regex_automata/meta/strategy.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
use core::{
fmt::Debug,
panic::{RefUnwindSafe, UnwindSafe},
};
use alloc::sync::Arc;
use regex_syntax::hir::{literal, Hir};
use crate::{
meta::{
error::{BuildError, RetryError, RetryFailError, RetryQuadraticError},
regex::{Cache, RegexInfo},
reverse_inner, wrappers,
},
nfa::thompson::{self, WhichCaptures, NFA},
util::{
captures::{Captures, GroupInfo},
look::LookMatcher,
prefilter::{self, Prefilter, PrefilterI},
primitives::{NonMaxUsize, PatternID},
search::{Anchored, HalfMatch, Input, Match, MatchKind, PatternSet},
},
};
/// A trait that represents a single meta strategy. Its main utility is in
/// providing a way to do dynamic dispatch over a few choices.
///
/// Why dynamic dispatch? I actually don't have a super compelling reason, and
/// importantly, I have not benchmarked it with the main alternative: an enum.
/// I went with dynamic dispatch initially because the regex engine search code
/// really can't be inlined into caller code in most cases because it's just
/// too big. In other words, it is already expected that every regex search
/// will entail at least the cost of a function call.
///
/// I do wonder whether using enums would result in better codegen overall
/// though. It's a worthwhile experiment to try. Probably the most interesting
/// benchmark to run in such a case would be one with a high match count. That
/// is, a benchmark to test the overall latency of a search call.
pub(super) trait Strategy:
Debug + Send + Sync + RefUnwindSafe + UnwindSafe + 'static
{
fn group_info(&self) -> &GroupInfo;
fn create_cache(&self) -> Cache;
fn reset_cache(&self, cache: &mut Cache);
fn is_accelerated(&self) -> bool;
fn memory_usage(&self) -> usize;
fn search(&self, cache: &mut Cache, input: &Input<'_>) -> Option<Match>;
fn search_half(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Option<HalfMatch>;
fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool;
fn search_slots(
&self,
cache: &mut Cache,
input: &Input<'_>,
slots: &mut [Option<NonMaxUsize>],
) -> Option<PatternID>;
fn which_overlapping_matches(
&self,
cache: &mut Cache,
input: &Input<'_>,
patset: &mut PatternSet,
);
}
pub(super) fn new(
info: &RegexInfo,
hirs: &[&Hir],
) -> Result<Arc<dyn Strategy>, BuildError> {
// At this point, we're committed to a regex engine of some kind. So pull
// out a prefilter if we can, which will feed to each of the constituent
// regex engines.
let pre = if info.is_always_anchored_start() {
// PERF: I'm not sure we necessarily want to do this... We may want to
// run a prefilter for quickly rejecting in some cases. The problem
// is that anchored searches overlap quite a bit with the use case
// of "run a regex on every line to extract data." In that case, the
// regex always matches, so running a prefilter doesn't really help us
// there. The main place where a prefilter helps in an anchored search
// is if the anchored search is not expected to match frequently. That
// is, the prefilter gives us a way to possibly reject a haystack very
// quickly.
//
// Maybe we should do use a prefilter, but only for longer haystacks?
// Or maybe we should only use a prefilter when we think it's "fast"?
//
// Interestingly, I think we currently lack the infrastructure for
// disabling a prefilter based on haystack length. That would probably
// need to be a new 'Input' option. (Interestingly, an 'Input' used to
// carry a 'Prefilter' with it, but I moved away from that.)
debug!("skipping literal extraction since regex is anchored");
None
} else if let Some(pre) = info.config().get_prefilter() {
debug!(
"skipping literal extraction since the caller provided a prefilter"
);
Some(pre.clone())
} else if info.config().get_auto_prefilter() {
let kind = info.config().get_match_kind();
let prefixes = crate::util::prefilter::prefixes(kind, hirs);
// If we can build a full `Strategy` from just the extracted prefixes,
// then we can short-circuit and avoid building a regex engine at all.
if let Some(pre) = Pre::from_prefixes(info, &prefixes) {
debug!(
"found that the regex can be broken down to a literal \
search, avoiding the regex engine entirely",
);
return Ok(pre);
}
// This now attempts another short-circuit of the regex engine: if we
// have a huge alternation of just plain literals, then we can just use
// Aho-Corasick for that and avoid the regex engine entirely.
//
// You might think this case would just be handled by
// `Pre::from_prefixes`, but that technique relies on heuristic literal
// extraction from the corresponding `Hir`. That works, but part of
// heuristics limit the size and number of literals returned. This case
// will specifically handle patterns with very large alternations.
//
// One wonders if we should just roll this our heuristic literal
// extraction, and then I think this case could disappear entirely.
if let Some(pre) = Pre::from_alternation_literals(info, hirs) {
debug!(
"found plain alternation of literals, \
avoiding regex engine entirely and using Aho-Corasick"
);
return Ok(pre);
}
prefixes.literals().and_then(|strings| {
debug!(
"creating prefilter from {} literals: {:?}",
strings.len(),
strings,
);
Prefilter::new(kind, strings)
})
} else {
debug!("skipping literal extraction since prefilters were disabled");
None
};
let mut core = Core::new(info.clone(), pre.clone(), hirs)?;
// Now that we have our core regex engines built, there are a few cases
// where we can do a little bit better than just a normal "search forward
// and maybe use a prefilter when in a start state." However, these cases
// may not always work or otherwise build on top of the Core searcher.
// For example, the reverse anchored optimization seems like it might
// always work, but only the DFAs support reverse searching and the DFAs
// might give up or quit for reasons. If we had, e.g., a PikeVM that
// supported reverse searching, then we could avoid building a full Core
// engine for this case.
core = match ReverseAnchored::new(core) {
Err(core) => core,
Ok(ra) => {
debug!("using reverse anchored strategy");
return Ok(Arc::new(ra));
}
};
core = match ReverseSuffix::new(core, hirs) {
Err(core) => core,
Ok(rs) => {
debug!("using reverse suffix strategy");
return Ok(Arc::new(rs));
}
};
core = match ReverseInner::new(core, hirs) {
Err(core) => core,
Ok(ri) => {
debug!("using reverse inner strategy");
return Ok(Arc::new(ri));
}
};
debug!("using core strategy");
Ok(Arc::new(core))
}
#[derive(Clone, Debug)]
struct Pre<P> {
pre: P,
group_info: GroupInfo,
}
impl<P: PrefilterI> Pre<P> {
fn new(pre: P) -> Arc<dyn Strategy> {
// The only thing we support when we use prefilters directly as a
// strategy is the start and end of the overall match for a single
// pattern. In other words, exactly one implicit capturing group. Which
// is exactly what we use here for a GroupInfo.
let group_info = GroupInfo::new([[None::<&str>]]).unwrap();
Arc::new(Pre { pre, group_info })
}
}
// This is a little weird, but we don't actually care about the type parameter
// here because we're selecting which underlying prefilter to use. So we just
// define it on an arbitrary type.
impl Pre<()> {
/// Given a sequence of prefixes, attempt to return a full `Strategy` using
/// just the prefixes.
///
/// Basically, this occurs when the prefixes given not just prefixes,
/// but an enumeration of the entire language matched by the regular
/// expression.
///
/// A number of other conditions need to be true too. For example, there
/// can be only one pattern, the number of explicit capture groups is 0, no
/// look-around assertions and so on.
///
/// Note that this ignores `Config::get_auto_prefilter` because if this
/// returns something, then it isn't a prefilter but a matcher itself.
/// Therefore, it shouldn't suffer from the problems typical to prefilters
/// (such as a high false positive rate).
fn from_prefixes(
info: &RegexInfo,
prefixes: &literal::Seq,
) -> Option<Arc<dyn Strategy>> {
let kind = info.config().get_match_kind();
// Check to see if our prefixes are exact, which means we might be
// able to bypass the regex engine entirely and just rely on literal
// searches.
if !prefixes.is_exact() {
return None;
}
// We also require that we have a single regex pattern. Namely,
// we reuse the prefilter infrastructure to implement search and
// prefilters only report spans. Prefilters don't know about pattern
// IDs. The multi-regex case isn't a lost cause, we might still use
// Aho-Corasick and we might still just use a regular prefilter, but
// that's done below.
if info.pattern_len() != 1 {
return None;
}
// We can't have any capture groups either. The literal engines don't
// know how to deal with things like '(foo)(bar)'. In that case, a
// prefilter will just be used and then the regex engine will resolve
// the capture groups.
if info.props()[0].explicit_captures_len() != 0 {
return None;
}
// We also require that it has zero look-around assertions. Namely,
// literal extraction treats look-around assertions as if they match
// *every* empty string. But of course, that isn't true. So for
// example, 'foo\bquux' never matches anything, but 'fooquux' is
// extracted from that as an exact literal. Such cases should just run
// the regex engine. 'fooquux' will be used as a normal prefilter, and
// then the regex engine will try to look for an actual match.
if !info.props()[0].look_set().is_empty() {
return None;
}
// Finally, currently, our prefilters are all oriented around
// leftmost-first match semantics, so don't try to use them if the
// caller asked for anything else.
if kind != MatchKind::LeftmostFirst {
return None;
}
// The above seems like a lot of requirements to meet, but it applies
// to a lot of cases. 'foo', '[abc][123]' and 'foo|bar|quux' all meet
// the above criteria, for example.
//
// Note that this is effectively a latency optimization. If we didn't
// do this, then the extracted literals would still get bundled into
// a prefilter, and every regex engine capable of running unanchored
// searches supports prefilters. So this optimization merely sidesteps
// having to run the regex engine at all to confirm the match. Thus, it
// decreases the latency of a match.
// OK because we know the set is exact and thus finite.
let prefixes = prefixes.literals().unwrap();
debug!(
"trying to bypass regex engine by creating \
prefilter from {} literals: {:?}",
prefixes.len(),
prefixes,
);
let choice = match prefilter::Choice::new(kind, prefixes) {
Some(choice) => choice,
None => {
debug!(
"regex bypass failed because no prefilter could be built"
);
return None;
}
};
let strat: Arc<dyn Strategy> = match choice {
prefilter::Choice::Memchr(pre) => Pre::new(pre),
prefilter::Choice::Memchr2(pre) => Pre::new(pre),
prefilter::Choice::Memchr3(pre) => Pre::new(pre),
prefilter::Choice::Memmem(pre) => Pre::new(pre),
prefilter::Choice::Teddy(pre) => Pre::new(pre),
prefilter::Choice::ByteSet(pre) => Pre::new(pre),
prefilter::Choice::AhoCorasick(pre) => Pre::new(pre),
};
Some(strat)
}
/// Attempts to extract an alternation of literals, and if it's deemed
/// worth doing, returns an Aho-Corasick prefilter as a strategy.
///
/// And currently, this only returns something when 'hirs.len() == 1'. This
/// could in theory do something if there are multiple HIRs where all of
/// them are alternation of literals, but I haven't had the time to go down
/// that path yet.
fn from_alternation_literals(
info: &RegexInfo,
hirs: &[&Hir],
) -> Option<Arc<dyn Strategy>> {
use crate::util::prefilter::AhoCorasick;
let lits = crate::meta::literal::alternation_literals(info, hirs)?;
let ac = AhoCorasick::new(MatchKind::LeftmostFirst, &lits)?;
Some(Pre::new(ac))
}
}
// This implements Strategy for anything that implements PrefilterI.
//
// Note that this must only be used for regexes of length 1. Multi-regexes
// don't work here. The prefilter interface only provides the span of a match
// and not the pattern ID. (I did consider making it more expressive, but I
// couldn't figure out how to tie everything together elegantly.) Thus, so long
// as the regex only contains one pattern, we can simply assume that a match
// corresponds to PatternID::ZERO. And indeed, that's what we do here.
//
// In practice, since this impl is used to report matches directly and thus
// completely bypasses the regex engine, we only wind up using this under the
// following restrictions:
//
// * There must be only one pattern. As explained above.
// * The literal sequence must be finite and only contain exact literals.
// * There must not be any look-around assertions. If there are, the literals
// extracted might be exact, but a match doesn't necessarily imply an overall
// match. As a trivial example, 'foo\bbar' does not match 'foobar'.
// * The pattern must not have any explicit capturing groups. If it does, the
// caller might expect them to be resolved. e.g., 'foo(bar)'.
//
// So when all of those things are true, we use a prefilter directly as a
// strategy.
//
// In the case where the number of patterns is more than 1, we don't use this
// but do use a special Aho-Corasick strategy if all of the regexes are just
// simple literals or alternations of literals. (We also use the Aho-Corasick
// strategy when len(patterns)==1 if the number of literals is large. In that
// case, literal extraction gives up and will return an infinite set.)
impl<P: PrefilterI> Strategy for Pre<P> {
#[cfg_attr(feature = "perf-inline", inline(always))]
fn group_info(&self) -> &GroupInfo {
&self.group_info
}
fn create_cache(&self) -> Cache {
Cache {
capmatches: Captures::all(self.group_info().clone()),
pikevm: wrappers::PikeVMCache::none(),
backtrack: wrappers::BoundedBacktrackerCache::none(),
onepass: wrappers::OnePassCache::none(),
hybrid: wrappers::HybridCache::none(),
revhybrid: wrappers::ReverseHybridCache::none(),
}
}
fn reset_cache(&self, _cache: &mut Cache) {}
fn is_accelerated(&self) -> bool {
self.pre.is_fast()
}
fn memory_usage(&self) -> usize {
self.pre.memory_usage()
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn search(&self, _cache: &mut Cache, input: &Input<'_>) -> Option<Match> {
if input.is_done() {
return None;
}
if input.get_anchored().is_anchored() {
return self
.pre
.prefix(input.haystack(), input.get_span())
.map(|sp| Match::new(PatternID::ZERO, sp));
}
self.pre
.find(input.haystack(), input.get_span())
.map(|sp| Match::new(PatternID::ZERO, sp))
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn search_half(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Option<HalfMatch> {
self.search(cache, input).map(|m| HalfMatch::new(m.pattern(), m.end()))
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool {
self.search(cache, input).is_some()
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn search_slots(
&self,
cache: &mut Cache,
input: &Input<'_>,
slots: &mut [Option<NonMaxUsize>],
) -> Option<PatternID> {
let m = self.search(cache, input)?;
if let Some(slot) = slots.get_mut(0) {
*slot = NonMaxUsize::new(m.start());
}
if let Some(slot) = slots.get_mut(1) {
*slot = NonMaxUsize::new(m.end());
}
Some(m.pattern())
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn which_overlapping_matches(
&self,
cache: &mut Cache,
input: &Input<'_>,
patset: &mut PatternSet,
) {
if self.search(cache, input).is_some() {
patset.insert(PatternID::ZERO);
}
}
}
#[derive(Debug)]
struct Core {
info: RegexInfo,
pre: Option<Prefilter>,
nfa: NFA,
nfarev: Option<NFA>,
pikevm: wrappers::PikeVM,
backtrack: wrappers::BoundedBacktracker,
onepass: wrappers::OnePass,
hybrid: wrappers::Hybrid,
dfa: wrappers::DFA,
}
impl Core {
fn new(
info: RegexInfo,
pre: Option<Prefilter>,
hirs: &[&Hir],
) -> Result<Core, BuildError> {
let mut lookm = LookMatcher::new();
lookm.set_line_terminator(info.config().get_line_terminator());
let thompson_config = thompson::Config::new()
.utf8(info.config().get_utf8_empty())
.nfa_size_limit(info.config().get_nfa_size_limit())
.shrink(false)
.which_captures(info.config().get_which_captures())
.look_matcher(lookm);
let nfa = thompson::Compiler::new()
.configure(thompson_config.clone())
.build_many_from_hir(hirs)
.map_err(BuildError::nfa)?;
// It's possible for the PikeVM or the BB to fail to build, even though
// at this point, we already have a full NFA in hand. They can fail
// when a Unicode word boundary is used but where Unicode word boundary
// support is disabled at compile time, thus making it impossible to
// match. (Construction can also fail if the NFA was compiled without
// captures, but we always enable that above.)
let pikevm = wrappers::PikeVM::new(&info, pre.clone(), &nfa)?;
let backtrack =
wrappers::BoundedBacktracker::new(&info, pre.clone(), &nfa)?;
// The onepass engine can of course fail to build, but we expect it to
// fail in many cases because it is an optimization that doesn't apply
// to all regexes. The 'OnePass' wrapper encapsulates this failure (and
// logs a message if it occurs).
let onepass = wrappers::OnePass::new(&info, &nfa);
// We try to encapsulate whether a particular regex engine should be
// used within each respective wrapper, but the DFAs need a reverse NFA
// to build itself, and we really do not want to build a reverse NFA if
// we know we aren't going to use the lazy DFA. So we do a config check
// up front, which is in practice the only way we won't try to use the
// DFA.
let (nfarev, hybrid, dfa) =
if !info.config().get_hybrid() && !info.config().get_dfa() {
(None, wrappers::Hybrid::none(), wrappers::DFA::none())
} else {
// FIXME: Technically, we don't quite yet KNOW that we need
// a reverse NFA. It's possible for the DFAs below to both
// fail to build just based on the forward NFA. In which case,
// building the reverse NFA was totally wasted work. But...
// fixing this requires breaking DFA construction apart into
// two pieces: one for the forward part and another for the
// reverse part. Quite annoying. Making it worse, when building
// both DFAs fails, it's quite likely that the NFA is large and
// that it will take quite some time to build the reverse NFA
// too. So... it's really probably worth it to do this!
let nfarev = thompson::Compiler::new()
// Currently, reverse NFAs don't support capturing groups,
// so we MUST disable them. But even if we didn't have to,
// we would, because nothing in this crate does anything
// useful with capturing groups in reverse. And of course,
// the lazy DFA ignores capturing groups in all cases.
.configure(
thompson_config
.clone()
.which_captures(WhichCaptures::None)
.reverse(true),
)
.build_many_from_hir(hirs)
.map_err(BuildError::nfa)?;
let dfa = if !info.config().get_dfa() {
wrappers::DFA::none()
} else {
wrappers::DFA::new(&info, pre.clone(), &nfa, &nfarev)
};
let hybrid = if !info.config().get_hybrid() {
wrappers::Hybrid::none()
} else if dfa.is_some() {
debug!("skipping lazy DFA because we have a full DFA");
wrappers::Hybrid::none()
} else {
wrappers::Hybrid::new(&info, pre.clone(), &nfa, &nfarev)
};
(Some(nfarev), hybrid, dfa)
};
Ok(Core {
info,
pre,
nfa,
nfarev,
pikevm,
backtrack,
onepass,
hybrid,
dfa,
})
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn try_search_mayfail(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Option<Result<Option<Match>, RetryFailError>> {
if let Some(e) = self.dfa.get(input) {
trace!("using full DFA for search at {:?}", input.get_span());
Some(e.try_search(input))
} else if let Some(e) = self.hybrid.get(input) {
trace!("using lazy DFA for search at {:?}", input.get_span());
Some(e.try_search(&mut cache.hybrid, input))
} else {
None
}
}
fn search_nofail(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Option<Match> {
let caps = &mut cache.capmatches;
caps.set_pattern(None);
// We manually inline 'try_search_slots_nofail' here because we need to
// borrow from 'cache.capmatches' in this method, but if we do, then
// we can't pass 'cache' wholesale to to 'try_slots_no_hybrid'. It's a
// classic example of how the borrow checker inhibits decomposition.
// There are of course work-arounds (more types and/or interior
// mutability), but that's more annoying than this IMO.
let pid = if let Some(ref e) = self.onepass.get(input) {
trace!("using OnePass for search at {:?}", input.get_span());
e.search_slots(&mut cache.onepass, input, caps.slots_mut())
} else if let Some(ref e) = self.backtrack.get(input) {
trace!(
"using BoundedBacktracker for search at {:?}",
input.get_span()
);
e.search_slots(&mut cache.backtrack, input, caps.slots_mut())
} else {
trace!("using PikeVM for search at {:?}", input.get_span());
let e = self.pikevm.get();
e.search_slots(&mut cache.pikevm, input, caps.slots_mut())
};
caps.set_pattern(pid);
caps.get_match()
}
fn search_half_nofail(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Option<HalfMatch> {
// Only the lazy/full DFA returns half-matches, since the DFA requires
// a reverse scan to find the start position. These fallback regex
// engines can find the start and end in a single pass, so we just do
// that and throw away the start offset to conform to the API.
let m = self.search_nofail(cache, input)?;
Some(HalfMatch::new(m.pattern(), m.end()))
}
fn search_slots_nofail(
&self,
cache: &mut Cache,
input: &Input<'_>,
slots: &mut [Option<NonMaxUsize>],
) -> Option<PatternID> {
if let Some(ref e) = self.onepass.get(input) {
trace!(
"using OnePass for capture search at {:?}",
input.get_span()
);
e.search_slots(&mut cache.onepass, input, slots)
} else if let Some(ref e) = self.backtrack.get(input) {
trace!(
"using BoundedBacktracker for capture search at {:?}",
input.get_span()
);
e.search_slots(&mut cache.backtrack, input, slots)
} else {
trace!(
"using PikeVM for capture search at {:?}",
input.get_span()
);
let e = self.pikevm.get();
e.search_slots(&mut cache.pikevm, input, slots)
}
}
fn is_match_nofail(&self, cache: &mut Cache, input: &Input<'_>) -> bool {
if let Some(ref e) = self.onepass.get(input) {
trace!(
"using OnePass for is-match search at {:?}",
input.get_span()
);
e.search_slots(&mut cache.onepass, input, &mut []).is_some()
} else if let Some(ref e) = self.backtrack.get(input) {
trace!(
"using BoundedBacktracker for is-match search at {:?}",
input.get_span()
);
e.is_match(&mut cache.backtrack, input)
} else {
trace!(
"using PikeVM for is-match search at {:?}",
input.get_span()
);
let e = self.pikevm.get();
e.is_match(&mut cache.pikevm, input)
}
}
fn is_capture_search_needed(&self, slots_len: usize) -> bool {
slots_len > self.nfa.group_info().implicit_slot_len()
}
}
impl Strategy for Core {
#[cfg_attr(feature = "perf-inline", inline(always))]
fn group_info(&self) -> &GroupInfo {
self.nfa.group_info()
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn create_cache(&self) -> Cache {
Cache {
capmatches: Captures::all(self.group_info().clone()),
pikevm: self.pikevm.create_cache(),
backtrack: self.backtrack.create_cache(),
onepass: self.onepass.create_cache(),
hybrid: self.hybrid.create_cache(),
revhybrid: wrappers::ReverseHybridCache::none(),
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn reset_cache(&self, cache: &mut Cache) {
cache.pikevm.reset(&self.pikevm);
cache.backtrack.reset(&self.backtrack);
cache.onepass.reset(&self.onepass);
cache.hybrid.reset(&self.hybrid);
}
fn is_accelerated(&self) -> bool {
self.pre.as_ref().map_or(false, |pre| pre.is_fast())
}
fn memory_usage(&self) -> usize {
self.info.memory_usage()
+ self.pre.as_ref().map_or(0, |pre| pre.memory_usage())
+ self.nfa.memory_usage()
+ self.nfarev.as_ref().map_or(0, |nfa| nfa.memory_usage())
+ self.onepass.memory_usage()
+ self.dfa.memory_usage()
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn search(&self, cache: &mut Cache, input: &Input<'_>) -> Option<Match> {
// We manually inline try_search_mayfail here because letting the
// compiler do it seems to produce pretty crappy codegen.
return if let Some(e) = self.dfa.get(input) {
trace!("using full DFA for full search at {:?}", input.get_span());
match e.try_search(input) {
Ok(x) => x,
Err(_err) => {
trace!("full DFA search failed: {}", _err);
self.search_nofail(cache, input)
}
}
} else if let Some(e) = self.hybrid.get(input) {
trace!("using lazy DFA for full search at {:?}", input.get_span());
match e.try_search(&mut cache.hybrid, input) {
Ok(x) => x,
Err(_err) => {
trace!("lazy DFA search failed: {}", _err);
self.search_nofail(cache, input)
}
}
} else {
self.search_nofail(cache, input)
};
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn search_half(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Option<HalfMatch> {
// The main difference with 'search' is that if we're using a DFA, we
// can use a single forward scan without needing to run the reverse
// DFA.
if let Some(e) = self.dfa.get(input) {
trace!("using full DFA for half search at {:?}", input.get_span());
match e.try_search_half_fwd(input) {
Ok(x) => x,
Err(_err) => {
trace!("full DFA half search failed: {}", _err);
self.search_half_nofail(cache, input)
}
}
} else if let Some(e) = self.hybrid.get(input) {
trace!("using lazy DFA for half search at {:?}", input.get_span());
match e.try_search_half_fwd(&mut cache.hybrid, input) {
Ok(x) => x,
Err(_err) => {
trace!("lazy DFA half search failed: {}", _err);
self.search_half_nofail(cache, input)
}
}
} else {
self.search_half_nofail(cache, input)
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool {
if let Some(e) = self.dfa.get(input) {
trace!(
"using full DFA for is-match search at {:?}",
input.get_span()
);
match e.try_search_half_fwd(input) {
Ok(x) => x.is_some(),
Err(_err) => {
trace!("full DFA half search failed: {}", _err);
self.is_match_nofail(cache, input)
}
}
} else if let Some(e) = self.hybrid.get(input) {
trace!(
"using lazy DFA for is-match search at {:?}",
input.get_span()
);
match e.try_search_half_fwd(&mut cache.hybrid, input) {
Ok(x) => x.is_some(),
Err(_err) => {
trace!("lazy DFA half search failed: {}", _err);
self.is_match_nofail(cache, input)
}
}
} else {
self.is_match_nofail(cache, input)
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn search_slots(
&self,
cache: &mut Cache,
input: &Input<'_>,
slots: &mut [Option<NonMaxUsize>],
) -> Option<PatternID> {
// Even if the regex has explicit capture groups, if the caller didn't
// provide any explicit slots, then it doesn't make sense to try and do
// extra work to get offsets for those slots. Ideally the caller should
// realize this and not call this routine in the first place, but alas,
// we try to save the caller from themselves if they do.
if !self.is_capture_search_needed(slots.len()) {
trace!("asked for slots unnecessarily, trying fast path");
let m = self.search(cache, input)?;
copy_match_to_slots(m, slots);
return Some(m.pattern());
}
// If the onepass DFA is available for this search (which only happens
// when it's anchored), then skip running a fallible DFA. The onepass
// DFA isn't as fast as a full or lazy DFA, but it is typically quite
// a bit faster than the backtracker or the PikeVM. So it isn't as
// advantageous to try and do a full/lazy DFA scan first.
//
// We still theorize that it's better to do a full/lazy DFA scan, even
// when it's anchored, because it's usually much faster and permits us
// to say "no match" much more quickly. This does hurt the case of,
// say, parsing each line in a log file into capture groups, because
// in that case, the line always matches. So the lazy DFA scan is
// usually just wasted work. But, the lazy DFA is usually quite fast
// and doesn't cost too much here.
if self.onepass.get(&input).is_some() {
return self.search_slots_nofail(cache, &input, slots);
}
let m = match self.try_search_mayfail(cache, input) {
Some(Ok(Some(m))) => m,
Some(Ok(None)) => return None,
Some(Err(_err)) => {
trace!("fast capture search failed: {}", _err);
return self.search_slots_nofail(cache, input, slots);
}
None => {
return self.search_slots_nofail(cache, input, slots);
}
};
// At this point, now that we've found the bounds of the
// match, we need to re-run something that can resolve
// capturing groups. But we only need to run on it on the
// match bounds and not the entire haystack.
trace!(
"match found at {}..{} in capture search, \
using another engine to find captures",
m.start(),
m.end(),
);
let input = input
.clone()
.span(m.start()..m.end())
.anchored(Anchored::Pattern(m.pattern()));
Some(
self.search_slots_nofail(cache, &input, slots)
.expect("should find a match"),
)
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn which_overlapping_matches(
&self,
cache: &mut Cache,
input: &Input<'_>,
patset: &mut PatternSet,
) {
if let Some(e) = self.dfa.get(input) {
trace!(
"using full DFA for overlapping search at {:?}",
input.get_span()
);
let _err = match e.try_which_overlapping_matches(input, patset) {
Ok(()) => return,
Err(err) => err,
};
trace!("fast overlapping search failed: {}", _err);
} else if let Some(e) = self.hybrid.get(input) {
trace!(
"using lazy DFA for overlapping search at {:?}",
input.get_span()
);
let _err = match e.try_which_overlapping_matches(
&mut cache.hybrid,
input,
patset,
) {
Ok(()) => {
return;
}
Err(err) => err,
};
trace!("fast overlapping search failed: {}", _err);
}
trace!(
"using PikeVM for overlapping search at {:?}",
input.get_span()
);
let e = self.pikevm.get();
e.which_overlapping_matches(&mut cache.pikevm, input, patset)
}
}
#[derive(Debug)]
struct ReverseAnchored {
core: Core,
}
impl ReverseAnchored {
fn new(core: Core) -> Result<ReverseAnchored, Core> {
if !core.info.is_always_anchored_end() {
debug!(
"skipping reverse anchored optimization because \
the regex is not always anchored at the end"
);
return Err(core);
}
// Note that the caller can still request an anchored search even when
// the regex isn't anchored at the start. We detect that case in the
// search routines below and just fallback to the core engine. This
// is fine because both searches are anchored. It's just a matter of
// picking one. Falling back to the core engine is a little simpler,
// since if we used the reverse anchored approach, we'd have to add an
// extra check to ensure the match reported starts at the place where
// the caller requested the search to start.
if core.info.is_always_anchored_start() {
debug!(
"skipping reverse anchored optimization because \
the regex is also anchored at the start"
);
return Err(core);
}
// Only DFAs can do reverse searches (currently), so we need one of
// them in order to do this optimization. It's possible (although
// pretty unlikely) that we have neither and need to give up.
if !core.hybrid.is_some() && !core.dfa.is_some() {
debug!(
"skipping reverse anchored optimization because \
we don't have a lazy DFA or a full DFA"
);
return Err(core);
}
Ok(ReverseAnchored { core })
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn try_search_half_anchored_rev(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Result<Option<HalfMatch>, RetryFailError> {
// We of course always want an anchored search. In theory, the
// underlying regex engines should automatically enable anchored
// searches since the regex is itself anchored, but this more clearly
// expresses intent and is always correct.
let input = input.clone().anchored(Anchored::Yes);
if let Some(e) = self.core.dfa.get(&input) {
trace!(
"using full DFA for reverse anchored search at {:?}",
input.get_span()
);
e.try_search_half_rev(&input)
} else if let Some(e) = self.core.hybrid.get(&input) {
trace!(
"using lazy DFA for reverse anchored search at {:?}",
input.get_span()
);
e.try_search_half_rev(&mut cache.hybrid, &input)
} else {
unreachable!("ReverseAnchored always has a DFA")
}
}
}
// Note that in this impl, we don't check that 'input.end() ==
// input.haystack().len()'. In particular, when that condition is false, a
// match is always impossible because we know that the regex is always anchored
// at the end (or else 'ReverseAnchored' won't be built). We don't check that
// here because the 'Regex' wrapper actually does that for us in all cases.
// Thus, in this impl, we can actually assume that the end position in 'input'
// is equivalent to the length of the haystack.
impl Strategy for ReverseAnchored {
#[cfg_attr(feature = "perf-inline", inline(always))]
fn group_info(&self) -> &GroupInfo {
self.core.group_info()
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn create_cache(&self) -> Cache {
self.core.create_cache()
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn reset_cache(&self, cache: &mut Cache) {
self.core.reset_cache(cache);
}
fn is_accelerated(&self) -> bool {
// Since this is anchored at the end, a reverse anchored search is
// almost certainly guaranteed to result in a much faster search than
// a standard forward search.
true
}
fn memory_usage(&self) -> usize {
self.core.memory_usage()
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn search(&self, cache: &mut Cache, input: &Input<'_>) -> Option<Match> {
if input.get_anchored().is_anchored() {
return self.core.search(cache, input);
}
match self.try_search_half_anchored_rev(cache, input) {
Err(_err) => {
trace!("fast reverse anchored search failed: {}", _err);
self.core.search_nofail(cache, input)
}
Ok(None) => None,
Ok(Some(hm)) => {
Some(Match::new(hm.pattern(), hm.offset()..input.end()))
}
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn search_half(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Option<HalfMatch> {
if input.get_anchored().is_anchored() {
return self.core.search_half(cache, input);
}
match self.try_search_half_anchored_rev(cache, input) {
Err(_err) => {
trace!("fast reverse anchored search failed: {}", _err);
self.core.search_half_nofail(cache, input)
}
Ok(None) => None,
Ok(Some(hm)) => {
// Careful here! 'try_search_half' is a *forward* search that
// only cares about the *end* position of a match. But
// 'hm.offset()' is actually the start of the match. So we
// actually just throw that away here and, since we know we
// have a match, return the only possible position at which a
// match can occur: input.end().
Some(HalfMatch::new(hm.pattern(), input.end()))
}
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool {
if input.get_anchored().is_anchored() {
return self.core.is_match(cache, input);
}
match self.try_search_half_anchored_rev(cache, input) {
Err(_err) => {
trace!("fast reverse anchored search failed: {}", _err);
self.core.is_match_nofail(cache, input)
}
Ok(None) => false,
Ok(Some(_)) => true,
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn search_slots(
&self,
cache: &mut Cache,
input: &Input<'_>,
slots: &mut [Option<NonMaxUsize>],
) -> Option<PatternID> {
if input.get_anchored().is_anchored() {
return self.core.search_slots(cache, input, slots);
}
match self.try_search_half_anchored_rev(cache, input) {
Err(_err) => {
trace!("fast reverse anchored search failed: {}", _err);
self.core.search_slots_nofail(cache, input, slots)
}
Ok(None) => None,
Ok(Some(hm)) => {
if !self.core.is_capture_search_needed(slots.len()) {
trace!("asked for slots unnecessarily, skipping captures");
let m = Match::new(hm.pattern(), hm.offset()..input.end());
copy_match_to_slots(m, slots);
return Some(m.pattern());
}
let start = hm.offset();
let input = input
.clone()
.span(start..input.end())
.anchored(Anchored::Pattern(hm.pattern()));
self.core.search_slots_nofail(cache, &input, slots)
}
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn which_overlapping_matches(
&self,
cache: &mut Cache,
input: &Input<'_>,
patset: &mut PatternSet,
) {
// It seems like this could probably benefit from a reverse anchored
// optimization, perhaps by doing an overlapping reverse search (which
// the DFAs do support). I haven't given it much thought though, and
// I'm currently focus more on the single pattern case.
self.core.which_overlapping_matches(cache, input, patset)
}
}
#[derive(Debug)]
struct ReverseSuffix {
core: Core,
pre: Prefilter,
}
impl ReverseSuffix {
fn new(core: Core, hirs: &[&Hir]) -> Result<ReverseSuffix, Core> {
if !core.info.config().get_auto_prefilter() {
debug!(
"skipping reverse suffix optimization because \
automatic prefilters are disabled"
);
return Err(core);
}
// Like the reverse inner optimization, we don't do this for regexes
// that are always anchored. It could lead to scanning too much, but
// could say "no match" much more quickly than running the regex
// engine if the initial literal scan doesn't match. With that said,
// the reverse suffix optimization has lower overhead, since it only
// requires a reverse scan after a literal match to confirm or reject
// the match. (Although, in the case of confirmation, it then needs to
// do another forward scan to find the end position.)
//
// Note that the caller can still request an anchored search even
// when the regex isn't anchored. We detect that case in the search
// routines below and just fallback to the core engine. Currently this
// optimization assumes all searches are unanchored, so if we do want
// to enable this optimization for anchored searches, it will need a
// little work to support it.
if core.info.is_always_anchored_start() {
debug!(
"skipping reverse suffix optimization because \
the regex is always anchored at the start",
);
return Err(core);
}
// Only DFAs can do reverse searches (currently), so we need one of
// them in order to do this optimization. It's possible (although
// pretty unlikely) that we have neither and need to give up.
if !core.hybrid.is_some() && !core.dfa.is_some() {
debug!(
"skipping reverse suffix optimization because \
we don't have a lazy DFA or a full DFA"
);
return Err(core);
}
if core.pre.as_ref().map_or(false, |p| p.is_fast()) {
debug!(
"skipping reverse suffix optimization because \
we already have a prefilter that we think is fast"
);
return Err(core);
}
let kind = core.info.config().get_match_kind();
let suffixes = crate::util::prefilter::suffixes(kind, hirs);
let lcs = match suffixes.longest_common_suffix() {
None => {
debug!(
"skipping reverse suffix optimization because \
a longest common suffix could not be found",
);
return Err(core);
}
Some(lcs) if lcs.is_empty() => {
debug!(
"skipping reverse suffix optimization because \
the longest common suffix is the empty string",
);
return Err(core);
}
Some(lcs) => lcs,
};
let pre = match Prefilter::new(kind, &[lcs]) {
Some(pre) => pre,
None => {
debug!(
"skipping reverse suffix optimization because \
a prefilter could not be constructed from the \
longest common suffix",
);
return Err(core);
}
};
if !pre.is_fast() {
debug!(
"skipping reverse suffix optimization because \
while we have a suffix prefilter, it is not \
believed to be 'fast'"
);
return Err(core);
}
Ok(ReverseSuffix { core, pre })
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn try_search_half_start(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Result<Option<HalfMatch>, RetryError> {
let mut span = input.get_span();
let mut min_start = 0;
loop {
let litmatch = match self.pre.find(input.haystack(), span) {
None => return Ok(None),
Some(span) => span,
};
trace!("reverse suffix scan found suffix match at {:?}", litmatch);
let revinput = input
.clone()
.anchored(Anchored::Yes)
.span(input.start()..litmatch.end);
match self
.try_search_half_rev_limited(cache, &revinput, min_start)?
{
None => {
if span.start >= span.end {
break;
}
span.start = litmatch.start.checked_add(1).unwrap();
}
Some(hm) => return Ok(Some(hm)),
}
min_start = litmatch.end;
}
Ok(None)
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn try_search_half_fwd(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Result<Option<HalfMatch>, RetryFailError> {
if let Some(e) = self.core.dfa.get(&input) {
trace!(
"using full DFA for forward reverse suffix search at {:?}",
input.get_span()
);
e.try_search_half_fwd(&input)
} else if let Some(e) = self.core.hybrid.get(&input) {
trace!(
"using lazy DFA for forward reverse suffix search at {:?}",
input.get_span()
);
e.try_search_half_fwd(&mut cache.hybrid, &input)
} else {
unreachable!("ReverseSuffix always has a DFA")
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn try_search_half_rev_limited(
&self,
cache: &mut Cache,
input: &Input<'_>,
min_start: usize,
) -> Result<Option<HalfMatch>, RetryError> {
if let Some(e) = self.core.dfa.get(&input) {
trace!(
"using full DFA for reverse suffix search at {:?}, \
but will be stopped at {} to avoid quadratic behavior",
input.get_span(),
min_start,
);
e.try_search_half_rev_limited(&input, min_start)
} else if let Some(e) = self.core.hybrid.get(&input) {
trace!(
"using lazy DFA for reverse suffix search at {:?}, \
but will be stopped at {} to avoid quadratic behavior",
input.get_span(),
min_start,
);
e.try_search_half_rev_limited(&mut cache.hybrid, &input, min_start)
} else {
unreachable!("ReverseSuffix always has a DFA")
}
}
}
impl Strategy for ReverseSuffix {
#[cfg_attr(feature = "perf-inline", inline(always))]
fn group_info(&self) -> &GroupInfo {
self.core.group_info()
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn create_cache(&self) -> Cache {
self.core.create_cache()
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn reset_cache(&self, cache: &mut Cache) {
self.core.reset_cache(cache);
}
fn is_accelerated(&self) -> bool {
self.pre.is_fast()
}
fn memory_usage(&self) -> usize {
self.core.memory_usage() + self.pre.memory_usage()
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn search(&self, cache: &mut Cache, input: &Input<'_>) -> Option<Match> {
if input.get_anchored().is_anchored() {
return self.core.search(cache, input);
}
match self.try_search_half_start(cache, input) {
Err(RetryError::Quadratic(_err)) => {
trace!("reverse suffix optimization failed: {}", _err);
self.core.search(cache, input)
}
Err(RetryError::Fail(_err)) => {
trace!("reverse suffix reverse fast search failed: {}", _err);
self.core.search_nofail(cache, input)
}
Ok(None) => None,
Ok(Some(hm_start)) => {
let fwdinput = input
.clone()
.anchored(Anchored::Pattern(hm_start.pattern()))
.span(hm_start.offset()..input.end());
match self.try_search_half_fwd(cache, &fwdinput) {
Err(_err) => {
trace!(
"reverse suffix forward fast search failed: {}",
_err
);
self.core.search_nofail(cache, input)
}
Ok(None) => {
unreachable!(
"suffix match plus reverse match implies \
there must be a match",
)
}
Ok(Some(hm_end)) => Some(Match::new(
hm_start.pattern(),
hm_start.offset()..hm_end.offset(),
)),
}
}
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn search_half(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Option<HalfMatch> {
if input.get_anchored().is_anchored() {
return self.core.search_half(cache, input);
}
match self.try_search_half_start(cache, input) {
Err(RetryError::Quadratic(_err)) => {
trace!("reverse suffix half optimization failed: {}", _err);
self.core.search_half(cache, input)
}
Err(RetryError::Fail(_err)) => {
trace!(
"reverse suffix reverse fast half search failed: {}",
_err
);
self.core.search_half_nofail(cache, input)
}
Ok(None) => None,
Ok(Some(hm_start)) => {
// This is a bit subtle. It is tempting to just stop searching
// at this point and return a half-match with an offset
// corresponding to where the suffix was found. But the suffix
// match does not necessarily correspond to the end of the
// proper leftmost-first match. Consider /[a-z]+ing/ against
// 'tingling'. The first suffix match is the first 'ing', and
// the /[a-z]+/ matches the 't'. So if we stopped here, then
// we'd report 'ting' as the match. But 'tingling' is the
// correct match because of greediness.
let fwdinput = input
.clone()
.anchored(Anchored::Pattern(hm_start.pattern()))
.span(hm_start.offset()..input.end());
match self.try_search_half_fwd(cache, &fwdinput) {
Err(_err) => {
trace!(
"reverse suffix forward fast search failed: {}",
_err
);
self.core.search_half_nofail(cache, input)
}
Ok(None) => {
unreachable!(
"suffix match plus reverse match implies \
there must be a match",
)
}
Ok(Some(hm_end)) => Some(hm_end),
}
}
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool {
if input.get_anchored().is_anchored() {
return self.core.is_match(cache, input);
}
match self.try_search_half_start(cache, input) {
Err(RetryError::Quadratic(_err)) => {
trace!("reverse suffix half optimization failed: {}", _err);
self.core.is_match_nofail(cache, input)
}
Err(RetryError::Fail(_err)) => {
trace!(
"reverse suffix reverse fast half search failed: {}",
_err
);
self.core.is_match_nofail(cache, input)
}
Ok(None) => false,
Ok(Some(_)) => true,
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn search_slots(
&self,
cache: &mut Cache,
input: &Input<'_>,
slots: &mut [Option<NonMaxUsize>],
) -> Option<PatternID> {
if input.get_anchored().is_anchored() {
return self.core.search_slots(cache, input, slots);
}
if !self.core.is_capture_search_needed(slots.len()) {
trace!("asked for slots unnecessarily, trying fast path");
let m = self.search(cache, input)?;
copy_match_to_slots(m, slots);
return Some(m.pattern());
}
let hm_start = match self.try_search_half_start(cache, input) {
Err(RetryError::Quadratic(_err)) => {
trace!(
"reverse suffix captures optimization failed: {}",
_err
);
return self.core.search_slots(cache, input, slots);
}
Err(RetryError::Fail(_err)) => {
trace!(
"reverse suffix reverse fast captures search failed: {}",
_err
);
return self.core.search_slots_nofail(cache, input, slots);
}
Ok(None) => return None,
Ok(Some(hm_start)) => hm_start,
};
trace!(
"match found at {}..{} in capture search, \
using another engine to find captures",
hm_start.offset(),
input.end(),
);
let start = hm_start.offset();
let input = input
.clone()
.span(start..input.end())
.anchored(Anchored::Pattern(hm_start.pattern()));
self.core.search_slots_nofail(cache, &input, slots)
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn which_overlapping_matches(
&self,
cache: &mut Cache,
input: &Input<'_>,
patset: &mut PatternSet,
) {
self.core.which_overlapping_matches(cache, input, patset)
}
}
#[derive(Debug)]
struct ReverseInner {
core: Core,
preinner: Prefilter,
nfarev: NFA,
hybrid: wrappers::ReverseHybrid,
dfa: wrappers::ReverseDFA,
}
impl ReverseInner {
fn new(core: Core, hirs: &[&Hir]) -> Result<ReverseInner, Core> {
if !core.info.config().get_auto_prefilter() {
debug!(
"skipping reverse inner optimization because \
automatic prefilters are disabled"
);
return Err(core);
}
// Currently we hard-code the assumption of leftmost-first match
// semantics. This isn't a huge deal because 'all' semantics tend to
// only be used for forward overlapping searches with multiple regexes,
// and this optimization only supports a single pattern at the moment.
if core.info.config().get_match_kind() != MatchKind::LeftmostFirst {
debug!(
"skipping reverse inner optimization because \
match kind is {:?} but this only supports leftmost-first",
core.info.config().get_match_kind(),
);
return Err(core);
}
// It's likely that a reverse inner scan has too much overhead for it
// to be worth it when the regex is anchored at the start. It is
// possible for it to be quite a bit faster if the initial literal
// scan fails to detect a match, in which case, we can say "no match"
// very quickly. But this could be undesirable, e.g., scanning too far
// or when the literal scan matches. If it matches, then confirming the
// match requires a reverse scan followed by a forward scan to confirm
// or reject, which is a fair bit of work.
//
// Note that the caller can still request an anchored search even
// when the regex isn't anchored. We detect that case in the search
// routines below and just fallback to the core engine. Currently this
// optimization assumes all searches are unanchored, so if we do want
// to enable this optimization for anchored searches, it will need a
// little work to support it.
if core.info.is_always_anchored_start() {
debug!(
"skipping reverse inner optimization because \
the regex is always anchored at the start",
);
return Err(core);
}
// Only DFAs can do reverse searches (currently), so we need one of
// them in order to do this optimization. It's possible (although
// pretty unlikely) that we have neither and need to give up.
if !core.hybrid.is_some() && !core.dfa.is_some() {
debug!(
"skipping reverse inner optimization because \
we don't have a lazy DFA or a full DFA"
);
return Err(core);
}
if core.pre.as_ref().map_or(false, |p| p.is_fast()) {
debug!(
"skipping reverse inner optimization because \
we already have a prefilter that we think is fast"
);
return Err(core);
} else if core.pre.is_some() {
debug!(
"core engine has a prefix prefilter, but it is \
probably not fast, so continuing with attempt to \
use reverse inner prefilter"
);
}
let (concat_prefix, preinner) = match reverse_inner::extract(hirs) {
Some(x) => x,
// N.B. the 'extract' function emits debug messages explaining
// why we bailed out here.
None => return Err(core),
};
debug!("building reverse NFA for prefix before inner literal");
let mut lookm = LookMatcher::new();
lookm.set_line_terminator(core.info.config().get_line_terminator());
let thompson_config = thompson::Config::new()
.reverse(true)
.utf8(core.info.config().get_utf8_empty())
.nfa_size_limit(core.info.config().get_nfa_size_limit())
.shrink(false)
.which_captures(WhichCaptures::None)
.look_matcher(lookm);
let result = thompson::Compiler::new()
.configure(thompson_config)
.build_from_hir(&concat_prefix);
let nfarev = match result {
Ok(nfarev) => nfarev,
Err(_err) => {
debug!(
"skipping reverse inner optimization because the \
reverse NFA failed to build: {}",
_err,
);
return Err(core);
}
};
debug!("building reverse DFA for prefix before inner literal");
let dfa = if !core.info.config().get_dfa() {
wrappers::ReverseDFA::none()
} else {
wrappers::ReverseDFA::new(&core.info, &nfarev)
};
let hybrid = if !core.info.config().get_hybrid() {
wrappers::ReverseHybrid::none()
} else if dfa.is_some() {
debug!(
"skipping lazy DFA for reverse inner optimization \
because we have a full DFA"
);
wrappers::ReverseHybrid::none()
} else {
wrappers::ReverseHybrid::new(&core.info, &nfarev)
};
Ok(ReverseInner { core, preinner, nfarev, hybrid, dfa })
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn try_search_full(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Result<Option<Match>, RetryError> {
let mut span = input.get_span();
let mut min_match_start = 0;
let mut min_pre_start = 0;
loop {
let litmatch = match self.preinner.find(input.haystack(), span) {
None => return Ok(None),
Some(span) => span,
};
if litmatch.start < min_pre_start {
trace!(
"found inner prefilter match at {:?}, which starts \
before the end of the last forward scan at {}, \
quitting to avoid quadratic behavior",
litmatch,
min_pre_start,
);
return Err(RetryError::Quadratic(RetryQuadraticError::new()));
}
trace!("reverse inner scan found inner match at {:?}", litmatch);
let revinput = input
.clone()
.anchored(Anchored::Yes)
.span(input.start()..litmatch.start);
// Note that in addition to the literal search above scanning past
// our minimum start point, this routine can also return an error
// as a result of detecting possible quadratic behavior if the
// reverse scan goes past the minimum start point. That is, the
// literal search might not, but the reverse regex search for the
// prefix might!
match self.try_search_half_rev_limited(
cache,
&revinput,
min_match_start,
)? {
None => {
if span.start >= span.end {
break;
}
span.start = litmatch.start.checked_add(1).unwrap();
}
Some(hm_start) => {
let fwdinput = input
.clone()
.anchored(Anchored::Pattern(hm_start.pattern()))
.span(hm_start.offset()..input.end());
match self.try_search_half_fwd_stopat(cache, &fwdinput)? {
Err(stopat) => {
min_pre_start = stopat;
span.start =
litmatch.start.checked_add(1).unwrap();
}
Ok(hm_end) => {
return Ok(Some(Match::new(
hm_start.pattern(),
hm_start.offset()..hm_end.offset(),
)))
}
}
}
}
min_match_start = litmatch.end;
}
Ok(None)
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn try_search_half_fwd_stopat(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Result<Result<HalfMatch, usize>, RetryFailError> {
if let Some(e) = self.core.dfa.get(&input) {
trace!(
"using full DFA for forward reverse inner search at {:?}",
input.get_span()
);
e.try_search_half_fwd_stopat(&input)
} else if let Some(e) = self.core.hybrid.get(&input) {
trace!(
"using lazy DFA for forward reverse inner search at {:?}",
input.get_span()
);
e.try_search_half_fwd_stopat(&mut cache.hybrid, &input)
} else {
unreachable!("ReverseInner always has a DFA")
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn try_search_half_rev_limited(
&self,
cache: &mut Cache,
input: &Input<'_>,
min_start: usize,
) -> Result<Option<HalfMatch>, RetryError> {
if let Some(e) = self.dfa.get(&input) {
trace!(
"using full DFA for reverse inner search at {:?}, \
but will be stopped at {} to avoid quadratic behavior",
input.get_span(),
min_start,
);
e.try_search_half_rev_limited(&input, min_start)
} else if let Some(e) = self.hybrid.get(&input) {
trace!(
"using lazy DFA for reverse inner search at {:?}, \
but will be stopped at {} to avoid quadratic behavior",
input.get_span(),
min_start,
);
e.try_search_half_rev_limited(
&mut cache.revhybrid,
&input,
min_start,
)
} else {
unreachable!("ReverseInner always has a DFA")
}
}
}
impl Strategy for ReverseInner {
#[cfg_attr(feature = "perf-inline", inline(always))]
fn group_info(&self) -> &GroupInfo {
self.core.group_info()
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn create_cache(&self) -> Cache {
let mut cache = self.core.create_cache();
cache.revhybrid = self.hybrid.create_cache();
cache
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn reset_cache(&self, cache: &mut Cache) {
self.core.reset_cache(cache);
cache.revhybrid.reset(&self.hybrid);
}
fn is_accelerated(&self) -> bool {
self.preinner.is_fast()
}
fn memory_usage(&self) -> usize {
self.core.memory_usage()
+ self.preinner.memory_usage()
+ self.nfarev.memory_usage()
+ self.dfa.memory_usage()
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn search(&self, cache: &mut Cache, input: &Input<'_>) -> Option<Match> {
if input.get_anchored().is_anchored() {
return self.core.search(cache, input);
}
match self.try_search_full(cache, input) {
Err(RetryError::Quadratic(_err)) => {
trace!("reverse inner optimization failed: {}", _err);
self.core.search(cache, input)
}
Err(RetryError::Fail(_err)) => {
trace!("reverse inner fast search failed: {}", _err);
self.core.search_nofail(cache, input)
}
Ok(matornot) => matornot,
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn search_half(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Option<HalfMatch> {
if input.get_anchored().is_anchored() {
return self.core.search_half(cache, input);
}
match self.try_search_full(cache, input) {
Err(RetryError::Quadratic(_err)) => {
trace!("reverse inner half optimization failed: {}", _err);
self.core.search_half(cache, input)
}
Err(RetryError::Fail(_err)) => {
trace!("reverse inner fast half search failed: {}", _err);
self.core.search_half_nofail(cache, input)
}
Ok(None) => None,
Ok(Some(m)) => Some(HalfMatch::new(m.pattern(), m.end())),
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool {
if input.get_anchored().is_anchored() {
return self.core.is_match(cache, input);
}
match self.try_search_full(cache, input) {
Err(RetryError::Quadratic(_err)) => {
trace!("reverse inner half optimization failed: {}", _err);
self.core.is_match_nofail(cache, input)
}
Err(RetryError::Fail(_err)) => {
trace!("reverse inner fast half search failed: {}", _err);
self.core.is_match_nofail(cache, input)
}
Ok(None) => false,
Ok(Some(_)) => true,
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn search_slots(
&self,
cache: &mut Cache,
input: &Input<'_>,
slots: &mut [Option<NonMaxUsize>],
) -> Option<PatternID> {
if input.get_anchored().is_anchored() {
return self.core.search_slots(cache, input, slots);
}
if !self.core.is_capture_search_needed(slots.len()) {
trace!("asked for slots unnecessarily, trying fast path");
let m = self.search(cache, input)?;
copy_match_to_slots(m, slots);
return Some(m.pattern());
}
let m = match self.try_search_full(cache, input) {
Err(RetryError::Quadratic(_err)) => {
trace!("reverse inner captures optimization failed: {}", _err);
return self.core.search_slots(cache, input, slots);
}
Err(RetryError::Fail(_err)) => {
trace!("reverse inner fast captures search failed: {}", _err);
return self.core.search_slots_nofail(cache, input, slots);
}
Ok(None) => return None,
Ok(Some(m)) => m,
};
trace!(
"match found at {}..{} in capture search, \
using another engine to find captures",
m.start(),
m.end(),
);
let input = input
.clone()
.span(m.start()..m.end())
.anchored(Anchored::Pattern(m.pattern()));
self.core.search_slots_nofail(cache, &input, slots)
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn which_overlapping_matches(
&self,
cache: &mut Cache,
input: &Input<'_>,
patset: &mut PatternSet,
) {
self.core.which_overlapping_matches(cache, input, patset)
}
}
/// Copies the offsets in the given match to the corresponding positions in
/// `slots`.
///
/// In effect, this sets the slots corresponding to the implicit group for the
/// pattern in the given match. If the indices for the corresponding slots do
/// not exist, then no slots are set.
///
/// This is useful when the caller provides slots (or captures), but you use a
/// regex engine that doesn't operate on slots (like a lazy DFA). This function
/// lets you map the match you get back to the slots provided by the caller.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn copy_match_to_slots(m: Match, slots: &mut [Option<NonMaxUsize>]) {
let slot_start = m.pattern().as_usize() * 2;
let slot_end = slot_start + 1;
if let Some(slot) = slots.get_mut(slot_start) {
*slot = NonMaxUsize::new(m.start());
}
if let Some(slot) = slots.get_mut(slot_end) {
*slot = NonMaxUsize::new(m.end());
}
}