kurbo/
ellipse.rs

1// Copyright 2020 the Kurbo Authors
2// SPDX-License-Identifier: Apache-2.0 OR MIT
3
4//! Implementation of ellipse shape.
5
6use core::f64::consts::PI;
7use core::{
8    iter,
9    ops::{Add, Mul, Sub},
10};
11
12use crate::{Affine, Arc, ArcAppendIter, Circle, PathEl, Point, Rect, Shape, Size, Vec2};
13
14#[cfg(not(feature = "std"))]
15use crate::common::FloatFuncs;
16
17/// An ellipse.
18#[derive(Clone, Copy, Default, Debug, PartialEq)]
19#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
20#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
21pub struct Ellipse {
22    /// All ellipses can be represented as an affine map of the unit circle,
23    /// centred at (0, 0). Therefore we can store the ellipse as an affine map,
24    /// with the implication that it be applied to the unit circle to recover the
25    /// actual shape.
26    inner: Affine,
27}
28
29impl Ellipse {
30    /// Create A new ellipse with a given center, radii, and rotation.
31    ///
32    /// The returned ellipse will be the result of taking a circle, stretching
33    /// it by the `radii` along the x and y axes, then rotating it from the
34    /// x axis by `rotation` radians, before finally translating the center
35    /// to `center`.
36    ///
37    /// Rotation is clockwise in a y-down coordinate system. For more on
38    /// rotation, see [`Affine::rotate`].
39    #[inline]
40    pub fn new(center: impl Into<Point>, radii: impl Into<Vec2>, x_rotation: f64) -> Ellipse {
41        let Point { x: cx, y: cy } = center.into();
42        let Vec2 { x: rx, y: ry } = radii.into();
43        Ellipse::private_new(Vec2 { x: cx, y: cy }, rx, ry, x_rotation)
44    }
45
46    /// Returns the largest ellipse that can be bounded by this [`Rect`].
47    ///
48    /// This uses the absolute width and height of the rectangle.
49    ///
50    /// This ellipse is always axis-aligned; to apply rotation you can call
51    /// [`with_rotation`] with the result.
52    ///
53    /// [`with_rotation`]: Ellipse::with_rotation
54    #[inline]
55    pub fn from_rect(rect: Rect) -> Self {
56        let center = rect.center().to_vec2();
57        let Size { width, height } = rect.size() / 2.0;
58        Ellipse::private_new(center, width, height, 0.0)
59    }
60
61    /// Create an ellipse from an affine transformation of the unit circle.
62    #[inline(always)]
63    pub fn from_affine(affine: Affine) -> Self {
64        Ellipse { inner: affine }
65    }
66
67    /// Create a new `Ellipse` centered on the provided point.
68    #[inline]
69    #[must_use]
70    pub fn with_center(self, new_center: Point) -> Ellipse {
71        let Point { x: cx, y: cy } = new_center;
72        Ellipse {
73            inner: self.inner.with_translation(Vec2 { x: cx, y: cy }),
74        }
75    }
76
77    /// Create a new `Ellipse` with the provided radii.
78    #[must_use]
79    pub fn with_radii(self, new_radii: Vec2) -> Ellipse {
80        let rotation = self.inner.svd().1;
81        let translation = self.inner.translation();
82        Ellipse::private_new(translation, new_radii.x, new_radii.y, rotation)
83    }
84
85    /// Create a new `Ellipse`, with the rotation replaced by `rotation`
86    /// radians.
87    ///
88    /// The rotation is clockwise, for a y-down coordinate system. For more
89    /// on rotation, See [`Affine::rotate`].
90    #[must_use]
91    pub fn with_rotation(self, rotation: f64) -> Ellipse {
92        let scale = self.inner.svd().0;
93        let translation = self.inner.translation();
94        Ellipse::private_new(translation, scale.x, scale.y, rotation)
95    }
96
97    #[deprecated(since = "0.7.0", note = "use with_rotation instead")]
98    #[must_use]
99    #[doc(hidden)]
100    pub fn with_x_rotation(self, rotation_radians: f64) -> Ellipse {
101        self.with_rotation(rotation_radians)
102    }
103
104    /// This gives us an internal method without any type conversions.
105    #[inline]
106    fn private_new(center: Vec2, scale_x: f64, scale_y: f64, x_rotation: f64) -> Ellipse {
107        // Since the circle is symmetric about the x and y axes, using absolute values for the
108        // radii results in the same ellipse. For simplicity we make this change here.
109        Ellipse {
110            inner: Affine::translate(center)
111                * Affine::rotate(x_rotation)
112                * Affine::scale_non_uniform(scale_x.abs(), scale_y.abs()),
113        }
114    }
115
116    // Getters and setters.
117
118    /// Returns the center of this ellipse.
119    #[inline(always)]
120    pub fn center(&self) -> Point {
121        self.inner.translation().to_point()
122    }
123
124    /// Returns the two radii of this ellipse.
125    ///
126    /// The first number is the horizontal radius and the second is the vertical
127    /// radius, before rotation.
128    pub fn radii(&self) -> Vec2 {
129        self.inner.svd().0
130    }
131
132    /// The ellipse's rotation, in radians.
133    ///
134    /// This allows all possible ellipses to be drawn by always starting with
135    /// an ellipse with the two radii on the x and y axes.
136    pub fn rotation(&self) -> f64 {
137        self.inner.svd().1
138    }
139
140    /// Returns the radii and the rotation of this ellipse.
141    ///
142    /// Equivalent to `(self.radii(), self.rotation())` but more efficient.
143    pub fn radii_and_rotation(&self) -> (Vec2, f64) {
144        self.inner.svd()
145    }
146
147    /// Is this ellipse [finite]?
148    ///
149    /// [finite]: f64::is_finite
150    #[inline]
151    pub fn is_finite(&self) -> bool {
152        self.inner.is_finite()
153    }
154
155    /// Is this ellipse [NaN]?
156    ///
157    /// [NaN]: f64::is_nan
158    #[inline]
159    pub fn is_nan(&self) -> bool {
160        self.inner.is_nan()
161    }
162
163    #[doc(hidden)]
164    #[deprecated(since = "0.7.0", note = "use rotation() instead")]
165    pub fn x_rotation(&self) -> f64 {
166        self.rotation()
167    }
168}
169
170impl Add<Vec2> for Ellipse {
171    type Output = Ellipse;
172
173    /// In this context adding a `Vec2` applies the corresponding translation to the ellipse.
174    #[inline]
175    #[allow(clippy::suspicious_arithmetic_impl)]
176    fn add(self, v: Vec2) -> Ellipse {
177        Ellipse {
178            inner: Affine::translate(v) * self.inner,
179        }
180    }
181}
182
183impl Sub<Vec2> for Ellipse {
184    type Output = Ellipse;
185
186    /// In this context subtracting a `Vec2` applies the corresponding translation to the ellipse.
187    #[inline]
188    fn sub(self, v: Vec2) -> Ellipse {
189        Ellipse {
190            inner: Affine::translate(-v) * self.inner,
191        }
192    }
193}
194
195impl Mul<Ellipse> for Affine {
196    type Output = Ellipse;
197    fn mul(self, other: Ellipse) -> Self::Output {
198        Ellipse {
199            inner: self * other.inner,
200        }
201    }
202}
203
204impl From<Circle> for Ellipse {
205    fn from(circle: Circle) -> Self {
206        Ellipse::new(circle.center, Vec2::splat(circle.radius), 0.0)
207    }
208}
209
210impl Shape for Ellipse {
211    type PathElementsIter<'iter> = iter::Chain<iter::Once<PathEl>, ArcAppendIter>;
212
213    fn path_elements(&self, tolerance: f64) -> Self::PathElementsIter<'_> {
214        let (radii, x_rotation) = self.inner.svd();
215        Arc {
216            center: self.center(),
217            radii,
218            start_angle: 0.0,
219            sweep_angle: 2.0 * PI,
220            x_rotation,
221        }
222        .path_elements(tolerance)
223    }
224
225    #[inline]
226    fn area(&self) -> f64 {
227        let Vec2 { x, y } = self.radii();
228        PI * x * y
229    }
230
231    /// Approximate the ellipse perimeter.
232    ///
233    /// This uses a numerical approximation. The absolute error between the calculated perimeter
234    /// and the true perimeter is bounded by `accuracy` (modulo floating point rounding errors).
235    ///
236    /// For circular ellipses (equal horizontal and vertical radii), the calculated perimeter is
237    /// exact.
238    #[inline]
239    fn perimeter(&self, accuracy: f64) -> f64 {
240        let radii = self.radii();
241
242        // Note: the radii are calculated from an inner affine map (`self.inner`), and may be NaN.
243        // Currently, constructing an ellipse with infinite radii will produce an ellipse whose
244        // calculated radii are NaN.
245        if !self.radii().is_finite() {
246            return f64::NAN;
247        }
248
249        // Check for the trivial case where the ellipse has one of its radii equal to 0, i.e.,
250        // where it describes a line, as the numerical method used breaks down with this extreme.
251        if radii.x == 0. || radii.y == 0. {
252            return 4. * f64::max(radii.x, radii.y);
253        }
254
255        // Evaluate an approximation based on a truncated infinite series. If it returns a good
256        // enough value, we do not need to iterate.
257        if kummer_elliptic_perimeter_range(radii) <= accuracy {
258            return kummer_elliptic_perimeter(radii);
259        }
260
261        agm_elliptic_perimeter(accuracy, radii)
262    }
263
264    fn winding(&self, pt: Point) -> i32 {
265        // Strategy here is to apply the inverse map to the point and see if it is in the unit
266        // circle.
267        let inv = self.inner.inverse();
268        if (inv * pt).to_vec2().hypot2() < 1.0 {
269            1
270        } else {
271            0
272        }
273    }
274
275    // Compute a tight bounding box of the ellipse.
276    //
277    // See https://www.iquilezles.org/www/articles/ellipses/ellipses.htm. We can get the two
278    // radius vectors by applying the affine map to the two impulses (1, 0) and (0, 1) which gives
279    // (a, b) and (c, d) if the affine map is
280    //
281    //  a | c | e
282    // -----------
283    //  b | d | f
284    //
285    //  We can then use the method in the link with the translation to get the bounding box.
286    #[inline]
287    fn bounding_box(&self) -> Rect {
288        let aff = self.inner.as_coeffs();
289        let a2 = aff[0] * aff[0];
290        let b2 = aff[1] * aff[1];
291        let c2 = aff[2] * aff[2];
292        let d2 = aff[3] * aff[3];
293        let cx = aff[4];
294        let cy = aff[5];
295        let range_x = (a2 + c2).sqrt();
296        let range_y = (b2 + d2).sqrt();
297        Rect {
298            x0: cx - range_x,
299            y0: cy - range_y,
300            x1: cx + range_x,
301            y1: cy + range_y,
302        }
303    }
304}
305
306/// Calculates circumference C of an ellipse with radii (x, y) as the infinite series
307///
308/// C = pi (x+y) * ∑ binom(1/2, n)^2 * h^n from n = 0 to inf
309/// with h = (x - y)^2 / (x + y)^2
310/// and binom(.,.) the binomial coefficient
311///
312/// as described by Kummer ("Über die Hypergeometrische Reihe", 1837) and rediscovered by
313/// Linderholm and Segal ("An Overlooked Series for the Elliptic Perimeter", 1995).
314///
315/// The series converges very quickly for ellipses with only moderate eccentricity (`h` not close
316/// to 1).
317///
318/// The series is truncated to the sixth power, meaning a lower bound on the true value is
319/// returned. Adding the value of [`kummer_elliptic_perimeter_range`] to the value returned by this
320/// function calculates an upper bound on the true value.
321#[inline]
322fn kummer_elliptic_perimeter(radii: Vec2) -> f64 {
323    let Vec2 { x, y } = radii;
324    let h = ((x - y) / (x + y)).powi(2);
325    let h2 = h * h;
326    let h3 = h2 * h;
327    let h4 = h3 * h;
328    let h5 = h4 * h;
329    let h6 = h5 * h;
330
331    let lower = PI
332        + h * (PI / 4.)
333        + h2 * (PI / 64.)
334        + h3 * (PI / 256.)
335        + h4 * (PI * 25. / 16384.)
336        + h5 * (PI * 49. / 65536.)
337        + h6 * (PI * 441. / 1048576.);
338
339    (x + y) * lower
340}
341
342/// This calculates the error range of [`kummer_elliptic_perimeter`]. That function returns a lower
343/// bound on the true value, and though we do not know what the remainder of the infinite series
344/// sums to, we can calculate an upper bound:
345///
346/// ∑ binom(1/2, n)^2 for n = 0 to inf
347///   = 1 + (1 / 2!!)^2 + (1!! / 4!!)^2 + (3!! / 6!!)^2 + (5!! / 8!!)^2 + ..
348///   = 4 / pi
349///   with !! the double factorial
350/// (equation 274 in "Summation of Series", L. B. W. Jolley, 1961).
351///
352/// This means the remainder of the infinite series for C, assuming the series was truncated to the
353/// mth term and h = 1, sums to
354/// 4 / pi - ∑ binom(1/2, n)^2 for n = 0 to m-1
355///
356/// As 0 ≤ h ≤ 1, this is an upper bound.
357#[inline]
358fn kummer_elliptic_perimeter_range(radii: Vec2) -> f64 {
359    let Vec2 { x, y } = radii;
360    let h = ((x - y) / (x + y)).powi(2);
361
362    const BINOM_SQUARED_REMAINDER: f64 = 0.00101416479131503;
363    // = 4. / PI - (1. + 1. / 4. + 1. / 64. + 1. / 256. + 25. / 16384. + 49. / 65536. + 441. / 1048576.)
364
365    PI * BINOM_SQUARED_REMAINDER * h.powi(7) * (x + y)
366}
367
368/// Calculates circumference C of an ellipse with radii (x, y) using the arithmetic-geometric mean,
369/// as described in equation 19.8.6 of
370/// <https://web.archive.org/web/20240926233336/https://dlmf.nist.gov/19.8#i>.
371fn agm_elliptic_perimeter(accuracy: f64, radii: Vec2) -> f64 {
372    let Vec2 { x, y } = if radii.x >= radii.y {
373        radii
374    } else {
375        Vec2::new(radii.y, radii.x)
376    };
377
378    let accuracy = accuracy / (2. * PI * x);
379
380    let mut sum = 1.;
381    let mut a = 1.;
382    let mut g = y / x;
383    let mut c = (1. - g.powi(2)).sqrt();
384    let mut mul = 0.5;
385
386    loop {
387        let c2 = c.powi(2);
388        // term = 2^(n-1) c_n^2
389        let term = mul * c2;
390        sum -= term;
391
392        // We have c_(n+1) ≤ 1/2 c_n
393        // (for a derivation, see e.g. section 2.1 of  "Elliptic integrals, the
394        // arithmetic-geometric mean and the Brent-Salamin algorithm for π" by G.J.O. Jameson:
395        // <https://web.archive.org/web/20241002140956/https://www.maths.lancs.ac.uk/jameson/ellagm.pdf>)
396        //
397        // Therefore
398        // ∑ 2^(i-1) c_i^2 from i = 1 ≤ ∑ 2^(i-1) ((1/2)^i c_0)^2 from i = 1
399        //                            = ∑ 2^-(i+1) c_0^2          from i = 1
400        //                            = 1/2 c_0^2
401        //
402        // or, for arbitrary starting point i = n+1:
403        // ∑ 2^(i-1) c_i^2 from i = n+1 ≤ ∑ 2^(i-1) ((1/2)^(i-n) c_n)^2 from i = n+1
404        //                              = ∑ 2^(2n - i - 1) c_n^2        from i = n+1
405        //                              = 2^(2n) ∑ 2^(-(i+1)) c_n^2     from i = n+1
406        //                              = 2^(2n) 2^(-(n+1)) c_n^2
407        //                              = 2^(n-1) c_n^2
408        //
409        // Therefore, the remainder of the series sums to less than or equal to 2^(n-1) c_n^2,
410        // which is exactly the value of the nth term.
411        //
412        // Furthermore, a_m ≥ g_n, and g_n ≤ 1, for all m, n.
413        if term <= accuracy * g {
414            // `sum` currently overestimates the true value - subtract the upper bound of the
415            // remaining series. We will then underestimate the true value, but by no more than
416            // `accuracy`.
417            sum -= term;
418            break;
419        }
420
421        mul *= 2.;
422        // This is equal to c_next = c^2 / (4 * a_next)
423        c = (a - g) / 2.;
424        let a_next = (a + g) / 2.;
425        g = (a * g).sqrt();
426        a = a_next;
427    }
428
429    2. * PI * x / a * sum
430}
431
432#[cfg(test)]
433mod tests {
434    use crate::{Circle, Ellipse, Point, Shape};
435    use std::f64::consts::PI;
436
437    fn assert_approx_eq(x: f64, y: f64) {
438        // Note: we might want to be more rigorous in testing the accuracy
439        // of the conversion into Béziers. But this seems good enough.
440        assert!((x - y).abs() < 1e-7, "{x} != {y}");
441    }
442
443    #[test]
444    fn circular_perimeter() {
445        for radius in [1.0, 0., 1.5, PI, 10.0, -1.0, 1_234_567_890.1] {
446            let circle = Circle::new((0., 0.), radius);
447            let ellipse = Ellipse::new((0., 0.), (radius, radius), 0.);
448
449            let circle_p = circle.perimeter(0.);
450            let ellipse_p = ellipse.perimeter(0.1);
451
452            // We expect the results to be identical, modulo potential roundoff errors. Compare
453            // with a very small relative epsilon.
454            let epsilon = f64::EPSILON * 8. * circle_p.max(ellipse_p);
455            assert!(
456                (circle_p - ellipse_p).abs() <= epsilon,
457                "Expected circular ellipse radius {ellipse_p} to be equal to circle radius {circle_p} for radius {radius}"
458            );
459        }
460    }
461
462    #[test]
463    fn compare_perimeter_with_bez() {
464        const EPSILON: f64 = 0.000_002;
465
466        for radii in [
467            (0.5, 1.),
468            (2., 1.),
469            (0.000_000_1, 1.),
470            (0., 1.),
471            (1., 0.),
472            (-0.5, 1.),
473            (-0.000_000_1, -1.),
474        ] {
475            let ellipse = Ellipse::new((0., 0.), radii, 0.);
476
477            let ellipse_p = ellipse.perimeter(0.000_001);
478            let bez_p = ellipse.path_segments(0.000_000_25).perimeter(0.000_000_25);
479
480            assert!(
481                (ellipse_p - bez_p).abs() < EPSILON,
482                "Numerically approximated ellipse perimeter ({ellipse_p}) does not match bezier segment perimeter length ({bez_p}) for radii {radii:?}"
483            );
484        }
485    }
486
487    #[test]
488    fn known_perimeter() {
489        const ACCURACY: f64 = 0.000_000_000_001;
490
491        for (radii, perimeter) in [
492            ((0.5, 1.), 4.844_224_110_273_838),
493            ((0.001, 1.), 4.000_015_588_104_688),
494        ] {
495            let ellipse = Ellipse::new((0., 0.), radii, 0.);
496
497            let ellipse_p = ellipse.perimeter(ACCURACY);
498            assert!(
499                (ellipse_p - perimeter).abs() <= ACCURACY,
500                "Numerically approximated ellipse perimeter ({ellipse_p}) does not match known perimeter ({perimeter}) radii {radii:?}"
501            );
502        }
503    }
504
505    #[test]
506    fn area_sign() {
507        let center = Point::new(5.0, 5.0);
508        let e = Ellipse::new(center, (5.0, 5.0), 1.0);
509        assert_approx_eq(e.area(), 25.0 * PI);
510        let e = Ellipse::new(center, (5.0, 10.0), 1.0);
511        assert_approx_eq(e.area(), 50.0 * PI);
512
513        assert_eq!(e.winding(center), 1);
514
515        let p = e.to_path(1e-9);
516        assert_approx_eq(e.area(), p.area());
517        assert_eq!(e.winding(center), p.winding(center));
518
519        let e_neg_radius = Ellipse::new(center, (-5.0, 10.0), 1.0);
520        assert_approx_eq(e_neg_radius.area(), 50.0 * PI);
521
522        assert_eq!(e_neg_radius.winding(center), 1);
523
524        let p_neg_radius = e_neg_radius.to_path(1e-9);
525        assert_approx_eq(e_neg_radius.area(), p_neg_radius.area());
526        assert_eq!(e_neg_radius.winding(center), p_neg_radius.winding(center));
527    }
528}