rustix/backend/linux_raw/
vdso_wrappers.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
//! Implement syscalls using the vDSO.
//!
//! <https://man7.org/linux/man-pages/man7/vdso.7.html>
//!
//! # Safety
//!
//! Similar to syscalls.rs, this file performs raw system calls, and sometimes
//! passes them uninitialized memory buffers. This file also calls vDSO
//! functions.
#![allow(unsafe_code)]
#![allow(clippy::missing_transmute_annotations)]

#[cfg(target_arch = "x86")]
use super::reg::{ArgReg, RetReg, SyscallNumber, A0, A1, A2, A3, A4, A5, R0};
use super::vdso;
#[cfg(target_arch = "x86")]
use core::arch::global_asm;
#[cfg(feature = "process")]
#[cfg(any(
    target_arch = "x86_64",
    target_arch = "x86",
    target_arch = "riscv64",
    target_arch = "powerpc64"
))]
use core::ffi::c_void;
use core::mem::transmute;
use core::ptr::null_mut;
use core::sync::atomic::AtomicPtr;
use core::sync::atomic::Ordering::Relaxed;
#[cfg(target_pointer_width = "32")]
#[cfg(feature = "time")]
use linux_raw_sys::general::timespec as __kernel_old_timespec;
#[cfg(any(
    all(
        feature = "process",
        any(
            target_arch = "x86_64",
            target_arch = "x86",
            target_arch = "riscv64",
            target_arch = "powerpc64"
        )
    ),
    feature = "time"
))]
use {super::c, super::conv::ret, core::mem::MaybeUninit};
#[cfg(feature = "time")]
use {
    super::conv::c_int,
    crate::clockid::{ClockId, DynamicClockId},
    crate::io,
    crate::timespec::Timespec,
    linux_raw_sys::general::{__kernel_clockid_t, __kernel_timespec},
};

#[cfg(feature = "time")]
#[inline]
pub(crate) fn clock_gettime(which_clock: ClockId) -> __kernel_timespec {
    // SAFETY: `CLOCK_GETTIME` contains either null or the address of a
    // function with an ABI like libc `clock_gettime`, and calling it has the
    // side effect of writing to the result buffer, and no others.
    unsafe {
        let mut result = MaybeUninit::<__kernel_timespec>::uninit();
        let callee = match transmute(CLOCK_GETTIME.load(Relaxed)) {
            Some(callee) => callee,
            None => init_clock_gettime(),
        };
        let r0 = callee(which_clock as c::c_int, result.as_mut_ptr());
        // The `ClockId` enum only contains clocks which never fail. It may be
        // tempting to change this to `debug_assert_eq`, however they can still
        // fail on uncommon kernel configs, so we leave this in place to ensure
        // that we don't execute undefined behavior if they ever do fail.
        assert_eq!(r0, 0);
        result.assume_init()
    }
}

#[cfg(feature = "time")]
#[inline]
pub(crate) fn clock_gettime_dynamic(which_clock: DynamicClockId<'_>) -> io::Result<Timespec> {
    let id = match which_clock {
        DynamicClockId::Known(id) => id as __kernel_clockid_t,

        DynamicClockId::Dynamic(fd) => {
            // See `FD_TO_CLOCKID` in Linux's `clock_gettime` documentation.
            use crate::backend::fd::AsRawFd;
            const CLOCKFD: i32 = 3;
            ((!fd.as_raw_fd() << 3) | CLOCKFD) as __kernel_clockid_t
        }

        DynamicClockId::RealtimeAlarm => c::CLOCK_REALTIME_ALARM as __kernel_clockid_t,
        DynamicClockId::Tai => c::CLOCK_TAI as __kernel_clockid_t,
        DynamicClockId::Boottime => c::CLOCK_BOOTTIME as __kernel_clockid_t,
        DynamicClockId::BoottimeAlarm => c::CLOCK_BOOTTIME_ALARM as __kernel_clockid_t,
    };

    // SAFETY: `CLOCK_GETTIME` contains either null or the address of a
    // function with an ABI like libc `clock_gettime`, and calling it has the
    // side effect of writing to the result buffer, and no others.
    unsafe {
        const EINVAL: c::c_int = -(c::EINVAL as c::c_int);
        let mut timespec = MaybeUninit::<Timespec>::uninit();
        let callee = match transmute(CLOCK_GETTIME.load(Relaxed)) {
            Some(callee) => callee,
            None => init_clock_gettime(),
        };
        match callee(id, timespec.as_mut_ptr()) {
            0 => (),
            EINVAL => return Err(io::Errno::INVAL),
            _ => _rustix_clock_gettime_via_syscall(id, timespec.as_mut_ptr())?,
        }
        Ok(timespec.assume_init())
    }
}

#[cfg(feature = "process")]
#[cfg(any(
    target_arch = "x86_64",
    target_arch = "x86",
    target_arch = "riscv64",
    target_arch = "powerpc64"
))]
#[inline]
pub(crate) fn sched_getcpu() -> usize {
    // SAFETY: `GETCPU` contains either null or the address of a function with
    // an ABI like libc `getcpu`, and calling it has the side effect of writing
    // to the result buffers, and no others.
    unsafe {
        let mut cpu = MaybeUninit::<u32>::uninit();
        let callee = match transmute(GETCPU.load(Relaxed)) {
            Some(callee) => callee,
            None => init_getcpu(),
        };
        let r0 = callee(cpu.as_mut_ptr(), null_mut(), null_mut());
        debug_assert_eq!(r0, 0);
        cpu.assume_init() as usize
    }
}

#[cfg(target_arch = "x86")]
pub(super) mod x86_via_vdso {
    use super::{transmute, ArgReg, Relaxed, RetReg, SyscallNumber, A0, A1, A2, A3, A4, A5, R0};
    use crate::backend::arch::asm;

    #[inline]
    pub(in crate::backend) unsafe fn syscall0(nr: SyscallNumber<'_>) -> RetReg<R0> {
        let callee = match transmute(super::SYSCALL.load(Relaxed)) {
            Some(callee) => callee,
            None => super::init_syscall(),
        };
        asm::indirect_syscall0(callee, nr)
    }

    #[inline]
    pub(in crate::backend) unsafe fn syscall1<'a>(
        nr: SyscallNumber<'a>,
        a0: ArgReg<'a, A0>,
    ) -> RetReg<R0> {
        let callee = match transmute(super::SYSCALL.load(Relaxed)) {
            Some(callee) => callee,
            None => super::init_syscall(),
        };
        asm::indirect_syscall1(callee, nr, a0)
    }

    #[inline]
    pub(in crate::backend) unsafe fn syscall1_noreturn<'a>(
        nr: SyscallNumber<'a>,
        a0: ArgReg<'a, A0>,
    ) -> ! {
        let callee = match transmute(super::SYSCALL.load(Relaxed)) {
            Some(callee) => callee,
            None => super::init_syscall(),
        };
        asm::indirect_syscall1_noreturn(callee, nr, a0)
    }

    #[inline]
    pub(in crate::backend) unsafe fn syscall2<'a>(
        nr: SyscallNumber<'a>,
        a0: ArgReg<'a, A0>,
        a1: ArgReg<'a, A1>,
    ) -> RetReg<R0> {
        let callee = match transmute(super::SYSCALL.load(Relaxed)) {
            Some(callee) => callee,
            None => super::init_syscall(),
        };
        asm::indirect_syscall2(callee, nr, a0, a1)
    }

    #[inline]
    pub(in crate::backend) unsafe fn syscall3<'a>(
        nr: SyscallNumber<'a>,
        a0: ArgReg<'a, A0>,
        a1: ArgReg<'a, A1>,
        a2: ArgReg<'a, A2>,
    ) -> RetReg<R0> {
        let callee = match transmute(super::SYSCALL.load(Relaxed)) {
            Some(callee) => callee,
            None => super::init_syscall(),
        };
        asm::indirect_syscall3(callee, nr, a0, a1, a2)
    }

    #[inline]
    pub(in crate::backend) unsafe fn syscall4<'a>(
        nr: SyscallNumber<'a>,
        a0: ArgReg<'a, A0>,
        a1: ArgReg<'a, A1>,
        a2: ArgReg<'a, A2>,
        a3: ArgReg<'a, A3>,
    ) -> RetReg<R0> {
        let callee = match transmute(super::SYSCALL.load(Relaxed)) {
            Some(callee) => callee,
            None => super::init_syscall(),
        };
        asm::indirect_syscall4(callee, nr, a0, a1, a2, a3)
    }

    #[inline]
    pub(in crate::backend) unsafe fn syscall5<'a>(
        nr: SyscallNumber<'a>,
        a0: ArgReg<'a, A0>,
        a1: ArgReg<'a, A1>,
        a2: ArgReg<'a, A2>,
        a3: ArgReg<'a, A3>,
        a4: ArgReg<'a, A4>,
    ) -> RetReg<R0> {
        let callee = match transmute(super::SYSCALL.load(Relaxed)) {
            Some(callee) => callee,
            None => super::init_syscall(),
        };
        asm::indirect_syscall5(callee, nr, a0, a1, a2, a3, a4)
    }

    #[inline]
    pub(in crate::backend) unsafe fn syscall6<'a>(
        nr: SyscallNumber<'a>,
        a0: ArgReg<'a, A0>,
        a1: ArgReg<'a, A1>,
        a2: ArgReg<'a, A2>,
        a3: ArgReg<'a, A3>,
        a4: ArgReg<'a, A4>,
        a5: ArgReg<'a, A5>,
    ) -> RetReg<R0> {
        let callee = match transmute(super::SYSCALL.load(Relaxed)) {
            Some(callee) => callee,
            None => super::init_syscall(),
        };
        asm::indirect_syscall6(callee, nr, a0, a1, a2, a3, a4, a5)
    }

    // With the indirect call, it isn't meaningful to do a separate
    // `_readonly` optimization.
    #[allow(unused_imports)]
    pub(in crate::backend) use {
        syscall0 as syscall0_readonly, syscall1 as syscall1_readonly,
        syscall2 as syscall2_readonly, syscall3 as syscall3_readonly,
        syscall4 as syscall4_readonly, syscall5 as syscall5_readonly,
        syscall6 as syscall6_readonly,
    };
}

#[cfg(feature = "time")]
type ClockGettimeType = unsafe extern "C" fn(c::c_int, *mut Timespec) -> c::c_int;

#[cfg(feature = "process")]
#[cfg(any(
    target_arch = "x86_64",
    target_arch = "x86",
    target_arch = "riscv64",
    target_arch = "powerpc64"
))]
type GetcpuType = unsafe extern "C" fn(*mut u32, *mut u32, *mut c_void) -> c::c_int;

/// The underlying syscall functions are only called from asm, using the
/// special syscall calling convention to pass arguments and return values,
/// which the signature here doesn't reflect.
#[cfg(target_arch = "x86")]
pub(super) type SyscallType = unsafe extern "C" fn();

/// Initialize `CLOCK_GETTIME` and return its value.
#[cfg(feature = "time")]
#[cold]
fn init_clock_gettime() -> ClockGettimeType {
    init();
    // SAFETY: Load the function address from static storage that we just
    // initialized.
    unsafe { transmute(CLOCK_GETTIME.load(Relaxed)) }
}

/// Initialize `GETCPU` and return its value.
#[cfg(feature = "process")]
#[cfg(any(
    target_arch = "x86_64",
    target_arch = "x86",
    target_arch = "riscv64",
    target_arch = "powerpc64"
))]
#[cold]
fn init_getcpu() -> GetcpuType {
    init();
    // SAFETY: Load the function address from static storage that we just
    // initialized.
    unsafe { transmute(GETCPU.load(Relaxed)) }
}

/// Initialize `SYSCALL` and return its value.
#[cfg(target_arch = "x86")]
#[cold]
fn init_syscall() -> SyscallType {
    init();
    // SAFETY: Load the function address from static storage that we just
    // initialized.
    unsafe { transmute(SYSCALL.load(Relaxed)) }
}

/// `AtomicPtr` can't hold a `fn` pointer, so we use a `*` pointer to this
/// placeholder type, and cast it as needed.
struct Function;
#[cfg(feature = "time")]
static CLOCK_GETTIME: AtomicPtr<Function> = AtomicPtr::new(null_mut());
#[cfg(feature = "process")]
#[cfg(any(
    target_arch = "x86_64",
    target_arch = "x86",
    target_arch = "riscv64",
    target_arch = "powerpc64"
))]
static GETCPU: AtomicPtr<Function> = AtomicPtr::new(null_mut());
#[cfg(target_arch = "x86")]
static SYSCALL: AtomicPtr<Function> = AtomicPtr::new(null_mut());

#[cfg(feature = "time")]
unsafe extern "C" fn rustix_clock_gettime_via_syscall(
    clockid: c::c_int,
    res: *mut Timespec,
) -> c::c_int {
    match _rustix_clock_gettime_via_syscall(clockid, res) {
        Ok(()) => 0,
        Err(err) => err.raw_os_error().wrapping_neg(),
    }
}

#[cfg(feature = "time")]
#[cfg(target_pointer_width = "32")]
unsafe fn _rustix_clock_gettime_via_syscall(
    clockid: c::c_int,
    res: *mut Timespec,
) -> io::Result<()> {
    let r0 = syscall!(__NR_clock_gettime64, c_int(clockid), res);
    match ret(r0) {
        Err(io::Errno::NOSYS) => _rustix_clock_gettime_via_syscall_old(clockid, res),
        otherwise => otherwise,
    }
}

#[cfg(feature = "time")]
#[cfg(target_pointer_width = "32")]
unsafe fn _rustix_clock_gettime_via_syscall_old(
    clockid: c::c_int,
    res: *mut Timespec,
) -> io::Result<()> {
    // Ordinarily `rustix` doesn't like to emulate system calls, but in the
    // case of time APIs, it's specific to Linux, specific to 32-bit
    // architectures *and* specific to old kernel versions, and it's not that
    // hard to fix up here, so that no other code needs to worry about this.
    let mut old_result = MaybeUninit::<__kernel_old_timespec>::uninit();
    let r0 = syscall!(__NR_clock_gettime, c_int(clockid), &mut old_result);
    match ret(r0) {
        Ok(()) => {
            let old_result = old_result.assume_init();
            *res = Timespec {
                tv_sec: old_result.tv_sec.into(),
                tv_nsec: old_result.tv_nsec.into(),
            };
            Ok(())
        }
        otherwise => otherwise,
    }
}

#[cfg(feature = "time")]
#[cfg(target_pointer_width = "64")]
unsafe fn _rustix_clock_gettime_via_syscall(
    clockid: c::c_int,
    res: *mut Timespec,
) -> io::Result<()> {
    ret(syscall!(__NR_clock_gettime, c_int(clockid), res))
}

#[cfg(feature = "process")]
#[cfg(any(
    target_arch = "x86_64",
    target_arch = "x86",
    target_arch = "riscv64",
    target_arch = "powerpc64"
))]
unsafe extern "C" fn rustix_getcpu_via_syscall(
    cpu: *mut u32,
    node: *mut u32,
    unused: *mut c_void,
) -> c::c_int {
    match ret(syscall!(__NR_getcpu, cpu, node, unused)) {
        Ok(()) => 0,
        Err(err) => err.raw_os_error().wrapping_neg(),
    }
}

#[cfg(target_arch = "x86")]
extern "C" {
    /// A symbol pointing to an `int 0x80` instruction. This “function” is only
    /// called from assembly, and only with the x86 syscall calling convention,
    /// so its signature here is not its true signature.
    ///
    /// This extern block and the `global_asm!` below can be replaced with
    /// `#[naked]` if it's stabilized.
    fn rustix_int_0x80();
}

#[cfg(target_arch = "x86")]
global_asm!(
    r#"
    .section    .text.rustix_int_0x80,"ax",@progbits
    .p2align    4
    .weak       rustix_int_0x80
    .hidden     rustix_int_0x80
    .type       rustix_int_0x80, @function
rustix_int_0x80:
    .cfi_startproc
    int    0x80
    ret
    .cfi_endproc
    .size rustix_int_0x80, .-rustix_int_0x80
"#
);

fn minimal_init() {
    // Store default function addresses in static storage so that if we
    // end up making any system calls while we read the vDSO, they'll work. If
    // the memory happens to already be initialized, this is redundant, but not
    // harmful.
    #[cfg(feature = "time")]
    {
        CLOCK_GETTIME
            .compare_exchange(
                null_mut(),
                rustix_clock_gettime_via_syscall as *mut Function,
                Relaxed,
                Relaxed,
            )
            .ok();
    }

    #[cfg(feature = "process")]
    #[cfg(any(
        target_arch = "x86_64",
        target_arch = "x86",
        target_arch = "riscv64",
        target_arch = "powerpc64"
    ))]
    {
        GETCPU
            .compare_exchange(
                null_mut(),
                rustix_getcpu_via_syscall as *mut Function,
                Relaxed,
                Relaxed,
            )
            .ok();
    }

    #[cfg(target_arch = "x86")]
    {
        SYSCALL
            .compare_exchange(
                null_mut(),
                rustix_int_0x80 as *mut Function,
                Relaxed,
                Relaxed,
            )
            .ok();
    }
}

fn init() {
    minimal_init();

    if let Some(vdso) = vdso::Vdso::new() {
        #[cfg(feature = "time")]
        {
            // Look up the platform-specific `clock_gettime` symbol as
            // documented [here], except on 32-bit platforms where we look up
            // the `64`-suffixed variant and fail if we don't find it.
            //
            // [here]: https://man7.org/linux/man-pages/man7/vdso.7.html
            #[cfg(target_arch = "x86_64")]
            let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime"));
            #[cfg(target_arch = "arm")]
            let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime64"));
            #[cfg(target_arch = "aarch64")]
            let ptr = vdso.sym(cstr!("LINUX_2.6.39"), cstr!("__kernel_clock_gettime"));
            #[cfg(target_arch = "x86")]
            let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime64"));
            #[cfg(target_arch = "riscv64")]
            let ptr = vdso.sym(cstr!("LINUX_4.15"), cstr!("__vdso_clock_gettime"));
            #[cfg(target_arch = "powerpc64")]
            let ptr = vdso.sym(cstr!("LINUX_2.6.15"), cstr!("__kernel_clock_gettime"));
            #[cfg(target_arch = "s390x")]
            let ptr = vdso.sym(cstr!("LINUX_2.6.29"), cstr!("__kernel_clock_gettime"));
            #[cfg(any(target_arch = "mips", target_arch = "mips32r6"))]
            let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime64"));
            #[cfg(any(target_arch = "mips64", target_arch = "mips64r6"))]
            let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime"));

            // On all 64-bit platforms, the 64-bit `clock_gettime` symbols are
            // always available.
            #[cfg(target_pointer_width = "64")]
            let ok = true;

            // On some 32-bit platforms, the 64-bit `clock_gettime` symbols are
            // not available on older kernel versions.
            #[cfg(any(
                target_arch = "arm",
                target_arch = "mips",
                target_arch = "mips32r6",
                target_arch = "x86"
            ))]
            let ok = !ptr.is_null();

            if ok {
                assert!(!ptr.is_null());

                // Store the computed function addresses in static storage so
                // that we don't need to compute them again (but if we do, it
                // doesn't hurt anything).
                CLOCK_GETTIME.store(ptr.cast(), Relaxed);
            }
        }

        #[cfg(feature = "process")]
        #[cfg(any(
            target_arch = "x86_64",
            target_arch = "x86",
            target_arch = "riscv64",
            target_arch = "powerpc64"
        ))]
        {
            // Look up the platform-specific `getcpu` symbol as documented
            // [here].
            //
            // [here]: https://man7.org/linux/man-pages/man7/vdso.7.html
            #[cfg(target_arch = "x86_64")]
            let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_getcpu"));
            #[cfg(target_arch = "x86")]
            let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_getcpu"));
            #[cfg(target_arch = "riscv64")]
            let ptr = vdso.sym(cstr!("LINUX_4.15"), cstr!("__kernel_getcpu"));
            #[cfg(target_arch = "powerpc64")]
            let ptr = vdso.sym(cstr!("LINUX_2.6.15"), cstr!("__kernel_getcpu"));

            #[cfg(any(
                target_arch = "x86_64",
                target_arch = "riscv64",
                target_arch = "powerpc64"
            ))]
            let ok = true;

            // On 32-bit x86, the symbol doesn't appear present sometimes.
            #[cfg(target_arch = "x86")]
            let ok = !ptr.is_null();

            #[cfg(any(
                target_arch = "aarch64",
                target_arch = "arm",
                target_arch = "mips",
                target_arch = "mips32r6",
                target_arch = "mips64",
                target_arch = "mips64r6",
                target_arch = "s390x",
            ))]
            let ok = false;

            if ok {
                assert!(!ptr.is_null());

                // Store the computed function addresses in static storage so
                // that we don't need to compute them again (but if we do, it
                // doesn't hurt anything).
                GETCPU.store(ptr.cast(), Relaxed);
            }
        }

        // On x86, also look up the vsyscall entry point.
        #[cfg(target_arch = "x86")]
        {
            let ptr = vdso.sym(cstr!("LINUX_2.5"), cstr!("__kernel_vsyscall"));
            assert!(!ptr.is_null());

            // As above, store the computed function addresses in
            // static storage.
            SYSCALL.store(ptr.cast(), Relaxed);
        }
    }
}