kurbo/
ellipse.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
// Copyright 2020 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! Implementation of ellipse shape.

use core::f64::consts::PI;
use core::{
    iter,
    ops::{Add, Mul, Sub},
};

use crate::{Affine, Arc, ArcAppendIter, Circle, PathEl, Point, Rect, Shape, Size, Vec2};

#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;

/// An ellipse.
#[derive(Clone, Copy, Default, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Ellipse {
    /// All ellipses can be represented as an affine map of the unit circle,
    /// centred at (0, 0). Therefore we can store the ellipse as an affine map,
    /// with the implication that it be applied to the unit circle to recover the
    /// actual shape.
    inner: Affine,
}

impl Ellipse {
    /// Create A new ellipse with a given center, radii, and rotation.
    ///
    /// The returned ellipse will be the result of taking a circle, stretching
    /// it by the `radii` along the x and y axes, then rotating it from the
    /// x axis by `rotation` radians, before finally translating the center
    /// to `center`.
    ///
    /// Rotation is clockwise in a y-down coordinate system. For more on
    /// rotation, see [`Affine::rotate`].
    #[inline]
    pub fn new(center: impl Into<Point>, radii: impl Into<Vec2>, x_rotation: f64) -> Ellipse {
        let Point { x: cx, y: cy } = center.into();
        let Vec2 { x: rx, y: ry } = radii.into();
        Ellipse::private_new(Vec2 { x: cx, y: cy }, rx, ry, x_rotation)
    }

    /// Returns the largest ellipse that can be bounded by this [`Rect`].
    ///
    /// This uses the absolute width and height of the rectangle.
    ///
    /// This ellipse is always axis-aligned; to apply rotation you can call
    /// [`with_rotation`] with the result.
    ///
    /// [`with_rotation`]: Ellipse::with_rotation
    #[inline]
    pub fn from_rect(rect: Rect) -> Self {
        let center = rect.center().to_vec2();
        let Size { width, height } = rect.size() / 2.0;
        Ellipse::private_new(center, width, height, 0.0)
    }

    /// Create an ellipse from an affine transformation of the unit circle.
    #[inline]
    pub fn from_affine(affine: Affine) -> Self {
        Ellipse { inner: affine }
    }

    /// Create a new `Ellipse` centered on the provided point.
    #[inline]
    #[must_use]
    pub fn with_center(self, new_center: Point) -> Ellipse {
        let Point { x: cx, y: cy } = new_center;
        Ellipse {
            inner: self.inner.with_translation(Vec2 { x: cx, y: cy }),
        }
    }

    /// Create a new `Ellipse` with the provided radii.
    #[must_use]
    pub fn with_radii(self, new_radii: Vec2) -> Ellipse {
        let rotation = self.inner.svd().1;
        let translation = self.inner.translation();
        Ellipse::private_new(translation, new_radii.x, new_radii.y, rotation)
    }

    /// Create a new `Ellipse`, with the rotation replaced by `rotation`
    /// radians.
    ///
    /// The rotation is clockwise, for a y-down coordinate system. For more
    /// on rotation, See [`Affine::rotate`].
    #[must_use]
    pub fn with_rotation(self, rotation: f64) -> Ellipse {
        let scale = self.inner.svd().0;
        let translation = self.inner.translation();
        Ellipse::private_new(translation, scale.x, scale.y, rotation)
    }

    #[deprecated(since = "0.7.0", note = "use with_rotation instead")]
    #[must_use]
    #[doc(hidden)]
    pub fn with_x_rotation(self, rotation_radians: f64) -> Ellipse {
        self.with_rotation(rotation_radians)
    }

    /// This gives us an internal method without any type conversions.
    #[inline]
    fn private_new(center: Vec2, scale_x: f64, scale_y: f64, x_rotation: f64) -> Ellipse {
        // Since the circle is symmetric about the x and y axes, using absolute values for the
        // radii results in the same ellipse. For simplicity we make this change here.
        Ellipse {
            inner: Affine::translate(center)
                * Affine::rotate(x_rotation)
                * Affine::scale_non_uniform(scale_x.abs(), scale_y.abs()),
        }
    }

    // Getters and setters.

    /// Returns the center of this ellipse.
    #[inline]
    pub fn center(&self) -> Point {
        let Vec2 { x: cx, y: cy } = self.inner.translation();
        Point { x: cx, y: cy }
    }

    /// Returns the two radii of this ellipse.
    ///
    /// The first number is the horizontal radius and the second is the vertical
    /// radius, before rotation.
    pub fn radii(&self) -> Vec2 {
        self.inner.svd().0
    }

    /// The ellipse's rotation, in radians.
    ///
    /// This allows all possible ellipses to be drawn by always starting with
    /// an ellipse with the two radii on the x and y axes.
    pub fn rotation(&self) -> f64 {
        self.inner.svd().1
    }

    /// Returns the radii and the rotation of this ellipse.
    ///
    /// Equivalent to `(self.radii(), self.rotation())` but more efficient.
    pub fn radii_and_rotation(&self) -> (Vec2, f64) {
        self.inner.svd()
    }

    /// Is this ellipse [finite]?
    ///
    /// [finite]: f64::is_finite
    #[inline]
    pub fn is_finite(&self) -> bool {
        self.inner.is_finite()
    }

    /// Is this ellipse [NaN]?
    ///
    /// [NaN]: f64::is_nan
    #[inline]
    pub fn is_nan(&self) -> bool {
        self.inner.is_nan()
    }

    #[doc(hidden)]
    #[deprecated(since = "0.7.0", note = "use rotation() instead")]
    pub fn x_rotation(&self) -> f64 {
        self.rotation()
    }
}

impl Add<Vec2> for Ellipse {
    type Output = Ellipse;

    /// In this context adding a `Vec2` applies the corresponding translation to the ellipse.
    #[inline]
    #[allow(clippy::suspicious_arithmetic_impl)]
    fn add(self, v: Vec2) -> Ellipse {
        Ellipse {
            inner: Affine::translate(v) * self.inner,
        }
    }
}

impl Sub<Vec2> for Ellipse {
    type Output = Ellipse;

    /// In this context subtracting a `Vec2` applies the corresponding translation to the ellipse.
    #[inline]
    fn sub(self, v: Vec2) -> Ellipse {
        Ellipse {
            inner: Affine::translate(-v) * self.inner,
        }
    }
}

impl Mul<Ellipse> for Affine {
    type Output = Ellipse;
    fn mul(self, other: Ellipse) -> Self::Output {
        Ellipse {
            inner: self * other.inner,
        }
    }
}

impl From<Circle> for Ellipse {
    fn from(circle: Circle) -> Self {
        Ellipse::new(circle.center, Vec2::splat(circle.radius), 0.0)
    }
}

impl Shape for Ellipse {
    type PathElementsIter<'iter> = iter::Chain<iter::Once<PathEl>, ArcAppendIter>;

    fn path_elements(&self, tolerance: f64) -> Self::PathElementsIter<'_> {
        let (radii, x_rotation) = self.inner.svd();
        Arc {
            center: self.center(),
            radii,
            start_angle: 0.0,
            sweep_angle: 2.0 * PI,
            x_rotation,
        }
        .path_elements(tolerance)
    }

    #[inline]
    fn area(&self) -> f64 {
        let Vec2 { x, y } = self.radii();
        PI * x * y
    }

    #[inline]
    fn perimeter(&self, accuracy: f64) -> f64 {
        // TODO rather than delegate to the bezier path, it is possible to use various series
        // expansions to compute the perimeter to any accuracy. I believe Ramanujan authored the
        // quickest to converge. See
        // https://www.mathematica-journal.com/2009/11/23/on-the-perimeter-of-an-ellipse/
        // and https://en.wikipedia.org/wiki/Ellipse#Circumference
        //
        self.path_segments(0.1).perimeter(accuracy)
    }

    fn winding(&self, pt: Point) -> i32 {
        // Strategy here is to apply the inverse map to the point and see if it is in the unit
        // circle.
        let inv = self.inner.inverse();
        if (inv * pt).to_vec2().hypot2() < 1.0 {
            1
        } else {
            0
        }
    }

    // Compute a tight bounding box of the ellipse.
    //
    // See https://www.iquilezles.org/www/articles/ellipses/ellipses.htm. We can get the two
    // radius vectors by applying the affine map to the two impulses (1, 0) and (0, 1) which gives
    // (a, b) and (c, d) if the affine map is
    //
    //  a | c | e
    // -----------
    //  b | d | f
    //
    //  We can then use the method in the link with the translation to get the bounding box.
    #[inline]
    fn bounding_box(&self) -> Rect {
        let aff = self.inner.as_coeffs();
        let a2 = aff[0] * aff[0];
        let b2 = aff[1] * aff[1];
        let c2 = aff[2] * aff[2];
        let d2 = aff[3] * aff[3];
        let cx = aff[4];
        let cy = aff[5];
        let range_x = (a2 + c2).sqrt();
        let range_y = (b2 + d2).sqrt();
        Rect {
            x0: cx - range_x,
            y0: cy - range_y,
            x1: cx + range_x,
            y1: cy + range_y,
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::{Ellipse, Point, Shape};
    use std::f64::consts::PI;

    fn assert_approx_eq(x: f64, y: f64) {
        // Note: we might want to be more rigorous in testing the accuracy
        // of the conversion into Béziers. But this seems good enough.
        assert!((x - y).abs() < 1e-7, "{x} != {y}");
    }

    #[test]
    fn area_sign() {
        let center = Point::new(5.0, 5.0);
        let e = Ellipse::new(center, (5.0, 5.0), 1.0);
        assert_approx_eq(e.area(), 25.0 * PI);
        let e = Ellipse::new(center, (5.0, 10.0), 1.0);
        assert_approx_eq(e.area(), 50.0 * PI);

        assert_eq!(e.winding(center), 1);

        let p = e.to_path(1e-9);
        assert_approx_eq(e.area(), p.area());
        assert_eq!(e.winding(center), p.winding(center));

        let e_neg_radius = Ellipse::new(center, (-5.0, 10.0), 1.0);
        assert_approx_eq(e_neg_radius.area(), 50.0 * PI);

        assert_eq!(e_neg_radius.winding(center), 1);

        let p_neg_radius = e_neg_radius.to_path(1e-9);
        assert_approx_eq(e_neg_radius.area(), p_neg_radius.area());
        assert_eq!(e_neg_radius.winding(center), p_neg_radius.winding(center));
    }
}