ab_glyph/outlined.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#[cfg(all(feature = "libm", not(feature = "std")))]
use crate::nostd_float::FloatExt;
use crate::{point, Glyph, Point, PxScaleFactor};
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;
/// A "raw" collection of outline curves for a glyph, unscaled & unpositioned.
#[derive(Clone, Debug)]
pub struct Outline {
/// Unscaled bounding box.
pub bounds: Rect,
/// Unscaled & unpositioned outline curves.
pub curves: Vec<OutlineCurve>,
}
impl Outline {
/// Convert unscaled bounds into pixel bounds at a given scale & position.
///
/// See [`OutlinedGlyph::px_bounds`].
pub fn px_bounds(&self, scale_factor: PxScaleFactor, position: Point) -> Rect {
let Rect { min, max } = self.bounds;
// Use subpixel fraction in floor/ceil rounding to elimate rounding error
// from identical subpixel positions
let (x_trunc, x_fract) = (position.x.trunc(), position.x.fract());
let (y_trunc, y_fract) = (position.y.trunc(), position.y.fract());
Rect {
min: point(
(min.x * scale_factor.horizontal + x_fract).floor() + x_trunc,
(min.y * -scale_factor.vertical + y_fract).floor() + y_trunc,
),
max: point(
(max.x * scale_factor.horizontal + x_fract).ceil() + x_trunc,
(max.y * -scale_factor.vertical + y_fract).ceil() + y_trunc,
),
}
}
}
/// A glyph that has been outlined at a scale & position.
#[derive(Clone, Debug)]
pub struct OutlinedGlyph {
glyph: Glyph,
// Pixel scale bounds.
px_bounds: Rect,
// Scale factor
scale_factor: PxScaleFactor,
// Raw outline
outline: Outline,
}
impl OutlinedGlyph {
/// Constructs an `OutlinedGlyph` from the source `Glyph`, pixel bounds
/// & relatively positioned outline curves.
#[inline]
pub fn new(glyph: Glyph, outline: Outline, scale_factor: PxScaleFactor) -> Self {
// work this out now as it'll usually be used more than once
let px_bounds = outline.px_bounds(scale_factor, glyph.position);
Self {
glyph,
px_bounds,
scale_factor,
outline,
}
}
/// Glyph info.
#[inline]
pub fn glyph(&self) -> &Glyph {
&self.glyph
}
#[deprecated = "Renamed to `px_bounds`"]
#[doc(hidden)]
pub fn bounds(&self) -> Rect {
self.px_bounds()
}
/// Conservative whole number pixel bounding box for this glyph outline.
/// The returned rect is exactly large enough to [`Self::draw`] into.
///
/// The rect holds bounding coordinates in the same coordinate space as the [`Glyph::position`].
///
/// Note: These bounds depend on the glyph outline. That outline is *not* necessarily bound
/// by the layout/`glyph_bounds()` bounds.
/// * The min.x bound may be greater or smaller than the [`Glyph::position`] x.
/// E.g. if a glyph at position x=0 has an outline going off to the left a bit, min.x will be negative.
/// * The max.x bound may be greater/smaller than the `position.x + h_advance`.
/// * The min.y bound may be greater/smaller than the `position.y - ascent`.
/// * The max.y bound may be greater/smaller than the `position.y - descent`.
///
/// Pixel bounds coordinates should not be used for layout logic.
#[inline]
pub fn px_bounds(&self) -> Rect {
self.px_bounds
}
/// Draw this glyph outline using a pixel & coverage handling function.
///
/// The callback will be called for each `(x, y)` pixel coordinate inside the bounds
/// with a coverage value indicating how much the glyph covered that pixel.
///
/// A coverage value of `0.0` means the pixel is totally uncoverred by the glyph.
/// A value of `1.0` or greater means fully covered.
pub fn draw<O: FnMut(u32, u32, f32)>(&self, o: O) {
use ab_glyph_rasterizer::Rasterizer;
let h_factor = self.scale_factor.horizontal;
let v_factor = -self.scale_factor.vertical;
let offset = self.glyph.position - self.px_bounds.min;
let (w, h) = (
self.px_bounds.width() as usize,
self.px_bounds.height() as usize,
);
let scale_up = |&Point { x, y }| point(x * h_factor, y * v_factor);
self.outline
.curves
.iter()
.fold(Rasterizer::new(w, h), |mut rasterizer, curve| match curve {
OutlineCurve::Line(p0, p1) => {
// eprintln!("r.draw_line({:?}, {:?});",
// scale_up(p0) + offset, scale_up(p1) + offset);
rasterizer.draw_line(scale_up(p0) + offset, scale_up(p1) + offset);
rasterizer
}
OutlineCurve::Quad(p0, p1, p2) => {
// eprintln!("r.draw_quad({:?}, {:?}, {:?});",
// scale_up(p0) + offset, scale_up(p1) + offset, scale_up(p2) + offset);
rasterizer.draw_quad(
scale_up(p0) + offset,
scale_up(p1) + offset,
scale_up(p2) + offset,
);
rasterizer
}
OutlineCurve::Cubic(p0, p1, p2, p3) => {
// eprintln!("r.draw_cubic({:?}, {:?}, {:?}, {:?});",
// scale_up(p0) + offset, scale_up(p1) + offset, scale_up(p2) + offset, scale_up(p3) + offset);
rasterizer.draw_cubic(
scale_up(p0) + offset,
scale_up(p1) + offset,
scale_up(p2) + offset,
scale_up(p3) + offset,
);
rasterizer
}
})
.for_each_pixel_2d(o);
}
}
impl AsRef<Glyph> for OutlinedGlyph {
#[inline]
fn as_ref(&self) -> &Glyph {
self.glyph()
}
}
/// Glyph outline primitives.
#[derive(Clone, Debug)]
pub enum OutlineCurve {
/// Straight line from `.0` to `.1`.
Line(Point, Point),
/// Quadratic Bézier curve from `.0` to `.2` using `.1` as the control.
Quad(Point, Point, Point),
/// Cubic Bézier curve from `.0` to `.3` using `.1` as the control at the beginning of the
/// curve and `.2` at the end of the curve.
Cubic(Point, Point, Point, Point),
}
/// A rectangle, with top-left corner at `min`, and bottom-right corner at `max`.
#[derive(Copy, Clone, Debug, Default, PartialEq, PartialOrd)]
pub struct Rect {
pub min: Point,
pub max: Point,
}
impl Rect {
#[inline]
pub fn width(&self) -> f32 {
self.max.x - self.min.x
}
#[inline]
pub fn height(&self) -> f32 {
self.max.y - self.min.y
}
}