1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
//! Small crate implementing fast conversion between linear float and 8-bit
//! sRGB.
//!
//! - [`f32_to_srgb8`]: Convert f32 to an sRGB u8. Meets all the requirements of
//! [the most relevent public
//! spec](https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm#FLOATtoSRGB)
//! which includes:
//! - Maximum error of 0.6 ULP (on integer side) — Note that in practice
//! this is a higher max error than the naive implementation will give
//! you, so for applications like scientific or medical imaging, perhaps
//! this is less acceptable. That said, for normal graphics work, this
//! should be fine.
//! - Monotonic across the 0.0..=1.0 range. (If `f32_to_srgb8(a) >
//! f32_to_srgb8(b)`, then `a > b`)
//! - All possible outputs are achievable (round-trips with
//! [`srgb8_to_f32`]).
//!
//! - [`f32x4_to_srgb8`]: Produces results identical to calling [`f32_to_srgb8`]
//! 4 times in a row. On targets where we have a SIMD implementation
//! (currently SSE2-enabled x86 and x86_64), this will use that. Otherwise, it
//! will just call `f32_to_srgb8` four times in a row, and return the results.
//!
//! - [`srgb8_to_f32`]: Inverse operation of [`f32_to_srgb8`]. Uses the standard
//! technique of a 256-item lookup table.
//!
//! ## Benefits
//! - Large performance improvments over the naive implementation (see
//! [README.md](github.com/thomcc/fast-srgb8) for benchmarks)
//! - Supports `no_std` (normally this is tricky, as these operations require
//! `powf` naively, which is not available to libcore)
//! - No dependencies.
//! - SIMD support for conversion to sRGB (conversion from sRGB is already ~20x
//! faster than naive impl, and would probably be slower in SIMD, so for now
//! it's not implemented).
//! - Consistent and correct (according to at least one relevant spec) handling
//! of edge cases, such as NaN/Inf/etc.
//! - Exhaustive checking of all inputs for correctness (in tests).
#![cfg_attr(not(test), no_std)]
#![cfg_attr(all(test, unstable_bench), feature(test))]
#[cfg(all(test, unstable_bench))]
extern crate test;
#[cfg(all(
not(miri),
any(target_arch = "x86_64", target_arch = "x86"),
target_feature = "sse2"
))]
mod sse2;
/// Converts linear f32 RGB component to an 8-bit sRGB value.
///
/// If you have to do this for many values simultaneously, use
/// [`f32x4_to_srgb8`], which will compute 4 results at once (using SIMD
/// instructions if available).
///
/// Input less than 0.0, or greater than 1.0, is clamped to be inside that
/// range. NaN input is treated as identical to 0.0.
///
/// # Details
///
/// Conceptually, this is an optimized (and slightly approximated — see the
/// "Approximation" section below) version of the following "reference
/// implementation", which more or less looks like:
///
/// ```
/// // Conceptually equivalent (but see below)
/// fn to_srgb_reference(f: f32) -> u8 {
/// let v = if !(f > 0.0) {
/// 0.0
/// } else if f <= 0.0031308 {
/// 12.92 * f
/// } else if f < 1.0 {
/// 1.055 * f.powf(1.0 / 2.4) - 0.055
/// } else {
/// 1.0
/// };
/// (v * 255.0 + 0.5) as u8
/// }
/// ```
///
/// This crate's implementation uses a small lookup table (a `[u32; 104]` --
/// around 6.5 cache lines), and avoids needing to call `powf` (which, as an
/// added bonus, means it works great in `no_std`), and in practice is many
/// times faster than the alternative.
///
/// Additional, it's fairly amenable to implementing in SIMD (— everything is
/// easily parallelized aside from the table lookup), and so a 4-wide
/// implementation is also provided as [`f32x4_to_srgb8`]
///
/// ## Approximation
/// Note that this is *not* bitwise identical to the results of the
/// `to_srgb_reference` function above, it's just very close. The maximum error
/// is 0.544403 for an input of 0.31152344, where error is computed as the
/// absolute difference between the rounded integer and the "exact" value.
///
/// This almost certainly meets requirements for graphics: [The DirectX
/// spec](https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm#FLOATtoSRGB)
/// mandates that compliant implementations of this function have a maximum
/// error of less than "0.6 ULP on the integer side" — Ours is ~0.54, which is
/// within the requirement.
///
/// This means function is probably at least as accurate as whatever your GPU
/// driver and/or hardware does for sRGB framebuffers and such — very likely
/// even if it isn't using DirectX (it's spec tends to be descriptive of what's
/// available commonly, especially in cases like this (most cases) where it's
/// the only one that bothers to put a requirement).
///
/// Additionally, because this function converts the result `u8` — for the vast
/// majority of inputs it will return an identical result to the reference impl.
///
/// To be completely clear (since it was brought up as a concern): despite this
/// approximation, this function and [`srgb8_to_f32`] are inverses of eachother,
/// and round trip appropriately.
#[inline]
pub fn f32_to_srgb8(f: f32) -> u8 {
const MAXV_BITS: u32 = 0x3f7fffff; // 1.0 - f32::EPSILON
const MINV_BITS: u32 = 0x39000000; // 2^(-13)
let minv = f32::from_bits(MINV_BITS);
let maxv = f32::from_bits(MAXV_BITS);
// written like this to handle nans.
let mut input = f;
if !(input > minv) {
input = minv;
}
if input > maxv {
input = maxv;
}
let fu = input.to_bits();
#[cfg(all(not(unstable_bench), test))]
{
debug_assert!(MINV_BITS <= fu && fu <= MAXV_BITS);
}
// Safety: all input floats are clamped into the {minv, maxv} range, which
// turns out in this case to guarantee that their bitwise reprs are clamped
// to the {MINV_BITS, MAXV_BITS} range (guaranteed by the fact that
// minv/maxv are the normal, finite, the same sign, and not zero).
//
// Because of that, the smallest result of `fu - MINV_BITS` is 0 (when `fu`
// is `MINV_BITS`), and the largest is `0x067fffff`, (when `fu` is
// `MAXV_BITS`). `0x067fffff >> 20` is 0x67, e.g. 103, and thus all possible
// results are inbounds for the (104 item) table. This is all verified in
// test code.
//
// Note that the compiler can't figure this out on it's own, so the
// get_unchecked does help some.
let entry = unsafe {
let i = ((fu - MINV_BITS) >> 20) as usize;
#[cfg(all(not(unstable_bench), test))]
{
debug_assert!(TO_SRGB8_TABLE.get(i).is_some());
}
*TO_SRGB8_TABLE.get_unchecked(i)
};
// bottom 16 bits are bias, top 9 are scale.
let bias = (entry >> 16) << 9;
let scale = entry & 0xffff;
// lerp to the next highest mantissa bits.
let t = (fu >> 12) & 0xff;
let res = (bias + scale * t) >> 16;
#[cfg(all(not(unstable_bench), test))]
{
debug_assert!(res < 256, "{}", res);
}
res as u8
}
/// Performs 4 simultaneous calls to [`f32_to_srgb8`], and returns 4 results.
///
/// If available, this uses SIMD to perform all 4 computations simultaneously —
/// currently this is just on x86_64 and x86 targets that suppost SSE2 (which in
/// practice will be all x86_64 (aside from weird things like OS kernels), and
/// all Rust targets beginning with `i686-`). On machines where it cannot use
/// the CPU's vector instructions, this function simply performs 4 calls to
/// [`f32_to_srgb8`].
///
/// The check for this support is performed at compile time, so it does no
/// runtime SIMD feature checks. This seems like the right call for SSE2.
///
/// Behavior is otherwise exactly (bitwise) identical to [`f32_to_srgb8`], so see
/// it's documentation for more information.
#[inline]
pub fn f32x4_to_srgb8(input: [f32; 4]) -> [u8; 4] {
#[cfg(all(
not(miri),
any(target_arch = "x86_64", target_arch = "x86"),
target_feature = "sse2"
))]
unsafe {
// Safety: we've checked that we're on x86/x86_64 and have SSE2
crate::sse2::simd_to_srgb8(input)
}
#[cfg(not(all(
not(miri),
any(target_arch = "x86_64", target_arch = "x86"),
target_feature = "sse2"
)))]
{
[
f32_to_srgb8(input[0]),
f32_to_srgb8(input[1]),
f32_to_srgb8(input[2]),
f32_to_srgb8(input[3]),
]
}
}
const TO_SRGB8_TABLE: [u32; 104] = [
0x0073000d, 0x007a000d, 0x0080000d, 0x0087000d, 0x008d000d, 0x0094000d, 0x009a000d, 0x00a1000d,
0x00a7001a, 0x00b4001a, 0x00c1001a, 0x00ce001a, 0x00da001a, 0x00e7001a, 0x00f4001a, 0x0101001a,
0x010e0033, 0x01280033, 0x01410033, 0x015b0033, 0x01750033, 0x018f0033, 0x01a80033, 0x01c20033,
0x01dc0067, 0x020f0067, 0x02430067, 0x02760067, 0x02aa0067, 0x02dd0067, 0x03110067, 0x03440067,
0x037800ce, 0x03df00ce, 0x044600ce, 0x04ad00ce, 0x051400ce, 0x057b00c5, 0x05dd00bc, 0x063b00b5,
0x06970158, 0x07420142, 0x07e30130, 0x087b0120, 0x090b0112, 0x09940106, 0x0a1700fc, 0x0a9500f2,
0x0b0f01cb, 0x0bf401ae, 0x0ccb0195, 0x0d950180, 0x0e56016e, 0x0f0d015e, 0x0fbc0150, 0x10630143,
0x11070264, 0x1238023e, 0x1357021d, 0x14660201, 0x156601e9, 0x165a01d3, 0x174401c0, 0x182401af,
0x18fe0331, 0x1a9602fe, 0x1c1502d2, 0x1d7e02ad, 0x1ed4028d, 0x201a0270, 0x21520256, 0x227d0240,
0x239f0443, 0x25c003fe, 0x27bf03c4, 0x29a10392, 0x2b6a0367, 0x2d1d0341, 0x2ebe031f, 0x304d0300,
0x31d105b0, 0x34a80555, 0x37520507, 0x39d504c5, 0x3c37048b, 0x3e7c0458, 0x40a8042a, 0x42bd0401,
0x44c20798, 0x488e071e, 0x4c1c06b6, 0x4f76065d, 0x52a50610, 0x55ac05cc, 0x5892058f, 0x5b590559,
0x5e0c0a23, 0x631c0980, 0x67db08f6, 0x6c55087f, 0x70940818, 0x74a007bd, 0x787d076c, 0x7c330723,
];
/// Convert from a 8-bit sRGB component to a linear f32.
///
/// This is the inverse of [`srgb8_to_f32`] — and `c: u8` is roundtripped
/// through it, as shown below:
/// ```
/// use fast_srgb8::{f32_to_srgb8, srgb8_to_f32};
/// for c in 0..=255u8 {
/// // f32_to_srgb8(srgb8_to_f32(c)) is an identity operation
/// assert_eq!(f32_to_srgb8(srgb8_to_f32(c)), c);
/// }
/// ```
///
/// The implementation of this function isn't particularly clever — it just uses
/// a precomputed lookup table of all 256 results. That has a benefit in that it
/// allows this function to be a const fn, which is somewhat nice: generally
/// color constants hardcoded in source code are sRGB, and this means you can
/// use them to produce linear constants.
///
/// In practice this is way faster than the naive approach, and I'm unaware of
/// any faster ways of implementing it, but it's not really amenable to SIMD, so
/// no SIMD version is provided.
#[inline]
pub const fn srgb8_to_f32(c: u8) -> f32 {
FROM_SRGB8_TABLE[c as usize]
}
#[rustfmt::skip]
const FROM_SRGB8_TABLE: [f32; 256] = [
0.0, 0.000303527, 0.000607054, 0.00091058103, 0.001214108, 0.001517635, 0.0018211621, 0.002124689,
0.002428216, 0.002731743, 0.00303527, 0.0033465356, 0.003676507, 0.004024717, 0.004391442,
0.0047769533, 0.005181517, 0.0056053917, 0.0060488326, 0.006512091, 0.00699541, 0.0074990317,
0.008023192, 0.008568125, 0.009134057, 0.009721218, 0.010329823, 0.010960094, 0.011612245,
0.012286487, 0.012983031, 0.013702081, 0.014443844, 0.015208514, 0.015996292, 0.016807375,
0.017641952, 0.018500218, 0.019382361, 0.020288562, 0.02121901, 0.022173883, 0.023153365,
0.02415763, 0.025186857, 0.026241222, 0.027320892, 0.028426038, 0.029556843, 0.03071345, 0.03189604,
0.033104774, 0.03433981, 0.035601325, 0.036889452, 0.038204376, 0.039546248, 0.04091521, 0.042311423,
0.043735042, 0.045186214, 0.046665095, 0.048171833, 0.049706575, 0.051269468, 0.052860655, 0.05448028,
0.056128494, 0.057805434, 0.05951124, 0.06124607, 0.06301003, 0.06480328, 0.06662595, 0.06847818,
0.07036011, 0.07227186, 0.07421358, 0.07618539, 0.07818743, 0.08021983, 0.082282715, 0.084376216,
0.086500466, 0.088655606, 0.09084173, 0.09305898, 0.095307484, 0.09758736, 0.09989874, 0.10224175,
0.10461649, 0.10702311, 0.10946172, 0.111932434, 0.11443538, 0.116970696, 0.11953845, 0.12213881,
0.12477186, 0.12743773, 0.13013652, 0.13286836, 0.13563336, 0.13843165, 0.14126332, 0.1441285,
0.1470273, 0.14995982, 0.15292618, 0.1559265, 0.15896086, 0.16202943, 0.16513224, 0.16826946,
0.17144115, 0.17464745, 0.17788847, 0.1811643, 0.18447503, 0.1878208, 0.19120172, 0.19461787,
0.19806935, 0.2015563, 0.20507877, 0.2086369, 0.21223079, 0.21586053, 0.21952623, 0.22322798,
0.22696589, 0.23074007, 0.23455065, 0.23839766, 0.2422812, 0.2462014, 0.25015837, 0.25415218,
0.2581829, 0.26225072, 0.26635566, 0.27049786, 0.27467737, 0.27889434, 0.2831488, 0.2874409,
0.2917707, 0.29613832, 0.30054384, 0.30498737, 0.30946895, 0.31398875, 0.31854683, 0.32314324,
0.32777813, 0.33245158, 0.33716366, 0.34191445, 0.3467041, 0.3515327, 0.35640025, 0.36130688,
0.3662527, 0.37123778, 0.37626222, 0.3813261, 0.38642952, 0.39157256, 0.3967553, 0.40197787,
0.4072403, 0.4125427, 0.41788515, 0.42326775, 0.42869055, 0.4341537, 0.43965724, 0.44520125,
0.45078585, 0.45641106, 0.46207705, 0.46778384, 0.47353154, 0.47932023, 0.48514998, 0.4910209,
0.49693304, 0.5028866, 0.50888145, 0.5149178, 0.5209957, 0.52711535, 0.5332766, 0.5394797,
0.5457247, 0.5520116, 0.5583406, 0.5647117, 0.57112503, 0.57758063, 0.5840786, 0.590619, 0.597202,
0.60382754, 0.61049575, 0.61720675, 0.62396055, 0.63075733, 0.637597, 0.6444799, 0.6514058,
0.65837497, 0.66538745, 0.67244333, 0.6795426, 0.68668544, 0.69387203, 0.70110214, 0.70837605,
0.7156938, 0.72305536, 0.730461, 0.7379107, 0.7454045, 0.75294244, 0.76052475, 0.7681514, 0.77582246,
0.78353804, 0.79129815, 0.79910296, 0.8069525, 0.8148468, 0.822786, 0.8307701, 0.83879924, 0.84687346,
0.8549928, 0.8631574, 0.87136734, 0.8796226, 0.8879232, 0.89626956, 0.90466136, 0.913099, 0.92158204,
0.93011117, 0.9386859, 0.9473069, 0.9559735, 0.9646866, 0.9734455, 0.98225087, 0.9911022, 1.0
];
#[cfg(test)]
mod tests {
use super::*;
fn srgb8_to_f32_ref(c: u8) -> f32 {
let c = c as f32 * (1.0 / 255.0);
if c <= 0.04045 {
c / 12.92
} else {
((c + 0.055) / 1.055).powf(2.4)
}
}
#[test]
fn test_from_srgb8() {
let wanted = (0..=255).map(srgb8_to_f32_ref).collect::<Vec<_>>();
assert_eq!(&FROM_SRGB8_TABLE[..], &wanted[..]);
for i in 0..=255u8 {
assert_eq!(srgb8_to_f32(i), srgb8_to_f32_ref(i));
assert_eq!(f32_to_srgb8(srgb8_to_f32(i)), i, "{}", i);
}
}
// run as `cargo test --release -- --nocapture --ignored`
#[test]
#[ignore]
fn test_exhaustive_scalar() {
// Simultaneously test that:
// - monotonicity is respected
// - error < 0.6f ULP on int side
// - SIMD and Scalar return identical values
let mut prev = 0;
for i in 0..=!0u32 {
// offset by the first NaN so that we iterate in a way that makes monotonicity easy to check.
let f = f32::from_bits(i.wrapping_add((255 << 23) + 1));
let c = f32_to_srgb8(f);
let reference = unrounded_f32_to_srgb_ref(f);
let err = (c as f32 - reference).abs();
assert!(
err < 0.6,
"Error exceeds limit, {} >= 0.6 at {:?} (0x{:08x})",
err,
f,
f.to_bits(),
);
assert!(
c >= prev,
"Monotonicity not respected {} < {} at {:?} (0x{:08x})",
c,
prev,
f,
f.to_bits(),
);
prev = c;
let v = f32x4_to_srgb8([f, f, f, f]);
assert_eq!([c, c, c, c], v);
if (i & 0xffffff) == 0 {
println!("scalar: {}", i >> 24);
}
}
}
#[test]
#[ignore]
fn test_exhaustive_simd() {
// verifies exactly identical results for all inputs.
let mut i = 0;
loop {
let f0 = f32::from_bits(i);
let f1 = f32::from_bits(i + 1);
let f2 = f32::from_bits(i + 2);
let f3 = f32::from_bits(i + 3);
let v = f32x4_to_srgb8([f0, f1, f2, f3]);
let c0 = f32_to_srgb8(f0);
let c1 = f32_to_srgb8(f1);
let c2 = f32_to_srgb8(f2);
let c3 = f32_to_srgb8(f3);
assert_eq!(
v,
[c0, c1, c2, c3],
"simd/scalar mismatch at {:?} (starting at 0x{:08x})",
[f0, f1, f2, f3],
i,
);
if (i & 0xffffff) == 0 {
println!("simd: {}", i >> 24);
}
i = i.wrapping_add(4);
if i == 0 {
break;
}
}
}
fn unrounded_f32_to_srgb_ref(f: f32) -> f32 {
let v = if !(f > 0.0) {
0.0
} else if f <= 0.0031308 {
12.92 * f
} else if f < 1.0 {
1.055 * f.powf(1.0 / 2.4) - 0.055
} else {
1.0
};
v * 255.0
}
#[cfg(unstable_bench)]
mod bench {
use super::*;
fn f32_to_srgb_ref(f: f32) -> u8 {
(unrounded_f32_to_srgb_ref(f) + 0.5) as u8
}
const BENCH_SUBDIV: usize = 50;
#[bench]
fn fast_scalar(b: &mut test::Bencher) {
b.iter(|| {
for i in 0..=BENCH_SUBDIV {
test::black_box(f32_to_srgb8(i as f32 / BENCH_SUBDIV as f32));
}
});
}
#[bench]
fn naive_scalar(b: &mut test::Bencher) {
b.iter(|| {
for i in 0..=BENCH_SUBDIV {
test::black_box(f32_to_srgb_ref(i as f32 / BENCH_SUBDIV as f32));
}
});
}
#[bench]
fn naive_f32x4(b: &mut test::Bencher) {
b.iter(|| {
for i in 0..=BENCH_SUBDIV {
let a = f32_to_srgb_ref(i as f32 / BENCH_SUBDIV as f32);
let b = f32_to_srgb_ref(i as f32 / BENCH_SUBDIV as f32 + 0.025);
let c = f32_to_srgb_ref(i as f32 / BENCH_SUBDIV as f32 + 0.05);
let d = f32_to_srgb_ref(i as f32 / BENCH_SUBDIV as f32 + 0.075);
test::black_box([a, b, c, d]);
}
});
}
#[bench]
fn fast_f32x4(b: &mut test::Bencher) {
b.iter(|| {
for i in 0..=BENCH_SUBDIV {
let v = f32x4_to_srgb8([
i as f32 / BENCH_SUBDIV as f32,
i as f32 / BENCH_SUBDIV as f32 + 0.025,
i as f32 / BENCH_SUBDIV as f32 + 0.05,
i as f32 / BENCH_SUBDIV as f32 + 0.075,
]);
test::black_box(v);
}
});
}
#[bench]
fn fast_f32x4_nosimd(b: &mut test::Bencher) {
b.iter(|| {
for i in 0..=BENCH_SUBDIV {
let a = f32_to_srgb8(i as f32 / BENCH_SUBDIV as f32);
let b = f32_to_srgb8(i as f32 / BENCH_SUBDIV as f32 + 0.025);
let c = f32_to_srgb8(i as f32 / BENCH_SUBDIV as f32 + 0.05);
let d = f32_to_srgb8(i as f32 / BENCH_SUBDIV as f32 + 0.075);
test::black_box([a, b, c, d]);
}
});
}
#[bench]
fn naive_from_srgb8(b: &mut test::Bencher) {
b.iter(|| {
for i in 0..=255 {
test::black_box(srgb8_to_f32_ref(i));
}
});
}
#[bench]
fn fast_from_srgb8(b: &mut test::Bencher) {
b.iter(|| {
for i in 0..=255 {
test::black_box(srgb8_to_f32(i));
}
});
}
}
}