kurbo/
quadbez.rs

1// Copyright 2018 the Kurbo Authors
2// SPDX-License-Identifier: Apache-2.0 OR MIT
3
4//! Quadratic Bézier segments.
5
6use core::ops::{Mul, Range};
7
8use arrayvec::ArrayVec;
9
10use crate::common::solve_cubic;
11use crate::MAX_EXTREMA;
12use crate::{
13    Affine, CubicBez, Line, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea,
14    ParamCurveCurvature, ParamCurveDeriv, ParamCurveExtrema, ParamCurveNearest, PathEl, Point,
15    Rect, Shape,
16};
17
18#[cfg(not(feature = "std"))]
19use crate::common::FloatFuncs;
20
21/// A single quadratic Bézier segment.
22#[derive(Clone, Copy, Debug, PartialEq)]
23#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
24#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
25#[allow(missing_docs)]
26pub struct QuadBez {
27    pub p0: Point,
28    pub p1: Point,
29    pub p2: Point,
30}
31
32impl QuadBez {
33    /// Create a new quadratic Bézier segment.
34    #[inline]
35    pub fn new<V: Into<Point>>(p0: V, p1: V, p2: V) -> QuadBez {
36        QuadBez {
37            p0: p0.into(),
38            p1: p1.into(),
39            p2: p2.into(),
40        }
41    }
42
43    /// Raise the order by 1.
44    ///
45    /// Returns a cubic Bézier segment that exactly represents this quadratic.
46    #[inline]
47    pub fn raise(&self) -> CubicBez {
48        CubicBez::new(
49            self.p0,
50            self.p0 + (2.0 / 3.0) * (self.p1 - self.p0),
51            self.p2 + (2.0 / 3.0) * (self.p1 - self.p2),
52            self.p2,
53        )
54    }
55
56    /// Estimate the number of subdivisions for flattening.
57    pub(crate) fn estimate_subdiv(&self, sqrt_tol: f64) -> FlattenParams {
58        // Determine transformation to $y = x^2$ parabola.
59        let d01 = self.p1 - self.p0;
60        let d12 = self.p2 - self.p1;
61        let dd = d01 - d12;
62        let cross = (self.p2 - self.p0).cross(dd);
63        let x0 = d01.dot(dd) * cross.recip();
64        let x2 = d12.dot(dd) * cross.recip();
65        let scale = (cross / (dd.hypot() * (x2 - x0))).abs();
66
67        // Compute number of subdivisions needed.
68        let a0 = approx_parabola_integral(x0);
69        let a2 = approx_parabola_integral(x2);
70        let val = if scale.is_finite() {
71            let da = (a2 - a0).abs();
72            let sqrt_scale = scale.sqrt();
73            if x0.signum() == x2.signum() {
74                da * sqrt_scale
75            } else {
76                // Handle cusp case (segment contains curvature maximum)
77                let xmin = sqrt_tol / sqrt_scale;
78                sqrt_tol * da / approx_parabola_integral(xmin)
79            }
80        } else {
81            0.0
82        };
83        let u0 = approx_parabola_inv_integral(a0);
84        let u2 = approx_parabola_inv_integral(a2);
85        let uscale = (u2 - u0).recip();
86        FlattenParams {
87            a0,
88            a2,
89            u0,
90            uscale,
91            val,
92        }
93    }
94
95    // Maps a value from 0..1 to 0..1.
96    pub(crate) fn determine_subdiv_t(&self, params: &FlattenParams, x: f64) -> f64 {
97        let a = params.a0 + (params.a2 - params.a0) * x;
98        let u = approx_parabola_inv_integral(a);
99        (u - params.u0) * params.uscale
100    }
101
102    /// Is this quadratic Bezier curve finite?
103    #[inline]
104    pub fn is_finite(&self) -> bool {
105        self.p0.is_finite() && self.p1.is_finite() && self.p2.is_finite()
106    }
107
108    /// Is this quadratic Bezier curve NaN?
109    #[inline]
110    pub fn is_nan(&self) -> bool {
111        self.p0.is_nan() || self.p1.is_nan() || self.p2.is_nan()
112    }
113}
114
115/// An iterator for quadratic beziers.
116pub struct QuadBezIter {
117    quad: QuadBez,
118    ix: usize,
119}
120
121impl Shape for QuadBez {
122    type PathElementsIter<'iter> = QuadBezIter;
123
124    #[inline]
125    fn path_elements(&self, _tolerance: f64) -> QuadBezIter {
126        QuadBezIter { quad: *self, ix: 0 }
127    }
128
129    fn area(&self) -> f64 {
130        0.0
131    }
132
133    #[inline]
134    fn perimeter(&self, accuracy: f64) -> f64 {
135        self.arclen(accuracy)
136    }
137
138    fn winding(&self, _pt: Point) -> i32 {
139        0
140    }
141
142    #[inline]
143    fn bounding_box(&self) -> Rect {
144        ParamCurveExtrema::bounding_box(self)
145    }
146}
147
148impl Iterator for QuadBezIter {
149    type Item = PathEl;
150
151    fn next(&mut self) -> Option<PathEl> {
152        self.ix += 1;
153        match self.ix {
154            1 => Some(PathEl::MoveTo(self.quad.p0)),
155            2 => Some(PathEl::QuadTo(self.quad.p1, self.quad.p2)),
156            _ => None,
157        }
158    }
159}
160
161pub(crate) struct FlattenParams {
162    a0: f64,
163    a2: f64,
164    u0: f64,
165    uscale: f64,
166    /// The number of `subdivisions * 2 * sqrt_tol`.
167    pub(crate) val: f64,
168}
169
170/// An approximation to $\int (1 + 4x^2) ^ -0.25 dx$
171///
172/// This is used for flattening curves.
173fn approx_parabola_integral(x: f64) -> f64 {
174    const D: f64 = 0.67;
175    x / (1.0 - D + (D.powi(4) + 0.25 * x * x).sqrt().sqrt())
176}
177
178/// An approximation to the inverse parabola integral.
179fn approx_parabola_inv_integral(x: f64) -> f64 {
180    const B: f64 = 0.39;
181    x * (1.0 - B + (B * B + 0.25 * x * x).sqrt())
182}
183
184impl ParamCurve for QuadBez {
185    #[inline]
186    fn eval(&self, t: f64) -> Point {
187        let mt = 1.0 - t;
188        (self.p0.to_vec2() * (mt * mt)
189            + (self.p1.to_vec2() * (mt * 2.0) + self.p2.to_vec2() * t) * t)
190            .to_point()
191    }
192
193    fn subsegment(&self, range: Range<f64>) -> QuadBez {
194        let (t0, t1) = (range.start, range.end);
195        let p0 = self.eval(t0);
196        let p2 = self.eval(t1);
197        let p1 = p0 + (self.p1 - self.p0).lerp(self.p2 - self.p1, t0) * (t1 - t0);
198        QuadBez { p0, p1, p2 }
199    }
200
201    /// Subdivide into halves, using de Casteljau.
202    #[inline]
203    fn subdivide(&self) -> (QuadBez, QuadBez) {
204        let pm = self.eval(0.5);
205        (
206            QuadBez::new(self.p0, self.p0.midpoint(self.p1), pm),
207            QuadBez::new(pm, self.p1.midpoint(self.p2), self.p2),
208        )
209    }
210
211    #[inline]
212    fn start(&self) -> Point {
213        self.p0
214    }
215
216    #[inline]
217    fn end(&self) -> Point {
218        self.p2
219    }
220}
221
222impl ParamCurveDeriv for QuadBez {
223    type DerivResult = Line;
224
225    #[inline]
226    fn deriv(&self) -> Line {
227        Line::new(
228            (2.0 * (self.p1.to_vec2() - self.p0.to_vec2())).to_point(),
229            (2.0 * (self.p2.to_vec2() - self.p1.to_vec2())).to_point(),
230        )
231    }
232}
233
234impl ParamCurveArclen for QuadBez {
235    /// Arclength of a quadratic Bézier segment.
236    ///
237    /// This computation is based on an analytical formula. Since that formula suffers
238    /// from numerical instability when the curve is very close to a straight line, we
239    /// detect that case and fall back to Legendre-Gauss quadrature.
240    ///
241    /// Accuracy should be better than 1e-13 over the entire range.
242    ///
243    /// Adapted from <http://www.malczak.linuxpl.com/blog/quadratic-bezier-curve-length/>
244    /// with permission.
245    fn arclen(&self, _accuracy: f64) -> f64 {
246        let d2 = self.p0.to_vec2() - 2.0 * self.p1.to_vec2() + self.p2.to_vec2();
247        let a = d2.hypot2();
248        let d1 = self.p1 - self.p0;
249        let c = d1.hypot2();
250        if a < 5e-4 * c {
251            // This case happens for nearly straight Béziers.
252            //
253            // Calculate arclength using Legendre-Gauss quadrature using formula from Behdad
254            // in https://github.com/Pomax/BezierInfo-2/issues/77
255            let v0 = (-0.492943519233745 * self.p0.to_vec2()
256                + 0.430331482911935 * self.p1.to_vec2()
257                + 0.0626120363218102 * self.p2.to_vec2())
258            .hypot();
259            let v1 = ((self.p2 - self.p0) * 0.4444444444444444).hypot();
260            let v2 = (-0.0626120363218102 * self.p0.to_vec2()
261                - 0.430331482911935 * self.p1.to_vec2()
262                + 0.492943519233745 * self.p2.to_vec2())
263            .hypot();
264            return v0 + v1 + v2;
265        }
266        let b = 2.0 * d2.dot(d1);
267
268        let sabc = (a + b + c).sqrt();
269        let a2 = a.powf(-0.5);
270        let a32 = a2.powi(3);
271        let c2 = 2.0 * c.sqrt();
272        let ba_c2 = b * a2 + c2;
273
274        let v0 = 0.25 * a2 * a2 * b * (2.0 * sabc - c2) + sabc;
275        // TODO: justify and fine-tune this exact constant.
276        if ba_c2 < 1e-13 {
277            // This case happens for Béziers with a sharp kink.
278            v0
279        } else {
280            v0 + 0.25
281                * a32
282                * (4.0 * c * a - b * b)
283                * (((2.0 * a + b) * a2 + 2.0 * sabc) / ba_c2).ln()
284        }
285    }
286}
287
288impl ParamCurveArea for QuadBez {
289    #[inline]
290    fn signed_area(&self) -> f64 {
291        (self.p0.x * (2.0 * self.p1.y + self.p2.y) + 2.0 * self.p1.x * (self.p2.y - self.p0.y)
292            - self.p2.x * (self.p0.y + 2.0 * self.p1.y))
293            * (1.0 / 6.0)
294    }
295}
296
297impl ParamCurveNearest for QuadBez {
298    /// Find the nearest point, using analytical algorithm based on cubic root finding.
299    fn nearest(&self, p: Point, _accuracy: f64) -> Nearest {
300        fn eval_t(p: Point, t_best: &mut f64, r_best: &mut Option<f64>, t: f64, p0: Point) {
301            let r = (p0 - p).hypot2();
302            if r_best.map(|r_best| r < r_best).unwrap_or(true) {
303                *r_best = Some(r);
304                *t_best = t;
305            }
306        }
307        fn try_t(
308            q: &QuadBez,
309            p: Point,
310            t_best: &mut f64,
311            r_best: &mut Option<f64>,
312            t: f64,
313        ) -> bool {
314            if !(0.0..=1.0).contains(&t) {
315                return true;
316            }
317            eval_t(p, t_best, r_best, t, q.eval(t));
318            false
319        }
320        let d0 = self.p1 - self.p0;
321        let d1 = self.p0.to_vec2() + self.p2.to_vec2() - 2.0 * self.p1.to_vec2();
322        let d = self.p0 - p;
323        let c0 = d.dot(d0);
324        let c1 = 2.0 * d0.hypot2() + d.dot(d1);
325        let c2 = 3.0 * d1.dot(d0);
326        let c3 = d1.hypot2();
327        let roots = solve_cubic(c0, c1, c2, c3);
328        let mut r_best = None;
329        let mut t_best = 0.0;
330        let mut need_ends = false;
331        if roots.is_empty() {
332            need_ends = true;
333        }
334        for &t in &roots {
335            need_ends |= try_t(self, p, &mut t_best, &mut r_best, t);
336        }
337        if need_ends {
338            eval_t(p, &mut t_best, &mut r_best, 0.0, self.p0);
339            eval_t(p, &mut t_best, &mut r_best, 1.0, self.p2);
340        }
341
342        Nearest {
343            t: t_best,
344            distance_sq: r_best.unwrap(),
345        }
346    }
347}
348
349impl ParamCurveCurvature for QuadBez {}
350
351impl ParamCurveExtrema for QuadBez {
352    fn extrema(&self) -> ArrayVec<f64, MAX_EXTREMA> {
353        let mut result = ArrayVec::new();
354        let d0 = self.p1 - self.p0;
355        let d1 = self.p2 - self.p1;
356        let dd = d1 - d0;
357        if dd.x != 0.0 {
358            let t = -d0.x / dd.x;
359            if t > 0.0 && t < 1.0 {
360                result.push(t);
361            }
362        }
363        if dd.y != 0.0 {
364            let t = -d0.y / dd.y;
365            if t > 0.0 && t < 1.0 {
366                result.push(t);
367                if result.len() == 2 && result[0] > t {
368                    result.swap(0, 1);
369                }
370            }
371        }
372        result
373    }
374}
375
376impl Mul<QuadBez> for Affine {
377    type Output = QuadBez;
378
379    #[inline]
380    fn mul(self, other: QuadBez) -> QuadBez {
381        QuadBez {
382            p0: self * other.p0,
383            p1: self * other.p1,
384            p2: self * other.p2,
385        }
386    }
387}
388
389#[cfg(test)]
390mod tests {
391    use crate::{
392        Affine, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea, ParamCurveDeriv,
393        ParamCurveExtrema, ParamCurveNearest, Point, QuadBez,
394    };
395
396    fn assert_near(p0: Point, p1: Point, epsilon: f64) {
397        assert!((p1 - p0).hypot() < epsilon, "{p0:?} != {p1:?}");
398    }
399
400    #[test]
401    fn quadbez_deriv() {
402        let q = QuadBez::new((0.0, 0.0), (0.0, 0.5), (1.0, 1.0));
403        let deriv = q.deriv();
404
405        let n = 10;
406        for i in 0..=n {
407            let t = (i as f64) * (n as f64).recip();
408            let delta = 1e-6;
409            let p = q.eval(t);
410            let p1 = q.eval(t + delta);
411            let d_approx = (p1 - p) * delta.recip();
412            let d = deriv.eval(t).to_vec2();
413            assert!((d - d_approx).hypot() < delta * 2.0);
414        }
415    }
416
417    #[test]
418    fn quadbez_arclen() {
419        let q = QuadBez::new((0.0, 0.0), (0.0, 0.5), (1.0, 1.0));
420        let true_arclen = 0.5 * 5.0f64.sqrt() + 0.25 * (2.0 + 5.0f64.sqrt()).ln();
421        for i in 0..12 {
422            let accuracy = 0.1f64.powi(i);
423            let est = q.arclen(accuracy);
424            let error = est - true_arclen;
425            assert!(error.abs() < accuracy, "{est} != {true_arclen}");
426        }
427    }
428
429    #[test]
430    fn quadbez_arclen_pathological() {
431        let q = QuadBez::new((-1.0, 0.0), (1.03, 0.0), (1.0, 0.0));
432        let true_arclen = 2.0008737864167325; // A rough empirical calculation
433        let accuracy = 1e-11;
434        let est = q.arclen(accuracy);
435        assert!(
436            (est - true_arclen).abs() < accuracy,
437            "{est} != {true_arclen}"
438        );
439    }
440
441    #[test]
442    fn quadbez_subsegment() {
443        let q = QuadBez::new((3.1, 4.1), (5.9, 2.6), (5.3, 5.8));
444        let t0 = 0.1;
445        let t1 = 0.8;
446        let qs = q.subsegment(t0..t1);
447        let epsilon = 1e-12;
448        let n = 10;
449        for i in 0..=n {
450            let t = (i as f64) * (n as f64).recip();
451            let ts = t0 + t * (t1 - t0);
452            assert_near(q.eval(ts), qs.eval(t), epsilon);
453        }
454    }
455
456    #[test]
457    fn quadbez_raise() {
458        let q = QuadBez::new((3.1, 4.1), (5.9, 2.6), (5.3, 5.8));
459        let c = q.raise();
460        let qd = q.deriv();
461        let cd = c.deriv();
462        let epsilon = 1e-12;
463        let n = 10;
464        for i in 0..=n {
465            let t = (i as f64) * (n as f64).recip();
466            assert_near(q.eval(t), c.eval(t), epsilon);
467            assert_near(qd.eval(t), cd.eval(t), epsilon);
468        }
469    }
470
471    #[test]
472    fn quadbez_signed_area() {
473        // y = 1 - x^2
474        let q = QuadBez::new((1.0, 0.0), (0.5, 1.0), (0.0, 1.0));
475        let epsilon = 1e-12;
476        assert!((q.signed_area() - 2.0 / 3.0).abs() < epsilon);
477        assert!(((Affine::rotate(0.5) * q).signed_area() - 2.0 / 3.0).abs() < epsilon);
478        assert!(((Affine::translate((0.0, 1.0)) * q).signed_area() - 3.5 / 3.0).abs() < epsilon);
479        assert!(((Affine::translate((1.0, 0.0)) * q).signed_area() - 3.5 / 3.0).abs() < epsilon);
480    }
481
482    fn verify(result: Nearest, expected: f64) {
483        assert!(
484            (result.t - expected).abs() < 1e-6,
485            "got {result:?} expected {expected}"
486        );
487    }
488
489    #[test]
490    fn quadbez_nearest() {
491        // y = x^2
492        let q = QuadBez::new((-1.0, 1.0), (0.0, -1.0), (1.0, 1.0));
493        verify(q.nearest((0.0, 0.0).into(), 1e-3), 0.5);
494        verify(q.nearest((0.0, 0.1).into(), 1e-3), 0.5);
495        verify(q.nearest((0.0, -0.1).into(), 1e-3), 0.5);
496        verify(q.nearest((0.5, 0.25).into(), 1e-3), 0.75);
497        verify(q.nearest((1.0, 1.0).into(), 1e-3), 1.0);
498        verify(q.nearest((1.1, 1.1).into(), 1e-3), 1.0);
499        verify(q.nearest((-1.1, 1.1).into(), 1e-3), 0.0);
500        let a = Affine::rotate(0.5);
501        verify((a * q).nearest(a * Point::new(0.5, 0.25), 1e-3), 0.75);
502    }
503
504    // This test exposes a degenerate case in the solver used internally
505    // by the "nearest" calculation - the cubic term is zero.
506    #[test]
507    fn quadbez_nearest_low_order() {
508        let q = QuadBez::new((-1.0, 0.0), (0.0, 0.0), (1.0, 0.0));
509
510        verify(q.nearest((0.0, 0.0).into(), 1e-3), 0.5);
511        verify(q.nearest((0.0, 1.0).into(), 1e-3), 0.5);
512    }
513
514    #[test]
515    fn quadbez_nearest_rounding_panic() {
516        let quad = QuadBez::new(
517            (-1.0394736842105263, 0.0),
518            (0.8210526315789474, -1.511111111111111),
519            (0.0, 1.9333333333333333),
520        );
521        let test = Point::new(-1.7976931348623157e308, 0.8571428571428571);
522        // accuracy ignored
523        let _res = quad.nearest(test, 1e-6);
524        // if we got here then we didn't panic
525    }
526
527    #[test]
528    fn quadbez_extrema() {
529        // y = x^2
530        let q = QuadBez::new((-1.0, 1.0), (0.0, -1.0), (1.0, 1.0));
531        let extrema = q.extrema();
532        assert_eq!(extrema.len(), 1);
533        assert!((extrema[0] - 0.5).abs() < 1e-6);
534
535        let q = QuadBez::new((0.0, 0.5), (1.0, 1.0), (0.5, 0.0));
536        let extrema = q.extrema();
537        assert_eq!(extrema.len(), 2);
538        assert!((extrema[0] - 1.0 / 3.0).abs() < 1e-6);
539        assert!((extrema[1] - 2.0 / 3.0).abs() < 1e-6);
540
541        // Reverse direction
542        let q = QuadBez::new((0.5, 0.0), (1.0, 1.0), (0.0, 0.5));
543        let extrema = q.extrema();
544        assert_eq!(extrema.len(), 2);
545        assert!((extrema[0] - 1.0 / 3.0).abs() < 1e-6);
546        assert!((extrema[1] - 2.0 / 3.0).abs() < 1e-6);
547    }
548}