kurbo/
line.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
// Copyright 2018 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! Lines.

use core::ops::{Add, Mul, Range, Sub};

use arrayvec::ArrayVec;

use crate::{
    Affine, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea, ParamCurveCurvature,
    ParamCurveDeriv, ParamCurveExtrema, ParamCurveNearest, PathEl, Point, Rect, Shape, Vec2,
    DEFAULT_ACCURACY, MAX_EXTREMA,
};

/// A single line.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Line {
    /// The line's start point.
    pub p0: Point,
    /// The line's end point.
    pub p1: Point,
}

impl Line {
    /// Create a new line.
    #[inline]
    pub fn new(p0: impl Into<Point>, p1: impl Into<Point>) -> Line {
        Line {
            p0: p0.into(),
            p1: p1.into(),
        }
    }

    /// Returns a copy of this `Line` with the end points swapped so that it
    /// points in the opposite direction.
    #[must_use]
    #[inline]
    pub fn reversed(&self) -> Line {
        Self {
            p0: self.p1,
            p1: self.p0,
        }
    }

    /// The length of the line.
    #[inline]
    pub fn length(self) -> f64 {
        self.arclen(DEFAULT_ACCURACY)
    }

    /// The midpoint of the line.
    ///
    /// This is the same as calling [`Point::midpoint`] with
    /// the endpoints of this line.
    #[must_use]
    #[inline]
    pub fn midpoint(&self) -> Point {
        self.p0.midpoint(self.p1)
    }

    /// Computes the point where two lines, if extended to infinity, would cross.
    pub fn crossing_point(self, other: Line) -> Option<Point> {
        let ab = self.p1 - self.p0;
        let cd = other.p1 - other.p0;
        let pcd = ab.cross(cd);
        if pcd == 0.0 {
            return None;
        }
        let h = ab.cross(self.p0 - other.p0) / pcd;
        Some(other.p0 + cd * h)
    }

    /// Is this line `finite`?
    ///
    /// [finite]: f64::is_finite
    #[inline]
    pub fn is_finite(self) -> bool {
        self.p0.is_finite() && self.p1.is_finite()
    }

    /// Is this line `NaN`?
    ///
    /// [NaN]: f64::is_nan
    #[inline]
    pub fn is_nan(self) -> bool {
        self.p0.is_nan() || self.p1.is_nan()
    }
}

impl From<(Point, Point)> for Line {
    fn from((from, to): (Point, Point)) -> Self {
        Line::new(from, to)
    }
}

impl From<(Point, Vec2)> for Line {
    fn from((origin, displacement): (Point, Vec2)) -> Self {
        Line::new(origin, origin + displacement)
    }
}

impl ParamCurve for Line {
    #[inline]
    fn eval(&self, t: f64) -> Point {
        self.p0.lerp(self.p1, t)
    }

    #[inline]
    fn subsegment(&self, range: Range<f64>) -> Line {
        Line {
            p0: self.eval(range.start),
            p1: self.eval(range.end),
        }
    }

    #[inline]
    fn start(&self) -> Point {
        self.p0
    }

    #[inline]
    fn end(&self) -> Point {
        self.p1
    }
}

impl ParamCurveDeriv for Line {
    type DerivResult = ConstPoint;

    #[inline]
    fn deriv(&self) -> ConstPoint {
        ConstPoint((self.p1 - self.p0).to_point())
    }
}

impl ParamCurveArclen for Line {
    #[inline]
    fn arclen(&self, _accuracy: f64) -> f64 {
        (self.p1 - self.p0).hypot()
    }

    #[inline]
    fn inv_arclen(&self, arclen: f64, _accuracy: f64) -> f64 {
        arclen / (self.p1 - self.p0).hypot()
    }
}

impl ParamCurveArea for Line {
    #[inline]
    fn signed_area(&self) -> f64 {
        self.p0.to_vec2().cross(self.p1.to_vec2()) * 0.5
    }
}

impl ParamCurveNearest for Line {
    fn nearest(&self, p: Point, _accuracy: f64) -> Nearest {
        let d = self.p1 - self.p0;
        let dotp = d.dot(p - self.p0);
        let d_squared = d.dot(d);
        let (t, distance_sq) = if dotp <= 0.0 {
            (0.0, (p - self.p0).hypot2())
        } else if dotp >= d_squared {
            (1.0, (p - self.p1).hypot2())
        } else {
            let t = dotp / d_squared;
            let dist = (p - self.eval(t)).hypot2();
            (t, dist)
        };
        Nearest { distance_sq, t }
    }
}

impl ParamCurveCurvature for Line {
    #[inline]
    fn curvature(&self, _t: f64) -> f64 {
        0.0
    }
}

impl ParamCurveExtrema for Line {
    #[inline]
    fn extrema(&self) -> ArrayVec<f64, MAX_EXTREMA> {
        ArrayVec::new()
    }
}

/// A trivial "curve" that is just a constant.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct ConstPoint(Point);

impl ConstPoint {
    /// Is this point [finite]?
    ///
    /// [finite]: f64::is_finite
    #[inline]
    pub fn is_finite(self) -> bool {
        self.0.is_finite()
    }

    /// Is this point [NaN]?
    ///
    /// [NaN]: f64::is_nan
    #[inline]
    pub fn is_nan(self) -> bool {
        self.0.is_nan()
    }
}

impl ParamCurve for ConstPoint {
    #[inline]
    fn eval(&self, _t: f64) -> Point {
        self.0
    }

    #[inline]
    fn subsegment(&self, _range: Range<f64>) -> ConstPoint {
        *self
    }
}

impl ParamCurveDeriv for ConstPoint {
    type DerivResult = ConstPoint;

    #[inline]
    fn deriv(&self) -> ConstPoint {
        ConstPoint(Point::new(0.0, 0.0))
    }
}

impl ParamCurveArclen for ConstPoint {
    #[inline]
    fn arclen(&self, _accuracy: f64) -> f64 {
        0.0
    }

    #[inline]
    fn inv_arclen(&self, _arclen: f64, _accuracy: f64) -> f64 {
        0.0
    }
}

impl Mul<Line> for Affine {
    type Output = Line;

    #[inline]
    fn mul(self, other: Line) -> Line {
        Line {
            p0: self * other.p0,
            p1: self * other.p1,
        }
    }
}

impl Add<Vec2> for Line {
    type Output = Line;

    #[inline]
    fn add(self, v: Vec2) -> Line {
        Line::new(self.p0 + v, self.p1 + v)
    }
}

impl Sub<Vec2> for Line {
    type Output = Line;

    #[inline]
    fn sub(self, v: Vec2) -> Line {
        Line::new(self.p0 - v, self.p1 - v)
    }
}

/// An iterator yielding the path for a single line.
#[doc(hidden)]
pub struct LinePathIter {
    line: Line,
    ix: usize,
}

impl Shape for Line {
    type PathElementsIter<'iter> = LinePathIter;

    #[inline]
    fn path_elements(&self, _tolerance: f64) -> LinePathIter {
        LinePathIter { line: *self, ix: 0 }
    }

    /// Returning zero here is consistent with the contract (area is
    /// only meaningful for closed shapes), but an argument can be made
    /// that the contract should be tightened to include the Green's
    /// theorem contribution.
    fn area(&self) -> f64 {
        0.0
    }

    #[inline]
    fn perimeter(&self, _accuracy: f64) -> f64 {
        (self.p1 - self.p0).hypot()
    }

    /// Same consideration as `area`.
    fn winding(&self, _pt: Point) -> i32 {
        0
    }

    #[inline]
    fn bounding_box(&self) -> Rect {
        Rect::from_points(self.p0, self.p1)
    }

    #[inline]
    fn as_line(&self) -> Option<Line> {
        Some(*self)
    }
}

impl Iterator for LinePathIter {
    type Item = PathEl;

    fn next(&mut self) -> Option<PathEl> {
        self.ix += 1;
        match self.ix {
            1 => Some(PathEl::MoveTo(self.line.p0)),
            2 => Some(PathEl::LineTo(self.line.p1)),
            _ => None,
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::{Line, ParamCurveArclen, Point};

    #[test]
    fn line_reversed() {
        let l = Line::new((0.0, 0.0), (1.0, 1.0));
        let f = l.reversed();

        assert_eq!(l.p0, f.p1);
        assert_eq!(l.p1, f.p0);

        // Reversing it again should result in the original line
        assert_eq!(l, f.reversed());
    }

    #[test]
    fn line_arclen() {
        let l = Line::new((0.0, 0.0), (1.0, 1.0));
        let true_len = 2.0f64.sqrt();
        let epsilon = 1e-9;
        assert!(l.arclen(epsilon) - true_len < epsilon);

        let t = l.inv_arclen(true_len / 3.0, epsilon);
        assert!((t - 1.0 / 3.0).abs() < epsilon);
    }

    #[test]
    fn line_midpoint() {
        let l = Line::new((0.0, 0.0), (2.0, 4.0));
        assert_eq!(l.midpoint(), Point::new(1.0, 2.0));
    }

    #[test]
    fn line_is_finite() {
        assert!((Line {
            p0: Point { x: 0., y: 0. },
            p1: Point { x: 1., y: 1. }
        })
        .is_finite());

        assert!(!(Line {
            p0: Point { x: 0., y: 0. },
            p1: Point {
                x: f64::INFINITY,
                y: 1.
            }
        })
        .is_finite());

        assert!(!(Line {
            p0: Point { x: 0., y: 0. },
            p1: Point {
                x: 0.,
                y: f64::INFINITY
            }
        })
        .is_finite());
    }
}