kurbo/ellipse.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
// Copyright 2020 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT
//! Implementation of ellipse shape.
use core::f64::consts::PI;
use core::{
iter,
ops::{Add, Mul, Sub},
};
use crate::{Affine, Arc, ArcAppendIter, Circle, PathEl, Point, Rect, Shape, Size, Vec2};
#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;
/// An ellipse.
#[derive(Clone, Copy, Default, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Ellipse {
/// All ellipses can be represented as an affine map of the unit circle,
/// centred at (0, 0). Therefore we can store the ellipse as an affine map,
/// with the implication that it be applied to the unit circle to recover the
/// actual shape.
inner: Affine,
}
impl Ellipse {
/// Create A new ellipse with a given center, radii, and rotation.
///
/// The returned ellipse will be the result of taking a circle, stretching
/// it by the `radii` along the x and y axes, then rotating it from the
/// x axis by `rotation` radians, before finally translating the center
/// to `center`.
///
/// Rotation is clockwise in a y-down coordinate system. For more on
/// rotation, see [`Affine::rotate`].
#[inline]
pub fn new(center: impl Into<Point>, radii: impl Into<Vec2>, x_rotation: f64) -> Ellipse {
let Point { x: cx, y: cy } = center.into();
let Vec2 { x: rx, y: ry } = radii.into();
Ellipse::private_new(Vec2 { x: cx, y: cy }, rx, ry, x_rotation)
}
/// Returns the largest ellipse that can be bounded by this [`Rect`].
///
/// This uses the absolute width and height of the rectangle.
///
/// This ellipse is always axis-aligned; to apply rotation you can call
/// [`with_rotation`] with the result.
///
/// [`with_rotation`]: Ellipse::with_rotation
#[inline]
pub fn from_rect(rect: Rect) -> Self {
let center = rect.center().to_vec2();
let Size { width, height } = rect.size() / 2.0;
Ellipse::private_new(center, width, height, 0.0)
}
/// Create an ellipse from an affine transformation of the unit circle.
#[inline]
pub fn from_affine(affine: Affine) -> Self {
Ellipse { inner: affine }
}
/// Create a new `Ellipse` centered on the provided point.
#[inline]
#[must_use]
pub fn with_center(self, new_center: Point) -> Ellipse {
let Point { x: cx, y: cy } = new_center;
Ellipse {
inner: self.inner.with_translation(Vec2 { x: cx, y: cy }),
}
}
/// Create a new `Ellipse` with the provided radii.
#[must_use]
pub fn with_radii(self, new_radii: Vec2) -> Ellipse {
let rotation = self.inner.svd().1;
let translation = self.inner.translation();
Ellipse::private_new(translation, new_radii.x, new_radii.y, rotation)
}
/// Create a new `Ellipse`, with the rotation replaced by `rotation`
/// radians.
///
/// The rotation is clockwise, for a y-down coordinate system. For more
/// on rotation, See [`Affine::rotate`].
#[must_use]
pub fn with_rotation(self, rotation: f64) -> Ellipse {
let scale = self.inner.svd().0;
let translation = self.inner.translation();
Ellipse::private_new(translation, scale.x, scale.y, rotation)
}
#[deprecated(since = "0.7.0", note = "use with_rotation instead")]
#[must_use]
#[doc(hidden)]
pub fn with_x_rotation(self, rotation_radians: f64) -> Ellipse {
self.with_rotation(rotation_radians)
}
/// This gives us an internal method without any type conversions.
#[inline]
fn private_new(center: Vec2, scale_x: f64, scale_y: f64, x_rotation: f64) -> Ellipse {
// Since the circle is symmetric about the x and y axes, using absolute values for the
// radii results in the same ellipse. For simplicity we make this change here.
Ellipse {
inner: Affine::translate(center)
* Affine::rotate(x_rotation)
* Affine::scale_non_uniform(scale_x.abs(), scale_y.abs()),
}
}
// Getters and setters.
/// Returns the center of this ellipse.
#[inline]
pub fn center(&self) -> Point {
let Vec2 { x: cx, y: cy } = self.inner.translation();
Point { x: cx, y: cy }
}
/// Returns the two radii of this ellipse.
///
/// The first number is the horizontal radius and the second is the vertical
/// radius, before rotation.
pub fn radii(&self) -> Vec2 {
self.inner.svd().0
}
/// The ellipse's rotation, in radians.
///
/// This allows all possible ellipses to be drawn by always starting with
/// an ellipse with the two radii on the x and y axes.
pub fn rotation(&self) -> f64 {
self.inner.svd().1
}
/// Returns the radii and the rotation of this ellipse.
///
/// Equivalent to `(self.radii(), self.rotation())` but more efficient.
pub fn radii_and_rotation(&self) -> (Vec2, f64) {
self.inner.svd()
}
/// Is this ellipse [finite]?
///
/// [finite]: f64::is_finite
#[inline]
pub fn is_finite(&self) -> bool {
self.inner.is_finite()
}
/// Is this ellipse [NaN]?
///
/// [NaN]: f64::is_nan
#[inline]
pub fn is_nan(&self) -> bool {
self.inner.is_nan()
}
#[doc(hidden)]
#[deprecated(since = "0.7.0", note = "use rotation() instead")]
pub fn x_rotation(&self) -> f64 {
self.rotation()
}
}
impl Add<Vec2> for Ellipse {
type Output = Ellipse;
/// In this context adding a `Vec2` applies the corresponding translation to the ellipse.
#[inline]
#[allow(clippy::suspicious_arithmetic_impl)]
fn add(self, v: Vec2) -> Ellipse {
Ellipse {
inner: Affine::translate(v) * self.inner,
}
}
}
impl Sub<Vec2> for Ellipse {
type Output = Ellipse;
/// In this context subtracting a `Vec2` applies the corresponding translation to the ellipse.
#[inline]
fn sub(self, v: Vec2) -> Ellipse {
Ellipse {
inner: Affine::translate(-v) * self.inner,
}
}
}
impl Mul<Ellipse> for Affine {
type Output = Ellipse;
fn mul(self, other: Ellipse) -> Self::Output {
Ellipse {
inner: self * other.inner,
}
}
}
impl From<Circle> for Ellipse {
fn from(circle: Circle) -> Self {
Ellipse::new(circle.center, Vec2::splat(circle.radius), 0.0)
}
}
impl Shape for Ellipse {
type PathElementsIter<'iter> = iter::Chain<iter::Once<PathEl>, ArcAppendIter>;
fn path_elements(&self, tolerance: f64) -> Self::PathElementsIter<'_> {
let (radii, x_rotation) = self.inner.svd();
Arc {
center: self.center(),
radii,
start_angle: 0.0,
sweep_angle: 2.0 * PI,
x_rotation,
}
.path_elements(tolerance)
}
#[inline]
fn area(&self) -> f64 {
let Vec2 { x, y } = self.radii();
PI * x * y
}
#[inline]
fn perimeter(&self, accuracy: f64) -> f64 {
// TODO rather than delegate to the bezier path, it is possible to use various series
// expansions to compute the perimeter to any accuracy. I believe Ramanujan authored the
// quickest to converge. See
// https://www.mathematica-journal.com/2009/11/23/on-the-perimeter-of-an-ellipse/
// and https://en.wikipedia.org/wiki/Ellipse#Circumference
//
self.path_segments(0.1).perimeter(accuracy)
}
fn winding(&self, pt: Point) -> i32 {
// Strategy here is to apply the inverse map to the point and see if it is in the unit
// circle.
let inv = self.inner.inverse();
if (inv * pt).to_vec2().hypot2() < 1.0 {
1
} else {
0
}
}
// Compute a tight bounding box of the ellipse.
//
// See https://www.iquilezles.org/www/articles/ellipses/ellipses.htm. We can get the two
// radius vectors by applying the affine map to the two impulses (1, 0) and (0, 1) which gives
// (a, b) and (c, d) if the affine map is
//
// a | c | e
// -----------
// b | d | f
//
// We can then use the method in the link with the translation to get the bounding box.
#[inline]
fn bounding_box(&self) -> Rect {
let aff = self.inner.as_coeffs();
let a2 = aff[0] * aff[0];
let b2 = aff[1] * aff[1];
let c2 = aff[2] * aff[2];
let d2 = aff[3] * aff[3];
let cx = aff[4];
let cy = aff[5];
let range_x = (a2 + c2).sqrt();
let range_y = (b2 + d2).sqrt();
Rect {
x0: cx - range_x,
y0: cy - range_y,
x1: cx + range_x,
y1: cy + range_y,
}
}
}
#[cfg(test)]
mod tests {
use crate::{Ellipse, Point, Shape};
use std::f64::consts::PI;
fn assert_approx_eq(x: f64, y: f64) {
// Note: we might want to be more rigorous in testing the accuracy
// of the conversion into Béziers. But this seems good enough.
assert!((x - y).abs() < 1e-7, "{x} != {y}");
}
#[test]
fn area_sign() {
let center = Point::new(5.0, 5.0);
let e = Ellipse::new(center, (5.0, 5.0), 1.0);
assert_approx_eq(e.area(), 25.0 * PI);
let e = Ellipse::new(center, (5.0, 10.0), 1.0);
assert_approx_eq(e.area(), 50.0 * PI);
assert_eq!(e.winding(center), 1);
let p = e.to_path(1e-9);
assert_approx_eq(e.area(), p.area());
assert_eq!(e.winding(center), p.winding(center));
let e_neg_radius = Ellipse::new(center, (-5.0, 10.0), 1.0);
assert_approx_eq(e_neg_radius.area(), 50.0 * PI);
assert_eq!(e_neg_radius.winding(center), 1);
let p_neg_radius = e_neg_radius.to_path(1e-9);
assert_approx_eq(e_neg_radius.area(), p_neg_radius.area());
assert_eq!(e_neg_radius.winding(center), p_neg_radius.winding(center));
}
}