taffy/compute/grid/types/grid_item.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
//! Contains GridItem used to represent a single grid item during layout
use super::GridTrack;
use crate::compute::grid::OriginZeroLine;
use crate::geometry::AbstractAxis;
use crate::geometry::{Line, Point, Rect, Size};
use crate::style::{
AlignItems, AlignSelf, AvailableSpace, Dimension, LengthPercentageAuto, MaxTrackSizingFunction,
MinTrackSizingFunction, Overflow, Style,
};
use crate::tree::{NodeId, PartialLayoutTree, PartialLayoutTreeExt, SizingMode};
use crate::util::{MaybeMath, MaybeResolve, ResolveOrZero};
use core::ops::Range;
/// Represents a single grid item
#[derive(Debug)]
pub(in super::super) struct GridItem {
/// The id of the node that this item represents
pub node: NodeId,
/// The order of the item in the children array
///
/// We sort the list of grid items during track sizing. This field allows us to sort back the original order
/// for final positioning
pub source_order: u16,
/// The item's definite row-start and row-end, as resolved by the placement algorithm
/// (in origin-zero coordinates)
pub row: Line<OriginZeroLine>,
/// The items definite column-start and column-end, as resolved by the placement algorithm
/// (in origin-zero coordinates)
pub column: Line<OriginZeroLine>,
/// The item's overflow style
pub overflow: Point<Overflow>,
/// The item's size style
pub size: Size<Dimension>,
/// The item's min_size style
pub min_size: Size<Dimension>,
/// The item's max_size style
pub max_size: Size<Dimension>,
/// The item's aspect_ratio style
pub aspect_ratio: Option<f32>,
/// The item's margin style
pub margin: Rect<LengthPercentageAuto>,
/// The item's align_self property, or the parent's align_items property is not set
pub align_self: AlignSelf,
/// The item's justify_self property, or the parent's justify_items property is not set
pub justify_self: AlignSelf,
/// The items first baseline (horizontal)
pub baseline: Option<f32>,
/// Shim for baseline alignment that acts like an extra top margin
/// TODO: Support last baseline and vertical text baselines
pub baseline_shim: f32,
/// The item's definite row-start and row-end (same as `row` field, except in a different coordinate system)
/// (as indexes into the Vec<GridTrack> stored in a grid's AbstractAxisTracks)
pub row_indexes: Line<u16>,
/// The items definite column-start and column-end (same as `column` field, except in a different coordinate system)
/// (as indexes into the Vec<GridTrack> stored in a grid's AbstractAxisTracks)
pub column_indexes: Line<u16>,
/// Whether the item crosses a flexible row
pub crosses_flexible_row: bool,
/// Whether the item crosses a flexible column
pub crosses_flexible_column: bool,
/// Whether the item crosses a intrinsic row
pub crosses_intrinsic_row: bool,
/// Whether the item crosses a intrinsic column
pub crosses_intrinsic_column: bool,
// Caches for intrinsic size computation. These caches are only valid for a single run of the track-sizing algorithm.
/// Cache for the known_dimensions input to intrinsic sizing computation
pub available_space_cache: Option<Size<Option<f32>>>,
/// Cache for the min-content size
pub min_content_contribution_cache: Size<Option<f32>>,
/// Cache for the minimum contribution
pub minimum_contribution_cache: Size<Option<f32>>,
/// Cache for the max-content size
pub max_content_contribution_cache: Size<Option<f32>>,
/// Final y position. Used to compute baseline alignment for the container.
pub y_position: f32,
/// Final height. Used to compute baseline alignment for the container.
pub height: f32,
}
impl GridItem {
/// Create a new item given a concrete placement in both axes
pub fn new_with_placement_style_and_order(
node: NodeId,
col_span: Line<OriginZeroLine>,
row_span: Line<OriginZeroLine>,
style: &Style,
parent_align_items: AlignItems,
parent_justify_items: AlignItems,
source_order: u16,
) -> Self {
GridItem {
node,
source_order,
row: row_span,
column: col_span,
overflow: style.overflow,
size: style.size,
min_size: style.min_size,
max_size: style.max_size,
aspect_ratio: style.aspect_ratio,
margin: style.margin,
align_self: style.align_self.unwrap_or(parent_align_items),
justify_self: style.justify_self.unwrap_or(parent_justify_items),
baseline: None,
baseline_shim: 0.0,
row_indexes: Line { start: 0, end: 0 }, // Properly initialised later
column_indexes: Line { start: 0, end: 0 }, // Properly initialised later
crosses_flexible_row: false, // Properly initialised later
crosses_flexible_column: false, // Properly initialised later
crosses_intrinsic_row: false, // Properly initialised later
crosses_intrinsic_column: false, // Properly initialised later
available_space_cache: None,
min_content_contribution_cache: Size::NONE,
max_content_contribution_cache: Size::NONE,
minimum_contribution_cache: Size::NONE,
y_position: 0.0,
height: 0.0,
}
}
/// This item's placement in the specified axis in OriginZero coordinates
pub fn placement(&self, axis: AbstractAxis) -> Line<OriginZeroLine> {
match axis {
AbstractAxis::Block => self.row,
AbstractAxis::Inline => self.column,
}
}
/// This item's placement in the specified axis as GridTrackVec indices
pub fn placement_indexes(&self, axis: AbstractAxis) -> Line<u16> {
match axis {
AbstractAxis::Block => self.row_indexes,
AbstractAxis::Inline => self.column_indexes,
}
}
/// Returns a range which can be used as an index into the GridTrackVec in the specified axis
/// which will produce a sub-slice of covering all the tracks and lines that this item spans
/// excluding the lines that bound it.
pub fn track_range_excluding_lines(&self, axis: AbstractAxis) -> Range<usize> {
let indexes = self.placement_indexes(axis);
(indexes.start as usize + 1)..(indexes.end as usize)
}
/// Returns the number of tracks that this item spans in the specified axis
pub fn span(&self, axis: AbstractAxis) -> u16 {
match axis {
AbstractAxis::Block => self.row.span(),
AbstractAxis::Inline => self.column.span(),
}
}
/// Returns the pre-computed value indicating whether the grid item crosses a flexible track in
/// the specified axis
pub fn crosses_flexible_track(&self, axis: AbstractAxis) -> bool {
match axis {
AbstractAxis::Inline => self.crosses_flexible_column,
AbstractAxis::Block => self.crosses_flexible_row,
}
}
/// Returns the pre-computed value indicating whether the grid item crosses an intrinsic track in
/// the specified axis
pub fn crosses_intrinsic_track(&self, axis: AbstractAxis) -> bool {
match axis {
AbstractAxis::Inline => self.crosses_intrinsic_column,
AbstractAxis::Block => self.crosses_intrinsic_row,
}
}
/// For an item spanning multiple tracks, the upper limit used to calculate its limited min-/max-content contribution is the
/// sum of the fixed max track sizing functions of any tracks it spans, and is applied if it only spans such tracks.
pub fn spanned_track_limit(
&mut self,
axis: AbstractAxis,
axis_tracks: &[GridTrack],
axis_parent_size: Option<f32>,
) -> Option<f32> {
let spanned_tracks = &axis_tracks[self.track_range_excluding_lines(axis)];
let tracks_all_fixed = spanned_tracks
.iter()
.all(|track| track.max_track_sizing_function.definite_limit(axis_parent_size).is_some());
if tracks_all_fixed {
let limit: f32 = spanned_tracks
.iter()
.map(|track| track.max_track_sizing_function.definite_limit(axis_parent_size).unwrap())
.sum();
Some(limit)
} else {
None
}
}
/// Similar to the spanned_track_limit, but excludes FitContent arguments from the limit.
/// Used to clamp the automatic minimum contributions of an item
pub fn spanned_fixed_track_limit(
&mut self,
axis: AbstractAxis,
axis_tracks: &[GridTrack],
axis_parent_size: Option<f32>,
) -> Option<f32> {
let spanned_tracks = &axis_tracks[self.track_range_excluding_lines(axis)];
let tracks_all_fixed = spanned_tracks
.iter()
.all(|track| track.max_track_sizing_function.definite_value(axis_parent_size).is_some());
if tracks_all_fixed {
let limit: f32 = spanned_tracks
.iter()
.map(|track| track.max_track_sizing_function.definite_value(axis_parent_size).unwrap())
.sum();
Some(limit)
} else {
None
}
}
/// Compute the known_dimensions to be passed to the child sizing functions
/// The key thing that is being done here is applying stretch alignment, which is necessary to
/// allow percentage sizes further down the tree to resolve properly in some cases
fn known_dimensions(
&self,
inner_node_size: Size<Option<f32>>,
grid_area_size: Size<Option<f32>>,
) -> Size<Option<f32>> {
let margins = self.margins_axis_sums_with_baseline_shims(inner_node_size.width);
let aspect_ratio = self.aspect_ratio;
let inherent_size = self.size.maybe_resolve(grid_area_size).maybe_apply_aspect_ratio(aspect_ratio);
let min_size = self.min_size.maybe_resolve(grid_area_size).maybe_apply_aspect_ratio(aspect_ratio);
let max_size = self.max_size.maybe_resolve(grid_area_size).maybe_apply_aspect_ratio(aspect_ratio);
let grid_area_minus_item_margins_size = grid_area_size.maybe_sub(margins);
// If node is absolutely positioned and width is not set explicitly, then deduce it
// from left, right and container_content_box if both are set.
let width = inherent_size.width.or_else(|| {
// Apply width based on stretch alignment if:
// - Alignment style is "stretch"
// - The node is not absolutely positioned
// - The node does not have auto margins in this axis.
if self.margin.left != LengthPercentageAuto::Auto
&& self.margin.right != LengthPercentageAuto::Auto
&& self.justify_self == AlignSelf::Stretch
{
return grid_area_minus_item_margins_size.width;
}
None
});
// Reapply aspect ratio after stretch and absolute position width adjustments
let Size { width, height } =
Size { width, height: inherent_size.height }.maybe_apply_aspect_ratio(aspect_ratio);
let height = height.or_else(|| {
// Apply height based on stretch alignment if:
// - Alignment style is "stretch"
// - The node is not absolutely positioned
// - The node does not have auto margins in this axis.
if self.margin.top != LengthPercentageAuto::Auto
&& self.margin.bottom != LengthPercentageAuto::Auto
&& self.align_self == AlignSelf::Stretch
{
return grid_area_minus_item_margins_size.height;
}
None
});
// Reapply aspect ratio after stretch and absolute position height adjustments
let Size { width, height } = Size { width, height }.maybe_apply_aspect_ratio(aspect_ratio);
// Clamp size by min and max width/height
let Size { width, height } = Size { width, height }.maybe_clamp(min_size, max_size);
Size { width, height }
}
/// Compute the available_space to be passed to the child sizing functions
/// These are estimates based on either the max track sizing function or the provisional base size in the opposite
/// axis to the one currently being sized.
/// https://www.w3.org/TR/css-grid-1/#algo-overview
pub fn available_space(
&self,
axis: AbstractAxis,
other_axis_tracks: &[GridTrack],
other_axis_available_space: Option<f32>,
get_track_size_estimate: impl Fn(&GridTrack, Option<f32>) -> Option<f32>,
) -> Size<Option<f32>> {
let item_other_axis_size: Option<f32> = {
other_axis_tracks[self.track_range_excluding_lines(axis.other())]
.iter()
.map(|track| {
get_track_size_estimate(track, other_axis_available_space)
.map(|size| size + track.content_alignment_adjustment)
})
.sum::<Option<f32>>()
};
let mut size = Size::NONE;
size.set(axis.other(), item_other_axis_size);
size
}
/// Retrieve the available_space from the cache or compute them using the passed parameters
pub fn available_space_cached(
&mut self,
axis: AbstractAxis,
other_axis_tracks: &[GridTrack],
other_axis_available_space: Option<f32>,
get_track_size_estimate: impl Fn(&GridTrack, Option<f32>) -> Option<f32>,
) -> Size<Option<f32>> {
self.available_space_cache.unwrap_or_else(|| {
let available_spaces =
self.available_space(axis, other_axis_tracks, other_axis_available_space, get_track_size_estimate);
self.available_space_cache = Some(available_spaces);
available_spaces
})
}
/// Compute the item's resolved margins for size contributions. Horizontal percentage margins always resolve
/// to zero if the container size is indefinite as otherwise this would introduce a cyclic dependency.
#[inline(always)]
pub fn margins_axis_sums_with_baseline_shims(&self, inner_node_width: Option<f32>) -> Size<f32> {
Rect {
left: self.margin.left.resolve_or_zero(Some(0.0)),
right: self.margin.right.resolve_or_zero(Some(0.0)),
top: self.margin.top.resolve_or_zero(inner_node_width) + self.baseline_shim,
bottom: self.margin.bottom.resolve_or_zero(inner_node_width),
}
.sum_axes()
}
/// Compute the item's min content contribution from the provided parameters
pub fn min_content_contribution(
&self,
axis: AbstractAxis,
tree: &mut impl PartialLayoutTree,
available_space: Size<Option<f32>>,
inner_node_size: Size<Option<f32>>,
) -> f32 {
let known_dimensions = self.known_dimensions(inner_node_size, available_space);
tree.measure_child_size(
self.node,
known_dimensions,
available_space,
available_space.map(|opt| match opt {
Some(size) => AvailableSpace::Definite(size),
None => AvailableSpace::MinContent,
}),
SizingMode::InherentSize,
axis.as_abs_naive(),
Line::FALSE,
)
}
/// Retrieve the item's min content contribution from the cache or compute it using the provided parameters
#[inline(always)]
pub fn min_content_contribution_cached(
&mut self,
axis: AbstractAxis,
tree: &mut impl PartialLayoutTree,
available_space: Size<Option<f32>>,
inner_node_size: Size<Option<f32>>,
) -> f32 {
self.min_content_contribution_cache.get(axis).unwrap_or_else(|| {
let size = self.min_content_contribution(axis, tree, available_space, inner_node_size);
self.min_content_contribution_cache.set(axis, Some(size));
size
})
}
/// Compute the item's max content contribution from the provided parameters
pub fn max_content_contribution(
&self,
axis: AbstractAxis,
tree: &mut impl PartialLayoutTree,
available_space: Size<Option<f32>>,
inner_node_size: Size<Option<f32>>,
) -> f32 {
let known_dimensions = self.known_dimensions(inner_node_size, available_space);
tree.measure_child_size(
self.node,
known_dimensions,
available_space,
available_space.map(|opt| match opt {
Some(size) => AvailableSpace::Definite(size),
None => AvailableSpace::MaxContent,
}),
SizingMode::InherentSize,
axis.as_abs_naive(),
Line::FALSE,
)
}
/// Retrieve the item's max content contribution from the cache or compute it using the provided parameters
#[inline(always)]
pub fn max_content_contribution_cached(
&mut self,
axis: AbstractAxis,
tree: &mut impl PartialLayoutTree,
available_space: Size<Option<f32>>,
inner_node_size: Size<Option<f32>>,
) -> f32 {
self.max_content_contribution_cache.get(axis).unwrap_or_else(|| {
let size = self.max_content_contribution(axis, tree, available_space, inner_node_size);
self.max_content_contribution_cache.set(axis, Some(size));
size
})
}
/// The minimum contribution of an item is the smallest outer size it can have.
/// Specifically:
/// - If the item’s computed preferred size behaves as auto or depends on the size of its containing block in the relevant axis:
/// Its minimum contribution is the outer size that would result from assuming the item’s used minimum size as its preferred size;
/// - Else the item’s minimum contribution is its min-content contribution.
/// Because the minimum contribution often depends on the size of the item’s content, it is considered a type of intrinsic size contribution.
/// See: https://www.w3.org/TR/css-grid-1/#min-size-auto
pub fn minimum_contribution(
&mut self,
tree: &mut impl PartialLayoutTree,
axis: AbstractAxis,
axis_tracks: &[GridTrack],
known_dimensions: Size<Option<f32>>,
inner_node_size: Size<Option<f32>>,
) -> f32 {
let size = self
.size
.maybe_resolve(inner_node_size)
.maybe_apply_aspect_ratio(self.aspect_ratio)
.get(axis)
.or_else(|| {
self.min_size.maybe_resolve(inner_node_size).maybe_apply_aspect_ratio(self.aspect_ratio).get(axis)
})
.or_else(|| self.overflow.get(axis).maybe_into_automatic_min_size())
.unwrap_or_else(|| {
// Automatic minimum size. See https://www.w3.org/TR/css-grid-1/#min-size-auto
// To provide a more reasonable default minimum size for grid items, the used value of its automatic minimum size
// in a given axis is the content-based minimum size if all of the following are true:
let item_axis_tracks = &axis_tracks[self.track_range_excluding_lines(axis)];
// it is not a scroll container
// TODO: support overflow propety
// it spans at least one track in that axis whose min track sizing function is auto
let spans_auto_min_track = axis_tracks
.iter()
// TODO: should this be 'behaves as auto' rather than just literal auto?
.any(|track| track.min_track_sizing_function == MinTrackSizingFunction::Auto);
// if it spans more than one track in that axis, none of those tracks are flexible
let only_span_one_track = item_axis_tracks.len() == 1;
let spans_a_flexible_track = axis_tracks
.iter()
.any(|track| matches!(track.max_track_sizing_function, MaxTrackSizingFunction::Fraction(_)));
let use_content_based_minimum =
spans_auto_min_track && (only_span_one_track || !spans_a_flexible_track);
// Otherwise, the automatic minimum size is zero, as usual.
if use_content_based_minimum {
self.min_content_contribution_cached(axis, tree, known_dimensions, inner_node_size)
} else {
0.0
}
});
// In all cases, the size suggestion is additionally clamped by the maximum size in the affected axis, if it’s definite.
// Note: The argument to fit-content() does not clamp the content-based minimum size in the same way as a fixed max track
// sizing function.
let limit = self.spanned_fixed_track_limit(axis, axis_tracks, inner_node_size.get(axis));
size.maybe_min(limit)
}
/// Retrieve the item's minimum contribution from the cache or compute it using the provided parameters
#[inline(always)]
pub fn minimum_contribution_cached(
&mut self,
tree: &mut impl PartialLayoutTree,
axis: AbstractAxis,
axis_tracks: &[GridTrack],
known_dimensions: Size<Option<f32>>,
inner_node_size: Size<Option<f32>>,
) -> f32 {
self.minimum_contribution_cache.get(axis).unwrap_or_else(|| {
let size = self.minimum_contribution(tree, axis, axis_tracks, known_dimensions, inner_node_size);
self.minimum_contribution_cache.set(axis, Some(size));
size
})
}
}