stimulus_old(n))
        }
    }
}