1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
#[cfg(not(feature = "tokio"))]
use async_executor::Executor as AsyncExecutor;
#[cfg(not(feature = "tokio"))]
use async_task::Task as AsyncTask;
#[cfg(not(feature = "tokio"))]
use std::sync::Arc;
#[cfg(feature = "tokio")]
use std::{future::pending, marker::PhantomData};
use std::{
future::Future,
pin::Pin,
task::{Context, Poll},
};
#[cfg(feature = "tokio")]
use tokio::task::JoinHandle;
/// A wrapper around the underlying runtime/executor.
///
/// This is used to run asynchronous tasks internally and allows integration with various runtimes.
/// See [`crate::Connection::executor`] for an example of integration with external runtimes.
///
/// **Note:** You can (and should) completely ignore this type when building with `tokio` feature
/// enabled.
#[cfg(not(feature = "tokio"))]
#[derive(Debug, Clone)]
pub struct Executor<'a> {
executor: Arc<AsyncExecutor<'a>>,
}
#[cfg(feature = "tokio")]
#[derive(Debug, Clone)]
pub struct Executor<'a> {
phantom: PhantomData<&'a ()>,
}
impl<'a> Executor<'a> {
/// Spawns a task onto the executor.
#[doc(hidden)]
pub fn spawn<T: Send + 'static>(
&self,
future: impl Future<Output = T> + Send + 'static,
#[allow(unused)] name: &str,
) -> Task<T> {
#[cfg(not(feature = "tokio"))]
{
Task(Some(self.executor.spawn(future)))
}
#[cfg(feature = "tokio")]
{
#[cfg(tokio_unstable)]
{
Task(Some(
tokio::task::Builder::new()
.name(name)
.spawn(future)
// SAFETY: Looking at the code, this call always returns an `Ok`.
.unwrap(),
))
}
#[cfg(not(tokio_unstable))]
{
Task(Some(tokio::task::spawn(future)))
}
}
}
/// Returns `true` if there are no unfinished tasks.
///
/// With `tokio` feature enabled, this always returns `true`.
pub fn is_empty(&self) -> bool {
#[cfg(not(feature = "tokio"))]
{
self.executor.is_empty()
}
#[cfg(feature = "tokio")]
true
}
/// Runs a single task.
///
/// With `tokio` feature enabled, its a noop and never returns.
pub async fn tick(&self) {
#[cfg(not(feature = "tokio"))]
{
self.executor.tick().await
}
#[cfg(feature = "tokio")]
{
pending().await
}
}
/// Create a new `Executor`.
pub(crate) fn new() -> Self {
#[cfg(not(feature = "tokio"))]
{
Self {
executor: Arc::new(AsyncExecutor::new()),
}
}
#[cfg(feature = "tokio")]
{
Self {
phantom: PhantomData,
}
}
}
/// Runs the executor until the given future completes.
///
/// With `tokio` feature enabled, it just awaits on the `future`.
pub(crate) async fn run<T>(&self, future: impl Future<Output = T>) -> T {
#[cfg(not(feature = "tokio"))]
{
self.executor.run(future).await
}
#[cfg(feature = "tokio")]
{
future.await
}
}
}
/// A wrapper around the task API of the underlying runtime/executor.
///
/// This follows the semantics of `async_task::Task` on drop:
///
/// * it will be cancelled, rather than detached. For detaching, use the `detach` method.
/// * errors from the task cancellation will will be ignored. If you need to know about task errors,
/// convert the task to a `FallibleTask` using the `fallible` method.
#[cfg(not(feature = "tokio"))]
#[doc(hidden)]
#[derive(Debug)]
pub struct Task<T>(Option<AsyncTask<T>>);
#[cfg(feature = "tokio")]
#[doc(hidden)]
#[derive(Debug)]
pub struct Task<T>(Option<JoinHandle<T>>);
impl<T> Task<T> {
/// Detaches the task to let it keep running in the background.
#[allow(unused_mut)]
#[allow(unused)]
pub fn detach(mut self) {
#[cfg(not(feature = "tokio"))]
{
self.0.take().expect("async_task::Task is none").detach()
}
#[cfg(feature = "tokio")]
{
self.0.take().expect("tokio::task::JoinHandle is none");
}
}
}
impl<T> Task<T>
where
T: Send + 'static,
{
/// Launch the given blocking function in a task.
#[allow(unused)]
pub(crate) fn spawn_blocking<F>(f: F, #[allow(unused)] name: &str) -> Self
where
F: FnOnce() -> T + Send + 'static,
{
#[cfg(not(feature = "tokio"))]
{
Self(Some(blocking::unblock(f)))
}
#[cfg(feature = "tokio")]
{
#[cfg(tokio_unstable)]
{
Self(Some(
tokio::task::Builder::new()
.name(name)
.spawn_blocking(f)
// SAFETY: Looking at the code, this call always returns an `Ok`.
.unwrap(),
))
}
#[cfg(not(tokio_unstable))]
{
Self(Some(tokio::task::spawn_blocking(f)))
}
}
}
}
impl<T> Drop for Task<T> {
fn drop(&mut self) {
#[cfg(feature = "tokio")]
{
if let Some(join_handle) = self.0.take() {
join_handle.abort();
}
}
}
}
impl<T> Future for Task<T> {
type Output = T;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
#[cfg(not(feature = "tokio"))]
{
Pin::new(&mut self.get_mut().0.as_mut().expect("async_task::Task is none")).poll(cx)
}
#[cfg(feature = "tokio")]
{
Pin::new(
&mut self
.get_mut()
.0
.as_mut()
.expect("tokio::task::JoinHandle is none"),
)
.poll(cx)
.map(|r| r.expect("tokio::task::JoinHandle error"))
}
}
}