tiny_skia/
path_geometry.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use tiny_skia_path::{NormalizedF32, NormalizedF32Exclusive, Point};

#[cfg(all(not(feature = "std"), feature = "no-std-float"))]
use tiny_skia_path::NoStdFloat;

pub use tiny_skia_path::path_geometry::{
    chop_cubic_at2, chop_quad_at, find_cubic_max_curvature, find_unit_quad_roots, new_t_values,
    CubicCoeff, QuadCoeff,
};

use tiny_skia_path::path_geometry::valid_unit_divide;

// TODO: return custom type
/// Returns 0 for 1 quad, and 1 for two quads, either way the answer is stored in dst[].
///
/// Guarantees that the 1/2 quads will be monotonic.
pub fn chop_quad_at_x_extrema(src: &[Point; 3], dst: &mut [Point; 5]) -> usize {
    let a = src[0].x;
    let mut b = src[1].x;
    let c = src[2].x;

    if is_not_monotonic(a, b, c) {
        if let Some(t_value) = valid_unit_divide(a - b, a - b - b + c) {
            chop_quad_at(src, t_value, dst);

            // flatten double quad extrema
            dst[1].x = dst[2].x;
            dst[3].x = dst[2].x;

            return 1;
        }

        // if we get here, we need to force dst to be monotonic, even though
        // we couldn't compute a unit_divide value (probably underflow).
        b = if (a - b).abs() < (b - c).abs() { a } else { c };
    }

    dst[0] = Point::from_xy(a, src[0].y);
    dst[1] = Point::from_xy(b, src[1].y);
    dst[2] = Point::from_xy(c, src[2].y);
    0
}

/// Returns 0 for 1 quad, and 1 for two quads, either way the answer is stored in dst[].
///
/// Guarantees that the 1/2 quads will be monotonic.
pub fn chop_quad_at_y_extrema(src: &[Point; 3], dst: &mut [Point; 5]) -> usize {
    let a = src[0].y;
    let mut b = src[1].y;
    let c = src[2].y;

    if is_not_monotonic(a, b, c) {
        if let Some(t_value) = valid_unit_divide(a - b, a - b - b + c) {
            chop_quad_at(src, t_value, dst);

            // flatten double quad extrema
            dst[1].y = dst[2].y;
            dst[3].y = dst[2].y;

            return 1;
        }

        // if we get here, we need to force dst to be monotonic, even though
        // we couldn't compute a unit_divide value (probably underflow).
        b = if (a - b).abs() < (b - c).abs() { a } else { c };
    }

    dst[0] = Point::from_xy(src[0].x, a);
    dst[1] = Point::from_xy(src[1].x, b);
    dst[2] = Point::from_xy(src[2].x, c);
    0
}

fn is_not_monotonic(a: f32, b: f32, c: f32) -> bool {
    let ab = a - b;
    let mut bc = b - c;
    if ab < 0.0 {
        bc = -bc;
    }

    ab == 0.0 || bc < 0.0
}

pub fn chop_cubic_at_x_extrema(src: &[Point; 4], dst: &mut [Point; 10]) -> usize {
    let mut t_values = new_t_values();
    let t_values = find_cubic_extrema(src[0].x, src[1].x, src[2].x, src[3].x, &mut t_values);

    chop_cubic_at(src, t_values, dst);
    if !t_values.is_empty() {
        // we do some cleanup to ensure our X extrema are flat
        dst[2].x = dst[3].x;
        dst[4].x = dst[3].x;
        if t_values.len() == 2 {
            dst[5].x = dst[6].x;
            dst[7].x = dst[6].x;
        }
    }

    t_values.len()
}

/// Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
/// the resulting beziers are monotonic in Y.
///
/// This is called by the scan converter.
///
/// Depending on what is returned, dst[] is treated as follows:
///
/// - 0: dst[0..3] is the original cubic
/// - 1: dst[0..3] and dst[3..6] are the two new cubics
/// - 2: dst[0..3], dst[3..6], dst[6..9] are the three new cubics
pub fn chop_cubic_at_y_extrema(src: &[Point; 4], dst: &mut [Point; 10]) -> usize {
    let mut t_values = new_t_values();
    let t_values = find_cubic_extrema(src[0].y, src[1].y, src[2].y, src[3].y, &mut t_values);

    chop_cubic_at(src, t_values, dst);
    if !t_values.is_empty() {
        // we do some cleanup to ensure our Y extrema are flat
        dst[2].y = dst[3].y;
        dst[4].y = dst[3].y;
        if t_values.len() == 2 {
            dst[5].y = dst[6].y;
            dst[7].y = dst[6].y;
        }
    }

    t_values.len()
}

// Cubic'(t) = At^2 + Bt + C, where
// A = 3(-a + 3(b - c) + d)
// B = 6(a - 2b + c)
// C = 3(b - a)
// Solve for t, keeping only those that fit between 0 < t < 1
fn find_cubic_extrema(
    a: f32,
    b: f32,
    c: f32,
    d: f32,
    t_values: &mut [NormalizedF32Exclusive; 3],
) -> &[NormalizedF32Exclusive] {
    // we divide A,B,C by 3 to simplify
    let na = d - a + 3.0 * (b - c);
    let nb = 2.0 * (a - b - b + c);
    let nc = b - a;

    let roots = find_unit_quad_roots(na, nb, nc, t_values);
    &t_values[0..roots]
}

// http://code.google.com/p/skia/issues/detail?id=32
//
// This test code would fail when we didn't check the return result of
// valid_unit_divide in SkChopCubicAt(... NormalizedF32Exclusives[], int roots). The reason is
// that after the first chop, the parameters to valid_unit_divide are equal
// (thanks to finite float precision and rounding in the subtracts). Thus
// even though the 2nd NormalizedF32Exclusive looks < 1.0, after we renormalize it, we end
// up with 1.0, hence the need to check and just return the last cubic as
// a degenerate clump of 4 points in the same place.
pub fn chop_cubic_at(src: &[Point; 4], t_values: &[NormalizedF32Exclusive], dst: &mut [Point]) {
    if t_values.is_empty() {
        // nothing to chop
        dst[0] = src[0];
        dst[1] = src[1];
        dst[2] = src[2];
        dst[3] = src[3];
    } else {
        let mut t = t_values[0];
        let mut tmp = [Point::zero(); 4];

        // Reduce the `src` lifetime, so we can use `src = &tmp` later.
        let mut src = src;

        let mut dst_offset = 0;
        for i in 0..t_values.len() {
            chop_cubic_at2(src, t, &mut dst[dst_offset..]);
            if i == t_values.len() - 1 {
                break;
            }

            dst_offset += 3;
            // have src point to the remaining cubic (after the chop)
            tmp[0] = dst[dst_offset + 0];
            tmp[1] = dst[dst_offset + 1];
            tmp[2] = dst[dst_offset + 2];
            tmp[3] = dst[dst_offset + 3];
            src = &tmp;

            // watch out in case the renormalized t isn't in range
            let n = valid_unit_divide(
                t_values[i + 1].get() - t_values[i].get(),
                1.0 - t_values[i].get(),
            );

            match n {
                Some(n) => t = n,
                None => {
                    // if we can't, just create a degenerate cubic
                    dst[dst_offset + 4] = src[3];
                    dst[dst_offset + 5] = src[3];
                    dst[dst_offset + 6] = src[3];
                    break;
                }
            }
        }
    }
}

pub fn chop_cubic_at_max_curvature(
    src: &[Point; 4],
    t_values: &mut [NormalizedF32Exclusive; 3],
    dst: &mut [Point],
) -> usize {
    let mut roots = [NormalizedF32::ZERO; 3];
    let roots = find_cubic_max_curvature(src, &mut roots);

    // Throw out values not inside 0..1.
    let mut count = 0;
    for root in roots {
        if 0.0 < root.get() && root.get() < 1.0 {
            t_values[count] = NormalizedF32Exclusive::new_bounded(root.get());
            count += 1;
        }
    }

    if count == 0 {
        dst[0..4].copy_from_slice(src);
    } else {
        chop_cubic_at(src, &t_values[0..count], dst);
    }

    count + 1
}

pub fn chop_mono_cubic_at_x(src: &[Point; 4], x: f32, dst: &mut [Point; 7]) -> bool {
    cubic_dchop_at_intercept(src, x, true, dst)
}

pub fn chop_mono_cubic_at_y(src: &[Point; 4], y: f32, dst: &mut [Point; 7]) -> bool {
    cubic_dchop_at_intercept(src, y, false, dst)
}

fn cubic_dchop_at_intercept(
    src: &[Point; 4],
    intercept: f32,
    is_vertical: bool,
    dst: &mut [Point; 7],
) -> bool {
    use crate::path64::{cubic64::Cubic64, line_cubic_intersections, point64::Point64};

    let src = [
        Point64::from_point(src[0]),
        Point64::from_point(src[1]),
        Point64::from_point(src[2]),
        Point64::from_point(src[3]),
    ];

    let cubic = Cubic64::new(src);
    let mut roots = [0.0; 3];
    let count = if is_vertical {
        line_cubic_intersections::vertical_intersect(&cubic, f64::from(intercept), &mut roots)
    } else {
        line_cubic_intersections::horizontal_intersect(&cubic, f64::from(intercept), &mut roots)
    };

    if count > 0 {
        let pair = cubic.chop_at(roots[0]);
        for i in 0..7 {
            dst[i] = pair.points[i].to_point();
        }

        true
    } else {
        false
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn chop_cubic_at_y_extrema_1() {
        let src = [
            Point::from_xy(10.0, 20.0),
            Point::from_xy(67.0, 437.0),
            Point::from_xy(298.0, 213.0),
            Point::from_xy(401.0, 214.0),
        ];

        let mut dst = [Point::zero(); 10];
        let n = chop_cubic_at_y_extrema(&src, &mut dst);
        assert_eq!(n, 2);
        assert_eq!(dst[0], Point::from_xy(10.0, 20.0));
        assert_eq!(dst[1], Point::from_xy(37.508274, 221.24475));
        assert_eq!(dst[2], Point::from_xy(105.541855, 273.19803));
        assert_eq!(dst[3], Point::from_xy(180.15599, 273.19803));
        assert_eq!(dst[4], Point::from_xy(259.80502, 273.19803));
        assert_eq!(dst[5], Point::from_xy(346.9527, 213.99666));
        assert_eq!(dst[6], Point::from_xy(400.30844, 213.99666));
        assert_eq!(dst[7], Point::from_xy(400.53958, 213.99666));
        assert_eq!(dst[8], Point::from_xy(400.7701, 213.99777));
        assert_eq!(dst[9], Point::from_xy(401.0, 214.0));
    }
}