taffy/compute/grid/
implicit_grid.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
//! This module is not required for spec compliance, but is used as a performance optimisation
//! to reduce the number of allocations required when creating a grid.
use crate::geometry::Line;
use crate::style::{GenericGridPlacement, GridPlacement, Style};
use core::cmp::{max, min};

use super::types::TrackCounts;
use super::OriginZeroLine;

/// Estimate the number of rows and columns in the grid
/// This is used as a performance optimisation to pre-size vectors and reduce allocations. It also forms a necessary step
/// in the auto-placement
///   - The estimates for the explicit and negative implicit track counts are exact.
///   - However, the estimates for the positive explicit track count is a lower bound as auto-placement can affect this
///     in ways which are impossible to predict until the auto-placement algorithm is run.
///
/// Note that this function internally mixes use of grid track numbers and grid line numbers
pub(crate) fn compute_grid_size_estimate<'a>(
    explicit_col_count: u16,
    explicit_row_count: u16,
    child_styles_iter: impl Iterator<Item = &'a Style>,
) -> (TrackCounts, TrackCounts) {
    // Iterate over children, producing an estimate of the min and max grid lines (in origin-zero coordinates where)
    // along with the span of each item
    let (col_min, col_max, col_max_span, row_min, row_max, row_max_span) =
        get_known_child_positions(child_styles_iter, explicit_col_count, explicit_row_count);

    // Compute *track* count estimates for each axis from:
    //   - The explicit track counts
    //   - The origin-zero coordinate min and max grid line variables
    let negative_implicit_inline_tracks = col_min.implied_negative_implicit_tracks();
    let explicit_inline_tracks = explicit_col_count;
    let mut positive_implicit_inline_tracks = col_max.implied_positive_implicit_tracks(explicit_col_count);
    let negative_implicit_block_tracks = row_min.implied_negative_implicit_tracks();
    let explicit_block_tracks = explicit_row_count;
    let mut positive_implicit_block_tracks = row_max.implied_positive_implicit_tracks(explicit_row_count);

    // In each axis, adjust positive track estimate if any items have a span that does not fit within
    // the total number of tracks in the estimate
    let tot_inline_tracks = negative_implicit_inline_tracks + explicit_inline_tracks + positive_implicit_inline_tracks;
    if tot_inline_tracks < col_max_span {
        positive_implicit_inline_tracks = col_max_span - explicit_inline_tracks - negative_implicit_inline_tracks;
    }

    let tot_block_tracks = negative_implicit_block_tracks + explicit_block_tracks + positive_implicit_block_tracks;
    if tot_block_tracks < row_max_span {
        positive_implicit_block_tracks = row_max_span - explicit_block_tracks - negative_implicit_block_tracks;
    }

    let column_counts =
        TrackCounts::from_raw(negative_implicit_inline_tracks, explicit_inline_tracks, positive_implicit_inline_tracks);

    let row_counts =
        TrackCounts::from_raw(negative_implicit_block_tracks, explicit_block_tracks, positive_implicit_block_tracks);

    (column_counts, row_counts)
}

/// Iterate over children, producing an estimate of the min and max grid *lines* along with the span of each item
///
/// Min and max grid lines are returned in origin-zero coordinates)
/// The span is measured in tracks spanned
fn get_known_child_positions<'a>(
    children_iter: impl Iterator<Item = &'a Style>,
    explicit_col_count: u16,
    explicit_row_count: u16,
) -> (OriginZeroLine, OriginZeroLine, u16, OriginZeroLine, OriginZeroLine, u16) {
    let (mut col_min, mut col_max, mut col_max_span) = (OriginZeroLine(0), OriginZeroLine(0), 0);
    let (mut row_min, mut row_max, mut row_max_span) = (OriginZeroLine(0), OriginZeroLine(0), 0);
    children_iter.for_each(|child_style: &Style| {
        // Note: that the children reference the lines in between (and around) the tracks not tracks themselves,
        // and thus we must subtract 1 to get an accurate estimate of the number of tracks
        let (child_col_min, child_col_max, child_col_span) =
            child_min_line_max_line_span(child_style.grid_column, explicit_col_count);
        let (child_row_min, child_row_max, child_row_span) =
            child_min_line_max_line_span(child_style.grid_row, explicit_row_count);
        col_min = min(col_min, child_col_min);
        col_max = max(col_max, child_col_max);
        col_max_span = max(col_max_span, child_col_span);
        row_min = min(row_min, child_row_min);
        row_max = max(row_max, child_row_max);
        row_max_span = max(row_max_span, child_row_span);
    });

    (col_min, col_max, col_max_span, row_min, row_max, row_max_span)
}

/// Helper function for `compute_grid_size_estimate`
/// Produces a conservative estimate of the greatest and smallest grid lines used by a single grid item
///
/// Values are returned in origin-zero coordinates
#[inline]
fn child_min_line_max_line_span(
    line: Line<GridPlacement>,
    explicit_track_count: u16,
) -> (OriginZeroLine, OriginZeroLine, u16) {
    use GenericGridPlacement::*;

    // 8.3.1. Grid Placement Conflict Handling
    // A. If the placement for a grid item contains two lines, and the start line is further end-ward than the end line, swap the two lines.
    // B. If the start line is equal to the end line, remove the end line.
    // C. If the placement contains two spans, remove the one contributed by the end grid-placement property.
    // D. If the placement contains only a span for a named line, replace it with a span of 1.

    // Convert line into origin-zero coordinates before attempting to analyze
    let oz_line = line.into_origin_zero(explicit_track_count);

    let min = match (oz_line.start, oz_line.end) {
        // Both tracks specified
        (Line(track1), Line(track2)) => {
            // See rules A and B above
            if track1 == track2 {
                track1
            } else {
                min(track1, track2)
            }
        }

        // Start track specified
        (Line(track), Auto) => track,
        (Line(track), Span(_)) => track,

        // End track specified
        (Auto, Line(track)) => track,
        (Span(span), Line(track)) => track - span,

        // Only spans or autos
        // We ignore spans here by returning 0 which never effect the estimate as these are accounted for separately
        (Auto | Span(_), Auto | Span(_)) => OriginZeroLine(0),
    };

    let max = match (oz_line.start, oz_line.end) {
        // Both tracks specified
        (Line(track1), Line(track2)) => {
            // See rules A and B above
            if track1 == track2 {
                track1 + 1
            } else {
                max(track1, track2)
            }
        }

        // Start track specified
        (Line(track), Auto) => track + 1,
        (Line(track), Span(span)) => track + span,

        // End track specified
        (Auto, Line(track)) => track,
        (Span(_), Line(track)) => track,

        // Only spans or autos
        // We ignore spans here by returning 0 which never effect the estimate as these are accounted for separately
        (Auto | Span(_), Auto | Span(_)) => OriginZeroLine(0),
    };

    // Calculate span only for indefinitely placed items as we don't need for other items (whose required space will
    // be taken into account by min and max)
    let span = match (line.start, line.end) {
        (Auto | Span(_), Auto | Span(_)) => line.indefinite_span(),
        _ => 1,
    };

    (min, max, span)
}

#[allow(clippy::bool_assert_comparison)]
#[cfg(test)]
mod tests {
    mod test_child_min_max_line {
        use super::super::child_min_line_max_line_span;
        use super::super::OriginZeroLine;
        use crate::geometry::Line;
        use crate::style_helpers::*;

        #[test]
        fn child_min_max_line_auto() {
            let (min_col, max_col, span) = child_min_line_max_line_span(Line { start: line(5), end: span(6) }, 6);
            assert_eq!(min_col, OriginZeroLine(4));
            assert_eq!(max_col, OriginZeroLine(10));
            assert_eq!(span, 1);
        }

        #[test]
        fn child_min_max_line_negative_track() {
            let (min_col, max_col, span) = child_min_line_max_line_span(Line { start: line(-5), end: span(3) }, 6);
            assert_eq!(min_col, OriginZeroLine(2));
            assert_eq!(max_col, OriginZeroLine(5));
            assert_eq!(span, 1);
        }
    }

    mod test_intial_grid_sizing {
        use super::super::compute_grid_size_estimate;
        use crate::compute::grid::util::test_helpers::*;
        use crate::style_helpers::*;

        #[test]
        fn explicit_grid_sizing_with_children() {
            let explicit_col_count = 6;
            let explicit_row_count = 8;
            let child_styles = vec![
                (line(1), span(2), line(2), auto()).into_grid_child(),
                (line(-4), auto(), line(-2), auto()).into_grid_child(),
            ];
            let (inline, block) =
                compute_grid_size_estimate(explicit_col_count, explicit_row_count, child_styles.iter());
            assert_eq!(inline.negative_implicit, 0);
            assert_eq!(inline.explicit, explicit_col_count);
            assert_eq!(inline.positive_implicit, 0);
            assert_eq!(block.negative_implicit, 0);
            assert_eq!(block.explicit, explicit_row_count);
            assert_eq!(block.positive_implicit, 0);
        }

        #[test]
        fn negative_implicit_grid_sizing() {
            let explicit_col_count = 4;
            let explicit_row_count = 4;
            let child_styles = vec![
                (line(-6), span(2), line(-8), auto()).into_grid_child(),
                (line(4), auto(), line(3), auto()).into_grid_child(),
            ];
            let (inline, block) =
                compute_grid_size_estimate(explicit_col_count, explicit_row_count, child_styles.iter());
            assert_eq!(inline.negative_implicit, 1);
            assert_eq!(inline.explicit, explicit_col_count);
            assert_eq!(inline.positive_implicit, 0);
            assert_eq!(block.negative_implicit, 3);
            assert_eq!(block.explicit, explicit_row_count);
            assert_eq!(block.positive_implicit, 0);
        }
    }
}