1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
//! Types for the CIE L\*C\*h° color space.

use core::{
    marker::PhantomData,
    ops::{BitAnd, BitOr},
};

use crate::{
    angle::RealAngle,
    bool_mask::{HasBoolMask, LazySelect},
    color_difference::{get_ciede2000_difference, Ciede2000, DeltaE, ImprovedDeltaE, LabColorDiff},
    convert::{FromColorUnclamped, IntoColorUnclamped},
    hues::LabHueIter,
    num::{Abs, Arithmetics, Exp, Hypot, One, PartialCmp, Powi, Real, Sqrt, Trigonometry, Zero},
    white_point::D65,
    Alpha, FromColor, GetHue, Lab, LabHue, Xyz,
};

/// CIE L\*C\*h° with an alpha component. See the [`Lcha` implementation in
/// `Alpha`](crate::Alpha#Lcha).
pub type Lcha<Wp = D65, T = f32> = Alpha<Lch<Wp, T>, T>;

/// CIE L\*C\*h°, a polar version of [CIE L\*a\*b\*](crate::Lab).
///
/// L\*C\*h° shares its range and perceptual uniformity with L\*a\*b\*, but
/// it's a cylindrical color space, like [HSL](crate::Hsl) and
/// [HSV](crate::Hsv). This gives it the same ability to directly change
/// the hue and colorfulness of a color, while preserving other visual aspects.
#[derive(Debug, ArrayCast, FromColorUnclamped, WithAlpha)]
#[cfg_attr(feature = "serializing", derive(Serialize, Deserialize))]
#[palette(
    palette_internal,
    white_point = "Wp",
    component = "T",
    skip_derives(Lab, Lch)
)]
#[repr(C)]
pub struct Lch<Wp = D65, T = f32> {
    /// L\* is the lightness of the color. 0.0 gives absolute black and 100.0
    /// gives the brightest white.
    pub l: T,

    /// C\* is the colorfulness of the color. It's similar to saturation. 0.0
    /// gives gray scale colors, and numbers around 128-181 gives fully
    /// saturated colors. The upper limit of 128 should
    /// include the whole L\*a\*b\* space and some more.
    pub chroma: T,

    /// The hue of the color, in degrees. Decides if it's red, blue, purple,
    /// etc.
    #[palette(unsafe_same_layout_as = "T")]
    pub hue: LabHue<T>,

    /// The white point associated with the color's illuminant and observer.
    /// D65 for 2 degree observer is used by default.
    #[cfg_attr(feature = "serializing", serde(skip))]
    #[palette(unsafe_zero_sized)]
    pub white_point: PhantomData<Wp>,
}

impl<Wp, T> Lch<Wp, T> {
    /// Create a CIE L\*C\*h° color.
    pub fn new<H: Into<LabHue<T>>>(l: T, chroma: T, hue: H) -> Self {
        Self::new_const(l, chroma, hue.into())
    }

    /// Create a CIE L\*C\*h° color. This is the same as `Lch::new` without the
    /// generic hue type. It's temporary until `const fn` supports traits.
    pub const fn new_const(l: T, chroma: T, hue: LabHue<T>) -> Self {
        Lch {
            l,
            chroma,
            hue,
            white_point: PhantomData,
        }
    }

    /// Convert to a `(L\*, C\*, h°)` tuple.
    pub fn into_components(self) -> (T, T, LabHue<T>) {
        (self.l, self.chroma, self.hue)
    }

    /// Convert from a `(L\*, C\*, h°)` tuple.
    pub fn from_components<H: Into<LabHue<T>>>((l, chroma, hue): (T, T, H)) -> Self {
        Self::new(l, chroma, hue)
    }
}

impl<Wp, T> Lch<Wp, T>
where
    T: Zero + Real,
{
    /// Return the `l` value minimum.
    pub fn min_l() -> T {
        T::zero()
    }

    /// Return the `l` value maximum.
    pub fn max_l() -> T {
        T::from_f64(100.0)
    }

    /// Return the `chroma` value minimum.
    pub fn min_chroma() -> T {
        T::zero()
    }

    /// Return the `chroma` value maximum. This value does not cover the entire
    /// color space, but covers enough to be practical for downsampling to
    /// smaller color spaces like sRGB.
    pub fn max_chroma() -> T {
        T::from_f64(128.0)
    }

    /// Return the `chroma` extended maximum value. This value covers the entire
    /// color space and is included for completeness, but the additional range
    /// should be unnecessary for most use cases.
    pub fn max_extended_chroma() -> T {
        T::from_f64(crate::num::Sqrt::sqrt(128.0f64 * 128.0 + 128.0 * 128.0))
    }
}

///<span id="Lcha"></span>[`Lcha`](crate::Lcha) implementations.
impl<Wp, T, A> Alpha<Lch<Wp, T>, A> {
    /// Create a CIE L\*C\*h° color with transparency.
    pub fn new<H: Into<LabHue<T>>>(l: T, chroma: T, hue: H, alpha: A) -> Self {
        Self::new_const(l, chroma, hue.into(), alpha)
    }

    /// Create a CIE L\*C\*h° color with transparency. This is the same as
    /// `Lcha::new` without the generic hue type. It's temporary until `const
    /// fn` supports traits.
    pub const fn new_const(l: T, chroma: T, hue: LabHue<T>, alpha: A) -> Self {
        Alpha {
            color: Lch::new_const(l, chroma, hue),
            alpha,
        }
    }

    /// Convert to a `(L\*, C\*, h°, alpha)` tuple.
    pub fn into_components(self) -> (T, T, LabHue<T>, A) {
        (self.color.l, self.color.chroma, self.color.hue, self.alpha)
    }

    /// Convert from a `(L\*, C\*, h°, alpha)` tuple.
    pub fn from_components<H: Into<LabHue<T>>>((l, chroma, hue, alpha): (T, T, H, A)) -> Self {
        Self::new(l, chroma, hue, alpha)
    }
}

impl_reference_component_methods_hue!(Lch<Wp>, [l, chroma], white_point);
impl_struct_of_arrays_methods_hue!(Lch<Wp>, [l, chroma], white_point);

impl<Wp, T> FromColorUnclamped<Lch<Wp, T>> for Lch<Wp, T> {
    fn from_color_unclamped(color: Lch<Wp, T>) -> Self {
        color
    }
}

impl<Wp, T> FromColorUnclamped<Lab<Wp, T>> for Lch<Wp, T>
where
    T: Zero + Hypot,
    Lab<Wp, T>: GetHue<Hue = LabHue<T>>,
{
    fn from_color_unclamped(color: Lab<Wp, T>) -> Self {
        Lch {
            hue: color.get_hue(),
            l: color.l,
            chroma: color.a.hypot(color.b),
            white_point: PhantomData,
        }
    }
}

impl_tuple_conversion_hue!(Lch<Wp> as (T, T, H), LabHue);

impl_is_within_bounds! {
    Lch<Wp> {
        l => [Self::min_l(), Self::max_l()],
        chroma => [Self::min_chroma(), None]
    }
    where T: Real + Zero
}
impl_clamp! {
    Lch<Wp> {
        l => [Self::min_l(), Self::max_l()],
        chroma => [Self::min_chroma()]
    }
    other {hue, white_point}
    where T: Real + Zero
}

impl_mix_hue!(Lch<Wp> {l, chroma} phantom: white_point);
impl_lighten!(Lch<Wp> increase {l => [Self::min_l(), Self::max_l()]} other {hue, chroma} phantom: white_point);
impl_saturate!(Lch<Wp> increase {chroma => [Self::min_chroma(), Self::max_chroma()]} other {hue, l} phantom: white_point);
impl_hue_ops!(Lch<Wp>, LabHue);

impl<Wp, T> DeltaE for Lch<Wp, T>
where
    Lab<Wp, T>: FromColorUnclamped<Self> + DeltaE<Scalar = T>,
{
    type Scalar = T;

    #[inline]
    fn delta_e(self, other: Self) -> Self::Scalar {
        // The definitions of delta E for Lch and Lab are equivalent. Converting
        // to Lab is the fastest way, so far.
        Lab::from_color_unclamped(self).delta_e(other.into_color_unclamped())
    }
}

impl<Wp, T> ImprovedDeltaE for Lch<Wp, T>
where
    Lab<Wp, T>: FromColorUnclamped<Self> + ImprovedDeltaE<Scalar = T>,
{
    #[inline]
    fn improved_delta_e(self, other: Self) -> Self::Scalar {
        // The definitions of delta E for Lch and Lab are equivalent.
        Lab::from_color_unclamped(self).improved_delta_e(other.into_color_unclamped())
    }
}

/// CIEDE2000 distance metric for color difference.
#[allow(deprecated)]
impl<Wp, T> crate::ColorDifference for Lch<Wp, T>
where
    T: Real
        + RealAngle
        + One
        + Zero
        + Trigonometry
        + Abs
        + Sqrt
        + Powi
        + Exp
        + Arithmetics
        + PartialCmp
        + Clone,
    T::Mask: LazySelect<T> + BitAnd<Output = T::Mask> + BitOr<Output = T::Mask>,
    Self: Into<LabColorDiff<T>>,
{
    type Scalar = T;

    #[inline]
    fn get_color_difference(self, other: Lch<Wp, T>) -> Self::Scalar {
        get_ciede2000_difference(self.into(), other.into())
    }
}

impl<Wp, T> Ciede2000 for Lch<Wp, T>
where
    T: Real
        + RealAngle
        + One
        + Zero
        + Powi
        + Exp
        + Trigonometry
        + Abs
        + Sqrt
        + Arithmetics
        + PartialCmp
        + Clone,
    T::Mask: LazySelect<T> + BitAnd<Output = T::Mask> + BitOr<Output = T::Mask>,
    Self: IntoColorUnclamped<Lab<Wp, T>>,
{
    type Scalar = T;

    #[inline]
    fn difference(self, other: Self) -> Self::Scalar {
        get_ciede2000_difference(self.into(), other.into())
    }
}

impl<Wp, T> HasBoolMask for Lch<Wp, T>
where
    T: HasBoolMask,
{
    type Mask = T::Mask;
}

impl<Wp, T> Default for Lch<Wp, T>
where
    T: Zero + Real,
    LabHue<T>: Default,
{
    fn default() -> Lch<Wp, T> {
        Lch::new(Self::min_l(), Self::min_chroma(), LabHue::default())
    }
}

impl_color_add!(Lch<Wp>, [l, chroma, hue], white_point);
impl_color_sub!(Lch<Wp>, [l, chroma, hue], white_point);

impl_array_casts!(Lch<Wp, T>, [T; 3]);
impl_simd_array_conversion_hue!(Lch<Wp>, [l, chroma], white_point);
impl_struct_of_array_traits_hue!(Lch<Wp>, LabHueIter, [l, chroma], white_point);

impl_eq_hue!(Lch<Wp>, LabHue, [l, chroma, hue]);
impl_copy_clone!(Lch<Wp>, [l, chroma, hue], white_point);

#[allow(deprecated)]
impl<Wp, T> crate::RelativeContrast for Lch<Wp, T>
where
    T: Real + Arithmetics + PartialCmp,
    T::Mask: LazySelect<T>,
    Xyz<Wp, T>: FromColor<Self>,
{
    type Scalar = T;

    #[inline]
    fn get_contrast_ratio(self, other: Self) -> T {
        let xyz1 = Xyz::from_color(self);
        let xyz2 = Xyz::from_color(other);

        crate::contrast_ratio(xyz1.y, xyz2.y)
    }
}

impl_rand_traits_cylinder!(
    UniformLch,
    Lch<Wp> {
        hue: UniformLabHue => LabHue,
        height: l => [|l: T| l * Lch::<Wp, T>::max_l()],
        radius: chroma => [|chroma| chroma *  Lch::<Wp, T>::max_chroma()]
    }
    phantom: white_point: PhantomData<Wp>
    where T: Real + Zero + core::ops::Mul<Output = T>,
);

#[cfg(feature = "bytemuck")]
unsafe impl<Wp, T> bytemuck::Zeroable for Lch<Wp, T> where T: bytemuck::Zeroable {}

#[cfg(feature = "bytemuck")]
unsafe impl<Wp: 'static, T> bytemuck::Pod for Lch<Wp, T> where T: bytemuck::Pod {}

#[cfg(test)]
mod test {
    use crate::{white_point::D65, Lch};

    #[cfg(all(feature = "alloc", feature = "approx"))]
    use crate::{
        color_difference::{DeltaE, ImprovedDeltaE},
        convert::IntoColorUnclamped,
        Lab,
    };

    test_convert_into_from_xyz!(Lch);

    #[test]
    fn ranges() {
        assert_ranges! {
            Lch<D65, f64>;
            clamped {
                l: 0.0 => 100.0
            }
            clamped_min {
                chroma: 0.0 => 200.0
            }
            unclamped {
                hue: -360.0 => 360.0
            }
        }
    }

    raw_pixel_conversion_tests!(Lch<D65>: l, chroma, hue);
    raw_pixel_conversion_fail_tests!(Lch<D65>: l, chroma, hue);

    #[test]
    fn check_min_max_components() {
        assert_eq!(Lch::<D65, f64>::min_l(), 0.0);
        assert_eq!(Lch::<D65, f64>::max_l(), 100.0);
        assert_eq!(Lch::<D65, f64>::min_chroma(), 0.0);
        assert_eq!(Lch::<D65, f64>::max_chroma(), 128.0);

        #[cfg(feature = "approx")]
        assert_relative_eq!(Lch::<D65, f64>::max_extended_chroma(), 181.01933598375618);
    }

    #[cfg(feature = "approx")]
    #[test]
    fn delta_e_large_hue_diff() {
        use crate::color_difference::DeltaE;

        let lhs1 = Lch::<D65, f64>::new(50.0, 64.0, -730.0);
        let rhs1 = Lch::new(50.0, 64.0, 730.0);

        let lhs2 = Lch::<D65, f64>::new(50.0, 64.0, -10.0);
        let rhs2 = Lch::new(50.0, 64.0, 10.0);

        assert_relative_eq!(
            lhs1.delta_e(rhs1),
            lhs2.delta_e(rhs2),
            epsilon = 0.0000000000001
        );
    }

    // Lab and Lch have the same delta E.
    #[cfg(all(feature = "alloc", feature = "approx"))]
    #[test]
    fn lab_delta_e_equality() {
        let mut lab_colors: Vec<Lab<D65, f64>> = Vec::new();

        for l_step in 0i8..5 {
            for a_step in -2i8..3 {
                for b_step in -2i8..3 {
                    lab_colors.push(Lab::new(
                        l_step as f64 * 25.0,
                        a_step as f64 * 60.0,
                        b_step as f64 * 60.0,
                    ))
                }
            }
        }

        let lch_colors: Vec<Lch<_, _>> = lab_colors.clone().into_color_unclamped();

        for (&lhs_lab, &lhs_lch) in lab_colors.iter().zip(&lch_colors) {
            for (&rhs_lab, &rhs_lch) in lab_colors.iter().zip(&lch_colors) {
                let delta_e_lab = lhs_lab.delta_e(rhs_lab);
                let delta_e_lch = lhs_lch.delta_e(rhs_lch);
                assert_relative_eq!(delta_e_lab, delta_e_lch, epsilon = 0.0000000000001);
            }
        }
    }

    // Lab and Lch have the same delta E, so should also have the same improved
    // delta E.
    #[cfg(all(feature = "alloc", feature = "approx"))]
    #[test]
    fn lab_improved_delta_e_equality() {
        let mut lab_colors: Vec<Lab<D65, f64>> = Vec::new();

        for l_step in 0i8..5 {
            for a_step in -2i8..3 {
                for b_step in -2i8..3 {
                    lab_colors.push(Lab::new(
                        l_step as f64 * 25.0,
                        a_step as f64 * 60.0,
                        b_step as f64 * 60.0,
                    ))
                }
            }
        }

        let lch_colors: Vec<Lch<_, _>> = lab_colors.clone().into_color_unclamped();

        for (&lhs_lab, &lhs_lch) in lab_colors.iter().zip(&lch_colors) {
            for (&rhs_lab, &rhs_lch) in lab_colors.iter().zip(&lch_colors) {
                let delta_e_lab = lhs_lab.improved_delta_e(rhs_lab);
                let delta_e_lch = lhs_lch.improved_delta_e(rhs_lch);
                assert_relative_eq!(delta_e_lab, delta_e_lch, epsilon = 0.0000000000001);
            }
        }
    }

    struct_of_arrays_tests!(
        Lch<D65>[l, chroma, hue] phantom: white_point,
        super::Lcha::new(0.1f32, 0.2, 0.3, 0.4),
        super::Lcha::new(0.2, 0.3, 0.4, 0.5),
        super::Lcha::new(0.3, 0.4, 0.5, 0.6)
    );

    #[cfg(feature = "serializing")]
    #[test]
    fn serialize() {
        let serialized = ::serde_json::to_string(&Lch::<D65>::new(0.3, 0.8, 0.1)).unwrap();

        assert_eq!(serialized, r#"{"l":0.3,"chroma":0.8,"hue":0.1}"#);
    }

    #[cfg(feature = "serializing")]
    #[test]
    fn deserialize() {
        let deserialized: Lch =
            ::serde_json::from_str(r#"{"l":0.3,"chroma":0.8,"hue":0.1}"#).unwrap();

        assert_eq!(deserialized, Lch::new(0.3, 0.8, 0.1));
    }

    test_uniform_distribution! {
        Lch<D65, f32> as crate::Lab {
            l: (0.0, 100.0),
            a: (-89.0, 89.0),
            b: (-89.0, 89.0),
        },
        min: Lch::new(0.0f32, 0.0, 0.0),
        max: Lch::new(100.0, 128.0, 360.0)
    }
}