use core::ops::{Mul, Range};
use arrayvec::ArrayVec;
use crate::common::solve_cubic;
use crate::MAX_EXTREMA;
use crate::{
Affine, CubicBez, Line, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea,
ParamCurveCurvature, ParamCurveDeriv, ParamCurveExtrema, ParamCurveNearest, PathEl, Point,
Rect, Shape,
};
#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[allow(missing_docs)]
pub struct QuadBez {
pub p0: Point,
pub p1: Point,
pub p2: Point,
}
impl QuadBez {
#[inline]
pub fn new<V: Into<Point>>(p0: V, p1: V, p2: V) -> QuadBez {
QuadBez {
p0: p0.into(),
p1: p1.into(),
p2: p2.into(),
}
}
#[inline]
pub fn raise(&self) -> CubicBez {
CubicBez::new(
self.p0,
self.p0 + (2.0 / 3.0) * (self.p1 - self.p0),
self.p2 + (2.0 / 3.0) * (self.p1 - self.p2),
self.p2,
)
}
pub(crate) fn estimate_subdiv(&self, sqrt_tol: f64) -> FlattenParams {
let d01 = self.p1 - self.p0;
let d12 = self.p2 - self.p1;
let dd = d01 - d12;
let cross = (self.p2 - self.p0).cross(dd);
let x0 = d01.dot(dd) * cross.recip();
let x2 = d12.dot(dd) * cross.recip();
let scale = (cross / (dd.hypot() * (x2 - x0))).abs();
let a0 = approx_parabola_integral(x0);
let a2 = approx_parabola_integral(x2);
let val = if scale.is_finite() {
let da = (a2 - a0).abs();
let sqrt_scale = scale.sqrt();
if x0.signum() == x2.signum() {
da * sqrt_scale
} else {
let xmin = sqrt_tol / sqrt_scale;
sqrt_tol * da / approx_parabola_integral(xmin)
}
} else {
0.0
};
let u0 = approx_parabola_inv_integral(a0);
let u2 = approx_parabola_inv_integral(a2);
let uscale = (u2 - u0).recip();
FlattenParams {
a0,
a2,
u0,
uscale,
val,
}
}
pub(crate) fn determine_subdiv_t(&self, params: &FlattenParams, x: f64) -> f64 {
let a = params.a0 + (params.a2 - params.a0) * x;
let u = approx_parabola_inv_integral(a);
(u - params.u0) * params.uscale
}
#[inline]
pub fn is_finite(&self) -> bool {
self.p0.is_finite() && self.p1.is_finite() && self.p2.is_finite()
}
#[inline]
pub fn is_nan(&self) -> bool {
self.p0.is_nan() || self.p1.is_nan() || self.p2.is_nan()
}
}
pub struct QuadBezIter {
quad: QuadBez,
ix: usize,
}
impl Shape for QuadBez {
type PathElementsIter<'iter> = QuadBezIter;
#[inline]
fn path_elements(&self, _tolerance: f64) -> QuadBezIter {
QuadBezIter { quad: *self, ix: 0 }
}
fn area(&self) -> f64 {
0.0
}
#[inline]
fn perimeter(&self, accuracy: f64) -> f64 {
self.arclen(accuracy)
}
fn winding(&self, _pt: Point) -> i32 {
0
}
#[inline]
fn bounding_box(&self) -> Rect {
ParamCurveExtrema::bounding_box(self)
}
}
impl Iterator for QuadBezIter {
type Item = PathEl;
fn next(&mut self) -> Option<PathEl> {
self.ix += 1;
match self.ix {
1 => Some(PathEl::MoveTo(self.quad.p0)),
2 => Some(PathEl::QuadTo(self.quad.p1, self.quad.p2)),
_ => None,
}
}
}
pub(crate) struct FlattenParams {
a0: f64,
a2: f64,
u0: f64,
uscale: f64,
pub(crate) val: f64,
}
fn approx_parabola_integral(x: f64) -> f64 {
const D: f64 = 0.67;
x / (1.0 - D + (D.powi(4) + 0.25 * x * x).sqrt().sqrt())
}
fn approx_parabola_inv_integral(x: f64) -> f64 {
const B: f64 = 0.39;
x * (1.0 - B + (B * B + 0.25 * x * x).sqrt())
}
impl ParamCurve for QuadBez {
#[inline]
fn eval(&self, t: f64) -> Point {
let mt = 1.0 - t;
(self.p0.to_vec2() * (mt * mt)
+ (self.p1.to_vec2() * (mt * 2.0) + self.p2.to_vec2() * t) * t)
.to_point()
}
fn subsegment(&self, range: Range<f64>) -> QuadBez {
let (t0, t1) = (range.start, range.end);
let p0 = self.eval(t0);
let p2 = self.eval(t1);
let p1 = p0 + (self.p1 - self.p0).lerp(self.p2 - self.p1, t0) * (t1 - t0);
QuadBez { p0, p1, p2 }
}
#[inline]
fn subdivide(&self) -> (QuadBez, QuadBez) {
let pm = self.eval(0.5);
(
QuadBez::new(self.p0, self.p0.midpoint(self.p1), pm),
QuadBez::new(pm, self.p1.midpoint(self.p2), self.p2),
)
}
#[inline]
fn start(&self) -> Point {
self.p0
}
#[inline]
fn end(&self) -> Point {
self.p2
}
}
impl ParamCurveDeriv for QuadBez {
type DerivResult = Line;
#[inline]
fn deriv(&self) -> Line {
Line::new(
(2.0 * (self.p1.to_vec2() - self.p0.to_vec2())).to_point(),
(2.0 * (self.p2.to_vec2() - self.p1.to_vec2())).to_point(),
)
}
}
impl ParamCurveArclen for QuadBez {
fn arclen(&self, _accuracy: f64) -> f64 {
let d2 = self.p0.to_vec2() - 2.0 * self.p1.to_vec2() + self.p2.to_vec2();
let a = d2.hypot2();
let d1 = self.p1 - self.p0;
let c = d1.hypot2();
if a < 5e-4 * c {
let v0 = (-0.492943519233745 * self.p0.to_vec2()
+ 0.430331482911935 * self.p1.to_vec2()
+ 0.0626120363218102 * self.p2.to_vec2())
.hypot();
let v1 = ((self.p2 - self.p0) * 0.4444444444444444).hypot();
let v2 = (-0.0626120363218102 * self.p0.to_vec2()
- 0.430331482911935 * self.p1.to_vec2()
+ 0.492943519233745 * self.p2.to_vec2())
.hypot();
return v0 + v1 + v2;
}
let b = 2.0 * d2.dot(d1);
let sabc = (a + b + c).sqrt();
let a2 = a.powf(-0.5);
let a32 = a2.powi(3);
let c2 = 2.0 * c.sqrt();
let ba_c2 = b * a2 + c2;
let v0 = 0.25 * a2 * a2 * b * (2.0 * sabc - c2) + sabc;
if ba_c2 < 1e-13 {
v0
} else {
v0 + 0.25
* a32
* (4.0 * c * a - b * b)
* (((2.0 * a + b) * a2 + 2.0 * sabc) / ba_c2).ln()
}
}
}
impl ParamCurveArea for QuadBez {
#[inline]
fn signed_area(&self) -> f64 {
(self.p0.x * (2.0 * self.p1.y + self.p2.y) + 2.0 * self.p1.x * (self.p2.y - self.p0.y)
- self.p2.x * (self.p0.y + 2.0 * self.p1.y))
* (1.0 / 6.0)
}
}
impl ParamCurveNearest for QuadBez {
fn nearest(&self, p: Point, _accuracy: f64) -> Nearest {
fn eval_t(p: Point, t_best: &mut f64, r_best: &mut Option<f64>, t: f64, p0: Point) {
let r = (p0 - p).hypot2();
if r_best.map(|r_best| r < r_best).unwrap_or(true) {
*r_best = Some(r);
*t_best = t;
}
}
fn try_t(
q: &QuadBez,
p: Point,
t_best: &mut f64,
r_best: &mut Option<f64>,
t: f64,
) -> bool {
if !(0.0..=1.0).contains(&t) {
return true;
}
eval_t(p, t_best, r_best, t, q.eval(t));
false
}
let d0 = self.p1 - self.p0;
let d1 = self.p0.to_vec2() + self.p2.to_vec2() - 2.0 * self.p1.to_vec2();
let d = self.p0 - p;
let c0 = d.dot(d0);
let c1 = 2.0 * d0.hypot2() + d.dot(d1);
let c2 = 3.0 * d1.dot(d0);
let c3 = d1.hypot2();
let roots = solve_cubic(c0, c1, c2, c3);
let mut r_best = None;
let mut t_best = 0.0;
let mut need_ends = false;
if roots.is_empty() {
need_ends = true;
}
for &t in &roots {
need_ends |= try_t(self, p, &mut t_best, &mut r_best, t);
}
if need_ends {
eval_t(p, &mut t_best, &mut r_best, 0.0, self.p0);
eval_t(p, &mut t_best, &mut r_best, 1.0, self.p2);
}
Nearest {
t: t_best,
distance_sq: r_best.unwrap(),
}
}
}
impl ParamCurveCurvature for QuadBez {}
impl ParamCurveExtrema for QuadBez {
fn extrema(&self) -> ArrayVec<f64, MAX_EXTREMA> {
let mut result = ArrayVec::new();
let d0 = self.p1 - self.p0;
let d1 = self.p2 - self.p1;
let dd = d1 - d0;
if dd.x != 0.0 {
let t = -d0.x / dd.x;
if t > 0.0 && t < 1.0 {
result.push(t);
}
}
if dd.y != 0.0 {
let t = -d0.y / dd.y;
if t > 0.0 && t < 1.0 {
result.push(t);
if result.len() == 2 && result[0] > t {
result.swap(0, 1);
}
}
}
result
}
}
impl Mul<QuadBez> for Affine {
type Output = QuadBez;
#[inline]
fn mul(self, other: QuadBez) -> QuadBez {
QuadBez {
p0: self * other.p0,
p1: self * other.p1,
p2: self * other.p2,
}
}
}
#[cfg(test)]
mod tests {
use crate::{
Affine, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea, ParamCurveDeriv,
ParamCurveExtrema, ParamCurveNearest, Point, QuadBez,
};
fn assert_near(p0: Point, p1: Point, epsilon: f64) {
assert!((p1 - p0).hypot() < epsilon, "{p0:?} != {p1:?}");
}
#[test]
fn quadbez_deriv() {
let q = QuadBez::new((0.0, 0.0), (0.0, 0.5), (1.0, 1.0));
let deriv = q.deriv();
let n = 10;
for i in 0..=n {
let t = (i as f64) * (n as f64).recip();
let delta = 1e-6;
let p = q.eval(t);
let p1 = q.eval(t + delta);
let d_approx = (p1 - p) * delta.recip();
let d = deriv.eval(t).to_vec2();
assert!((d - d_approx).hypot() < delta * 2.0);
}
}
#[test]
fn quadbez_arclen() {
let q = QuadBez::new((0.0, 0.0), (0.0, 0.5), (1.0, 1.0));
let true_arclen = 0.5 * 5.0f64.sqrt() + 0.25 * (2.0 + 5.0f64.sqrt()).ln();
for i in 0..12 {
let accuracy = 0.1f64.powi(i);
let est = q.arclen(accuracy);
let error = est - true_arclen;
assert!(error.abs() < accuracy, "{est} != {true_arclen}");
}
}
#[test]
fn quadbez_arclen_pathological() {
let q = QuadBez::new((-1.0, 0.0), (1.03, 0.0), (1.0, 0.0));
let true_arclen = 2.0008737864167325; let accuracy = 1e-11;
let est = q.arclen(accuracy);
assert!(
(est - true_arclen).abs() < accuracy,
"{est} != {true_arclen}"
);
}
#[test]
fn quadbez_subsegment() {
let q = QuadBez::new((3.1, 4.1), (5.9, 2.6), (5.3, 5.8));
let t0 = 0.1;
let t1 = 0.8;
let qs = q.subsegment(t0..t1);
let epsilon = 1e-12;
let n = 10;
for i in 0..=n {
let t = (i as f64) * (n as f64).recip();
let ts = t0 + t * (t1 - t0);
assert_near(q.eval(ts), qs.eval(t), epsilon);
}
}
#[test]
fn quadbez_raise() {
let q = QuadBez::new((3.1, 4.1), (5.9, 2.6), (5.3, 5.8));
let c = q.raise();
let qd = q.deriv();
let cd = c.deriv();
let epsilon = 1e-12;
let n = 10;
for i in 0..=n {
let t = (i as f64) * (n as f64).recip();
assert_near(q.eval(t), c.eval(t), epsilon);
assert_near(qd.eval(t), cd.eval(t), epsilon);
}
}
#[test]
fn quadbez_signed_area() {
let q = QuadBez::new((1.0, 0.0), (0.5, 1.0), (0.0, 1.0));
let epsilon = 1e-12;
assert!((q.signed_area() - 2.0 / 3.0).abs() < epsilon);
assert!(((Affine::rotate(0.5) * q).signed_area() - 2.0 / 3.0).abs() < epsilon);
assert!(((Affine::translate((0.0, 1.0)) * q).signed_area() - 3.5 / 3.0).abs() < epsilon);
assert!(((Affine::translate((1.0, 0.0)) * q).signed_area() - 3.5 / 3.0).abs() < epsilon);
}
fn verify(result: Nearest, expected: f64) {
assert!(
(result.t - expected).abs() < 1e-6,
"got {result:?} expected {expected}"
);
}
#[test]
fn quadbez_nearest() {
let q = QuadBez::new((-1.0, 1.0), (0.0, -1.0), (1.0, 1.0));
verify(q.nearest((0.0, 0.0).into(), 1e-3), 0.5);
verify(q.nearest((0.0, 0.1).into(), 1e-3), 0.5);
verify(q.nearest((0.0, -0.1).into(), 1e-3), 0.5);
verify(q.nearest((0.5, 0.25).into(), 1e-3), 0.75);
verify(q.nearest((1.0, 1.0).into(), 1e-3), 1.0);
verify(q.nearest((1.1, 1.1).into(), 1e-3), 1.0);
verify(q.nearest((-1.1, 1.1).into(), 1e-3), 0.0);
let a = Affine::rotate(0.5);
verify((a * q).nearest(a * Point::new(0.5, 0.25), 1e-3), 0.75);
}
#[test]
fn quadbez_nearest_low_order() {
let q = QuadBez::new((-1.0, 0.0), (0.0, 0.0), (1.0, 0.0));
verify(q.nearest((0.0, 0.0).into(), 1e-3), 0.5);
verify(q.nearest((0.0, 1.0).into(), 1e-3), 0.5);
}
#[test]
fn quadbez_nearest_rounding_panic() {
let quad = QuadBez::new(
(-1.0394736842105263, 0.0),
(0.8210526315789474, -1.511111111111111),
(0.0, 1.9333333333333333),
);
let test = Point::new(-1.7976931348623157e308, 0.8571428571428571);
let _res = quad.nearest(test, 1e-6);
}
#[test]
fn quadbez_extrema() {
let q = QuadBez::new((-1.0, 1.0), (0.0, -1.0), (1.0, 1.0));
let extrema = q.extrema();
assert_eq!(extrema.len(), 1);
assert!((extrema[0] - 0.5).abs() < 1e-6);
let q = QuadBez::new((0.0, 0.5), (1.0, 1.0), (0.5, 0.0));
let extrema = q.extrema();
assert_eq!(extrema.len(), 2);
assert!((extrema[0] - 1.0 / 3.0).abs() < 1e-6);
assert!((extrema[1] - 2.0 / 3.0).abs() < 1e-6);
let q = QuadBez::new((0.5, 0.0), (1.0, 1.0), (0.0, 0.5));
let extrema = q.extrema();
assert_eq!(extrema.len(), 2);
assert!((extrema[0] - 1.0 / 3.0).abs() < 1e-6);
assert!((extrema[1] - 2.0 / 3.0).abs() < 1e-6);
}
}