zerovec/zerovec/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
#[cfg(feature = "databake")]
mod databake;
#[cfg(feature = "serde")]
mod serde;
mod slice;
pub use slice::ZeroSlice;
use crate::ule::*;
use alloc::borrow::Cow;
use alloc::vec::Vec;
use core::cmp::{Ord, Ordering, PartialOrd};
use core::fmt;
use core::iter::FromIterator;
use core::marker::PhantomData;
use core::mem;
use core::num::NonZeroUsize;
use core::ops::Deref;
use core::ptr::{self, NonNull};
/// A zero-copy, byte-aligned vector for fixed-width types.
///
/// `ZeroVec<T>` is designed as a drop-in replacement for `Vec<T>` in situations where it is
/// desirable to borrow data from an unaligned byte slice, such as zero-copy deserialization.
///
/// `T` must implement [`AsULE`], which is auto-implemented for a number of built-in types,
/// including all fixed-width multibyte integers. For variable-width types like [`str`],
/// see [`VarZeroVec`](crate::VarZeroVec). [`zerovec::make_ule`](crate::make_ule) may
/// be used to automatically implement [`AsULE`] for a type and generate the underlying [`ULE`] type.
///
/// Typically, the zero-copy equivalent of a `Vec<T>` will simply be `ZeroVec<'a, T>`.
///
/// Most of the methods on `ZeroVec<'a, T>` come from its [`Deref`] implementation to [`ZeroSlice<T>`](ZeroSlice).
///
/// For creating zero-copy vectors of fixed-size types, see [`VarZeroVec`](crate::VarZeroVec).
///
/// `ZeroVec<T>` behaves much like [`Cow`](alloc::borrow::Cow), where it can be constructed from
/// owned data (and then mutated!) but can also borrow from some buffer.
///
/// # Example
///
/// ```
/// use zerovec::ZeroVec;
///
/// // The little-endian bytes correspond to the numbers on the following line.
/// let nums: &[u16] = &[211, 281, 421, 461];
///
/// #[derive(serde::Serialize, serde::Deserialize)]
/// struct Data<'a> {
/// #[serde(borrow)]
/// nums: ZeroVec<'a, u16>,
/// }
///
/// // The owned version will allocate
/// let data = Data {
/// nums: ZeroVec::alloc_from_slice(nums),
/// };
/// let bincode_bytes =
/// bincode::serialize(&data).expect("Serialization should be successful");
///
/// // Will deserialize without allocations
/// let deserialized: Data = bincode::deserialize(&bincode_bytes)
/// .expect("Deserialization should be successful");
///
/// // This deserializes without allocation!
/// assert!(!deserialized.nums.is_owned());
/// assert_eq!(deserialized.nums.get(2), Some(421));
/// assert_eq!(deserialized.nums, nums);
/// ```
///
/// [`ule`]: crate::ule
///
/// # How it Works
///
/// `ZeroVec<T>` represents a slice of `T` as a slice of `T::ULE`. The difference between `T` and
/// `T::ULE` is that `T::ULE` must be encoded in little-endian with 1-byte alignment. When accessing
/// items from `ZeroVec<T>`, we fetch the `T::ULE`, convert it on the fly to `T`, and return `T` by
/// value.
///
/// Benchmarks can be found in the project repository, with some results found in the [crate-level documentation](crate).
///
/// See [the design doc](https://github.com/unicode-org/icu4x/blob/main/utils/zerovec/design_doc.md) for more details.
pub struct ZeroVec<'a, T>
where
T: AsULE,
{
vector: EyepatchHackVector<T::ULE>,
/// Marker type, signalling variance and dropck behavior
/// by containing all potential types this type represents
#[allow(clippy::type_complexity)] // needed to get correct marker type behavior
marker: PhantomData<(Vec<T::ULE>, &'a [T::ULE])>,
}
// Send inherits as long as all fields are Send, but also references are Send only
// when their contents are Sync (this is the core purpose of Sync), so
// we need a Send+Sync bound since this struct can logically be a vector or a slice.
unsafe impl<'a, T: AsULE> Send for ZeroVec<'a, T> where T::ULE: Send + Sync {}
// Sync typically inherits as long as all fields are Sync
unsafe impl<'a, T: AsULE> Sync for ZeroVec<'a, T> where T::ULE: Sync {}
impl<'a, T: AsULE> Deref for ZeroVec<'a, T> {
type Target = ZeroSlice<T>;
#[inline]
fn deref(&self) -> &Self::Target {
let slice: &[T::ULE] = self.vector.as_slice();
ZeroSlice::from_ule_slice(slice)
}
}
// Represents an unsafe potentially-owned vector/slice type, without a lifetime
// working around dropck limitations.
//
// Must either be constructed by deconstructing a Vec<U>, or from &[U] with capacity set to
// zero. Should not outlive its source &[U] in the borrowed case; this type does not in
// and of itself uphold this guarantee, but the .as_slice() method assumes it.
//
// After https://github.com/rust-lang/rust/issues/34761 stabilizes,
// we should remove this type and use #[may_dangle]
struct EyepatchHackVector<U> {
/// Pointer to data
/// This pointer is *always* valid, the reason it is represented as a raw pointer
/// is that it may logically represent an `&[T::ULE]` or the ptr,len of a `Vec<T::ULE>`
buf: NonNull<[U]>,
/// Borrowed if zero. Capacity of buffer above if not
capacity: usize,
}
impl<U> EyepatchHackVector<U> {
// Return a slice to the inner data for an arbitrary caller-specified lifetime
#[inline]
unsafe fn as_arbitrary_slice<'a>(&self) -> &'a [U] {
self.buf.as_ref()
}
// Return a slice to the inner data
#[inline]
const fn as_slice<'a>(&'a self) -> &'a [U] {
// Note: self.buf.as_ref() is not const until 1.73
unsafe { &*(self.buf.as_ptr() as *const [U]) }
}
/// Return this type as a vector
///
/// Data MUST be known to be owned beforehand
///
/// Because this borrows self, this is effectively creating two owners to the same
/// data, make sure that `self` is cleaned up after this
///
/// (this does not simply take `self` since then it wouldn't be usable from the Drop impl)
unsafe fn get_vec(&self) -> Vec<U> {
debug_assert!(self.capacity != 0);
let slice: &[U] = self.as_slice();
let len = slice.len();
// Safety: we are assuming owned, and in owned cases
// this always represents a valid vector
Vec::from_raw_parts(self.buf.as_ptr() as *mut U, len, self.capacity)
}
}
impl<U> Drop for EyepatchHackVector<U> {
#[inline]
fn drop(&mut self) {
if self.capacity != 0 {
unsafe {
// we don't need to clean up self here since we're already in a Drop impl
let _ = self.get_vec();
}
}
}
}
impl<'a, T: AsULE> Clone for ZeroVec<'a, T> {
fn clone(&self) -> Self {
if self.is_owned() {
ZeroVec::new_owned(self.as_ule_slice().into())
} else {
Self {
vector: EyepatchHackVector {
buf: self.vector.buf,
capacity: 0,
},
marker: PhantomData,
}
}
}
}
impl<'a, T: AsULE> AsRef<ZeroSlice<T>> for ZeroVec<'a, T> {
fn as_ref(&self) -> &ZeroSlice<T> {
self.deref()
}
}
impl<T> fmt::Debug for ZeroVec<'_, T>
where
T: AsULE + fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "ZeroVec({:?})", self.to_vec())
}
}
impl<T> Eq for ZeroVec<'_, T> where T: AsULE + Eq + ?Sized {}
impl<'a, 'b, T> PartialEq<ZeroVec<'b, T>> for ZeroVec<'a, T>
where
T: AsULE + PartialEq + ?Sized,
{
#[inline]
fn eq(&self, other: &ZeroVec<'b, T>) -> bool {
// Note: T implements PartialEq but not T::ULE
self.iter().eq(other.iter())
}
}
impl<T> PartialEq<&[T]> for ZeroVec<'_, T>
where
T: AsULE + PartialEq + ?Sized,
{
#[inline]
fn eq(&self, other: &&[T]) -> bool {
self.iter().eq(other.iter().copied())
}
}
impl<T, const N: usize> PartialEq<[T; N]> for ZeroVec<'_, T>
where
T: AsULE + PartialEq + ?Sized,
{
#[inline]
fn eq(&self, other: &[T; N]) -> bool {
self.iter().eq(other.iter().copied())
}
}
impl<'a, T: AsULE> Default for ZeroVec<'a, T> {
#[inline]
fn default() -> Self {
Self::new()
}
}
impl<'a, T: AsULE + PartialOrd> PartialOrd for ZeroVec<'a, T> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.iter().partial_cmp(other.iter())
}
}
impl<'a, T: AsULE + Ord> Ord for ZeroVec<'a, T> {
fn cmp(&self, other: &Self) -> Ordering {
self.iter().cmp(other.iter())
}
}
impl<'a, T: AsULE> AsRef<[T::ULE]> for ZeroVec<'a, T> {
fn as_ref(&self) -> &[T::ULE] {
self.as_ule_slice()
}
}
impl<'a, T: AsULE> From<&'a [T::ULE]> for ZeroVec<'a, T> {
fn from(other: &'a [T::ULE]) -> Self {
ZeroVec::new_borrowed(other)
}
}
impl<'a, T: AsULE> From<Vec<T::ULE>> for ZeroVec<'a, T> {
fn from(other: Vec<T::ULE>) -> Self {
ZeroVec::new_owned(other)
}
}
impl<'a, T> ZeroVec<'a, T>
where
T: AsULE + ?Sized,
{
/// Creates a new, borrowed, empty `ZeroVec<T>`.
///
/// # Examples
///
/// ```
/// use zerovec::ZeroVec;
///
/// let zv: ZeroVec<u16> = ZeroVec::new();
/// assert!(zv.is_empty());
/// ```
#[inline]
pub const fn new() -> Self {
Self::new_borrowed(&[])
}
/// Same as `ZeroSlice::len`, which is available through `Deref` and not `const`.
pub const fn const_len(&self) -> usize {
self.vector.as_slice().len()
}
/// Creates a new owned `ZeroVec` using an existing
/// allocated backing buffer
///
/// If you have a slice of `&[T]`s, prefer using
/// [`Self::alloc_from_slice()`].
#[inline]
pub fn new_owned(vec: Vec<T::ULE>) -> Self {
// Deconstruct the vector into parts
// This is the only part of the code that goes from Vec
// to ZeroVec, all other such operations should use this function
let capacity = vec.capacity();
let len = vec.len();
let ptr = mem::ManuallyDrop::new(vec).as_mut_ptr();
// Note: starting in 1.70 we can use NonNull::slice_from_raw_parts
let slice = ptr::slice_from_raw_parts_mut(ptr, len);
Self {
vector: EyepatchHackVector {
// Safety: `ptr` comes from Vec::as_mut_ptr, which says:
// "Returns an unsafe mutable pointer to the vector’s buffer,
// or a dangling raw pointer valid for zero sized reads"
buf: unsafe { NonNull::new_unchecked(slice) },
capacity,
},
marker: PhantomData,
}
}
/// Creates a new borrowed `ZeroVec` using an existing
/// backing buffer
#[inline]
pub const fn new_borrowed(slice: &'a [T::ULE]) -> Self {
// Safety: references in Rust cannot be null.
// The safe function `impl From<&T> for NonNull<T>` is not const.
let slice = unsafe { NonNull::new_unchecked(slice as *const [_] as *mut [_]) };
Self {
vector: EyepatchHackVector {
buf: slice,
capacity: 0,
},
marker: PhantomData,
}
}
/// Creates a new, owned, empty `ZeroVec<T>`, with a certain capacity pre-allocated.
pub fn with_capacity(capacity: usize) -> Self {
Self::new_owned(Vec::with_capacity(capacity))
}
/// Parses a `&[u8]` buffer into a `ZeroVec<T>`.
///
/// This function is infallible for built-in integer types, but fallible for other types,
/// such as `char`. For more information, see [`ULE::parse_byte_slice`].
///
/// The bytes within the byte buffer must remain constant for the life of the ZeroVec.
///
/// # Endianness
///
/// The byte buffer must be encoded in little-endian, even if running in a big-endian
/// environment. This ensures a consistent representation of data across platforms.
///
/// # Example
///
/// ```
/// use zerovec::ZeroVec;
///
/// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
/// let zerovec: ZeroVec<u16> =
/// ZeroVec::parse_byte_slice(bytes).expect("infallible");
///
/// assert!(!zerovec.is_owned());
/// assert_eq!(zerovec.get(2), Some(421));
/// ```
pub fn parse_byte_slice(bytes: &'a [u8]) -> Result<Self, ZeroVecError> {
let slice: &'a [T::ULE] = T::ULE::parse_byte_slice(bytes)?;
Ok(Self::new_borrowed(slice))
}
/// Uses a `&[u8]` buffer as a `ZeroVec<T>` without any verification.
///
/// # Safety
///
/// `bytes` need to be an output from [`ZeroSlice::as_bytes()`].
pub const unsafe fn from_bytes_unchecked(bytes: &'a [u8]) -> Self {
// &[u8] and &[T::ULE] are the same slice with different length metadata.
Self::new_borrowed(core::slice::from_raw_parts(
bytes.as_ptr() as *const T::ULE,
bytes.len() / core::mem::size_of::<T::ULE>(),
))
}
/// Converts a `ZeroVec<T>` into a `ZeroVec<u8>`, retaining the current ownership model.
///
/// Note that the length of the ZeroVec may change.
///
/// # Examples
///
/// Convert a borrowed `ZeroVec`:
///
/// ```
/// use zerovec::ZeroVec;
///
/// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
/// let zerovec: ZeroVec<u16> =
/// ZeroVec::parse_byte_slice(bytes).expect("infallible");
/// let zv_bytes = zerovec.into_bytes();
///
/// assert!(!zv_bytes.is_owned());
/// assert_eq!(zv_bytes.get(0), Some(0xD3));
/// ```
///
/// Convert an owned `ZeroVec`:
///
/// ```
/// use zerovec::ZeroVec;
///
/// let nums: &[u16] = &[211, 281, 421, 461];
/// let zerovec = ZeroVec::alloc_from_slice(nums);
/// let zv_bytes = zerovec.into_bytes();
///
/// assert!(zv_bytes.is_owned());
/// assert_eq!(zv_bytes.get(0), Some(0xD3));
/// ```
pub fn into_bytes(self) -> ZeroVec<'a, u8> {
match self.into_cow() {
Cow::Borrowed(slice) => {
let bytes: &'a [u8] = T::ULE::as_byte_slice(slice);
ZeroVec::new_borrowed(bytes)
}
Cow::Owned(vec) => {
let bytes = Vec::from(T::ULE::as_byte_slice(&vec));
ZeroVec::new_owned(bytes)
}
}
}
/// Casts a `ZeroVec<T>` to a compatible `ZeroVec<P>`.
///
/// `T` and `P` are compatible if they have the same `ULE` representation.
///
/// If the `ULE`s of `T` and `P` are different types but have the same size,
/// use [`Self::try_into_converted()`].
///
/// # Examples
///
/// ```
/// use zerovec::ZeroVec;
///
/// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x80];
///
/// let zerovec_u16: ZeroVec<u16> =
/// ZeroVec::parse_byte_slice(bytes).expect("infallible");
/// assert_eq!(zerovec_u16.get(3), Some(32973));
///
/// let zerovec_i16: ZeroVec<i16> = zerovec_u16.cast();
/// assert_eq!(zerovec_i16.get(3), Some(-32563));
/// ```
pub fn cast<P>(self) -> ZeroVec<'a, P>
where
P: AsULE<ULE = T::ULE>,
{
match self.into_cow() {
Cow::Owned(v) => ZeroVec::new_owned(v),
Cow::Borrowed(v) => ZeroVec::new_borrowed(v),
}
}
/// Converts a `ZeroVec<T>` into a `ZeroVec<P>`, retaining the current ownership model.
///
/// If `T` and `P` have the exact same `ULE`, use [`Self::cast()`].
///
/// # Panics
///
/// Panics if `T::ULE` and `P::ULE` are not the same size.
///
/// # Examples
///
/// Convert a borrowed `ZeroVec`:
///
/// ```
/// use zerovec::ZeroVec;
///
/// let bytes: &[u8] = &[0x7F, 0xF3, 0x01, 0x49, 0xF6, 0x01];
/// let zv_char: ZeroVec<char> =
/// ZeroVec::parse_byte_slice(bytes).expect("valid code points");
/// let zv_u8_3: ZeroVec<[u8; 3]> =
/// zv_char.try_into_converted().expect("infallible conversion");
///
/// assert!(!zv_u8_3.is_owned());
/// assert_eq!(zv_u8_3.get(0), Some([0x7F, 0xF3, 0x01]));
/// ```
///
/// Convert an owned `ZeroVec`:
///
/// ```
/// use zerovec::ZeroVec;
///
/// let chars: &[char] = &['🍿', '🙉'];
/// let zv_char = ZeroVec::alloc_from_slice(chars);
/// let zv_u8_3: ZeroVec<[u8; 3]> =
/// zv_char.try_into_converted().expect("length is divisible");
///
/// assert!(zv_u8_3.is_owned());
/// assert_eq!(zv_u8_3.get(0), Some([0x7F, 0xF3, 0x01]));
/// ```
///
/// If the types are not the same size, we refuse to convert:
///
/// ```should_panic
/// use zerovec::ZeroVec;
///
/// let bytes: &[u8] = &[0x7F, 0xF3, 0x01, 0x49, 0xF6, 0x01];
/// let zv_char: ZeroVec<char> =
/// ZeroVec::parse_byte_slice(bytes).expect("valid code points");
///
/// // Panics! mem::size_of::<char::ULE> != mem::size_of::<u16::ULE>
/// zv_char.try_into_converted::<u16>();
/// ```
///
/// Instead, convert to bytes and then parse:
///
/// ```
/// use zerovec::ZeroVec;
///
/// let bytes: &[u8] = &[0x7F, 0xF3, 0x01, 0x49, 0xF6, 0x01];
/// let zv_char: ZeroVec<char> =
/// ZeroVec::parse_byte_slice(bytes).expect("valid code points");
/// let zv_u16: ZeroVec<u16> =
/// zv_char.into_bytes().try_into_parsed().expect("infallible");
///
/// assert!(!zv_u16.is_owned());
/// assert_eq!(zv_u16.get(0), Some(0xF37F));
/// ```
pub fn try_into_converted<P: AsULE>(self) -> Result<ZeroVec<'a, P>, ZeroVecError> {
assert_eq!(
core::mem::size_of::<<T as AsULE>::ULE>(),
core::mem::size_of::<<P as AsULE>::ULE>()
);
match self.into_cow() {
Cow::Borrowed(old_slice) => {
let bytes: &'a [u8] = T::ULE::as_byte_slice(old_slice);
let new_slice = P::ULE::parse_byte_slice(bytes)?;
Ok(ZeroVec::new_borrowed(new_slice))
}
Cow::Owned(old_vec) => {
let bytes: &[u8] = T::ULE::as_byte_slice(&old_vec);
P::ULE::validate_byte_slice(bytes)?;
// Feature "vec_into_raw_parts" is not yet stable (#65816). Polyfill:
let (ptr, len, cap) = {
// Take ownership of the pointer
let mut v = mem::ManuallyDrop::new(old_vec);
// Fetch the pointer, length, and capacity
(v.as_mut_ptr(), v.len(), v.capacity())
};
// Safety checklist for Vec::from_raw_parts:
// 1. ptr came from a Vec<T>
// 2. P and T are asserted above to be the same size
// 3. length is what it was before
// 4. capacity is what it was before
let new_vec = unsafe {
let ptr = ptr as *mut P::ULE;
Vec::from_raw_parts(ptr, len, cap)
};
Ok(ZeroVec::new_owned(new_vec))
}
}
}
/// Check if this type is fully owned
#[inline]
pub fn is_owned(&self) -> bool {
self.vector.capacity != 0
}
/// If this is a borrowed ZeroVec, return it as a slice that covers
/// its lifetime parameter
#[inline]
pub fn as_maybe_borrowed(&self) -> Option<&'a ZeroSlice<T>> {
if self.is_owned() {
None
} else {
// We can extend the lifetime of the slice to 'a
// since we know it is borrowed
let ule_slice = unsafe { self.vector.as_arbitrary_slice() };
Some(ZeroSlice::from_ule_slice(ule_slice))
}
}
/// If the ZeroVec is owned, returns the capacity of the vector.
///
/// Otherwise, if the ZeroVec is borrowed, returns `None`.
///
/// # Examples
///
/// ```
/// use zerovec::ZeroVec;
///
/// let mut zv = ZeroVec::<u8>::new_borrowed(&[0, 1, 2, 3]);
/// assert!(!zv.is_owned());
/// assert_eq!(zv.owned_capacity(), None);
///
/// // Convert to owned without appending anything
/// zv.with_mut(|v| ());
/// assert!(zv.is_owned());
/// assert_eq!(zv.owned_capacity(), Some(4.try_into().unwrap()));
///
/// // Double the size by appending
/// zv.with_mut(|v| v.push(0));
/// assert!(zv.is_owned());
/// assert_eq!(zv.owned_capacity(), Some(8.try_into().unwrap()));
/// ```
#[inline]
pub fn owned_capacity(&self) -> Option<NonZeroUsize> {
NonZeroUsize::try_from(self.vector.capacity).ok()
}
}
impl<'a> ZeroVec<'a, u8> {
/// Converts a `ZeroVec<u8>` into a `ZeroVec<T>`, retaining the current ownership model.
///
/// Note that the length of the ZeroVec may change.
///
/// # Examples
///
/// Convert a borrowed `ZeroVec`:
///
/// ```
/// use zerovec::ZeroVec;
///
/// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
/// let zv_bytes = ZeroVec::new_borrowed(bytes);
/// let zerovec: ZeroVec<u16> = zv_bytes.try_into_parsed().expect("infallible");
///
/// assert!(!zerovec.is_owned());
/// assert_eq!(zerovec.get(0), Some(211));
/// ```
///
/// Convert an owned `ZeroVec`:
///
/// ```
/// use zerovec::ZeroVec;
///
/// let bytes: Vec<u8> = vec![0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
/// let zv_bytes = ZeroVec::new_owned(bytes);
/// let zerovec: ZeroVec<u16> = zv_bytes.try_into_parsed().expect("infallible");
///
/// assert!(zerovec.is_owned());
/// assert_eq!(zerovec.get(0), Some(211));
/// ```
pub fn try_into_parsed<T: AsULE>(self) -> Result<ZeroVec<'a, T>, ZeroVecError> {
match self.into_cow() {
Cow::Borrowed(bytes) => {
let slice: &'a [T::ULE] = T::ULE::parse_byte_slice(bytes)?;
Ok(ZeroVec::new_borrowed(slice))
}
Cow::Owned(vec) => {
let slice = Vec::from(T::ULE::parse_byte_slice(&vec)?);
Ok(ZeroVec::new_owned(slice))
}
}
}
}
impl<'a, T> ZeroVec<'a, T>
where
T: AsULE,
{
/// Creates a `ZeroVec<T>` from a `&[T]` by allocating memory.
///
/// This function results in an `Owned` instance of `ZeroVec<T>`.
///
/// # Example
///
/// ```
/// use zerovec::ZeroVec;
///
/// // The little-endian bytes correspond to the numbers on the following line.
/// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
/// let nums: &[u16] = &[211, 281, 421, 461];
///
/// let zerovec = ZeroVec::alloc_from_slice(nums);
///
/// assert!(zerovec.is_owned());
/// assert_eq!(bytes, zerovec.as_bytes());
/// ```
#[inline]
pub fn alloc_from_slice(other: &[T]) -> Self {
Self::new_owned(other.iter().copied().map(T::to_unaligned).collect())
}
/// Creates a `Vec<T>` from a `ZeroVec<T>`.
///
/// # Example
///
/// ```
/// use zerovec::ZeroVec;
///
/// let nums: &[u16] = &[211, 281, 421, 461];
/// let vec: Vec<u16> = ZeroVec::alloc_from_slice(nums).to_vec();
///
/// assert_eq!(nums, vec.as_slice());
/// ```
#[inline]
pub fn to_vec(&self) -> Vec<T> {
self.iter().collect()
}
}
impl<'a, T> ZeroVec<'a, T>
where
T: EqULE,
{
/// Attempts to create a `ZeroVec<'a, T>` from a `&'a [T]` by borrowing the argument.
///
/// If this is not possible, such as on a big-endian platform, `None` is returned.
///
/// # Example
///
/// ```
/// use zerovec::ZeroVec;
///
/// // The little-endian bytes correspond to the numbers on the following line.
/// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
/// let nums: &[u16] = &[211, 281, 421, 461];
///
/// if let Some(zerovec) = ZeroVec::try_from_slice(nums) {
/// assert!(!zerovec.is_owned());
/// assert_eq!(bytes, zerovec.as_bytes());
/// }
/// ```
#[inline]
pub fn try_from_slice(slice: &'a [T]) -> Option<Self> {
T::slice_to_unaligned(slice).map(|ule_slice| Self::new_borrowed(ule_slice))
}
/// Creates a `ZeroVec<'a, T>` from a `&'a [T]`, either by borrowing the argument or by
/// allocating a new vector.
///
/// This is a cheap operation on little-endian platforms, falling back to a more expensive
/// operation on big-endian platforms.
///
/// # Example
///
/// ```
/// use zerovec::ZeroVec;
///
/// // The little-endian bytes correspond to the numbers on the following line.
/// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
/// let nums: &[u16] = &[211, 281, 421, 461];
///
/// let zerovec = ZeroVec::from_slice_or_alloc(nums);
///
/// // Note: zerovec could be either borrowed or owned.
/// assert_eq!(bytes, zerovec.as_bytes());
/// ```
#[inline]
pub fn from_slice_or_alloc(slice: &'a [T]) -> Self {
Self::try_from_slice(slice).unwrap_or_else(|| Self::alloc_from_slice(slice))
}
}
impl<'a, T> ZeroVec<'a, T>
where
T: AsULE,
{
/// Mutates each element according to a given function, meant to be
/// a more convenient version of calling `.iter_mut()` with
/// [`ZeroVec::with_mut()`] which serves fewer use cases.
///
/// This will convert the ZeroVec into an owned ZeroVec if not already the case.
///
/// # Example
///
/// ```
/// use zerovec::ZeroVec;
///
/// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
/// let mut zerovec: ZeroVec<u16> =
/// ZeroVec::parse_byte_slice(bytes).expect("infallible");
///
/// zerovec.for_each_mut(|item| *item += 1);
///
/// assert_eq!(zerovec.to_vec(), &[212, 282, 422, 462]);
/// assert!(zerovec.is_owned());
/// ```
#[inline]
pub fn for_each_mut(&mut self, mut f: impl FnMut(&mut T)) {
self.to_mut_slice().iter_mut().for_each(|item| {
let mut aligned = T::from_unaligned(*item);
f(&mut aligned);
*item = aligned.to_unaligned()
})
}
/// Same as [`ZeroVec::for_each_mut()`], but bubbles up errors.
///
/// # Example
///
/// ```
/// use zerovec::ZeroVec;
///
/// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
/// let mut zerovec: ZeroVec<u16> =
/// ZeroVec::parse_byte_slice(bytes).expect("infallible");
///
/// zerovec.try_for_each_mut(|item| {
/// *item = item.checked_add(1).ok_or(())?;
/// Ok(())
/// })?;
///
/// assert_eq!(zerovec.to_vec(), &[212, 282, 422, 462]);
/// assert!(zerovec.is_owned());
/// # Ok::<(), ()>(())
/// ```
#[inline]
pub fn try_for_each_mut<E>(
&mut self,
mut f: impl FnMut(&mut T) -> Result<(), E>,
) -> Result<(), E> {
self.to_mut_slice().iter_mut().try_for_each(|item| {
let mut aligned = T::from_unaligned(*item);
f(&mut aligned)?;
*item = aligned.to_unaligned();
Ok(())
})
}
/// Converts a borrowed ZeroVec to an owned ZeroVec. No-op if already owned.
///
/// # Example
///
/// ```
/// use zerovec::ZeroVec;
///
/// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
/// let zerovec: ZeroVec<u16> =
/// ZeroVec::parse_byte_slice(bytes).expect("infallible");
/// assert!(!zerovec.is_owned());
///
/// let owned = zerovec.into_owned();
/// assert!(owned.is_owned());
/// ```
pub fn into_owned(self) -> ZeroVec<'static, T> {
match self.into_cow() {
Cow::Owned(vec) => ZeroVec::new_owned(vec),
Cow::Borrowed(b) => {
let vec: Vec<T::ULE> = b.into();
ZeroVec::new_owned(vec)
}
}
}
/// Allows the ZeroVec to be mutated by converting it to an owned variant, and producing
/// a mutable vector of ULEs. If you only need a mutable slice, consider using [`Self::to_mut_slice()`]
/// instead.
///
/// # Example
///
/// ```rust
/// # use crate::zerovec::ule::AsULE;
/// use zerovec::ZeroVec;
///
/// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
/// let mut zerovec: ZeroVec<u16> =
/// ZeroVec::parse_byte_slice(bytes).expect("infallible");
/// assert!(!zerovec.is_owned());
///
/// zerovec.with_mut(|v| v.push(12_u16.to_unaligned()));
/// assert!(zerovec.is_owned());
/// ```
pub fn with_mut<R>(&mut self, f: impl FnOnce(&mut Vec<T::ULE>) -> R) -> R {
// We're in danger if f() panics whilst we've moved a vector out of self;
// replace it with an empty dummy vector for now
let this = mem::take(self);
let mut vec = match this.into_cow() {
Cow::Owned(v) => v,
Cow::Borrowed(s) => s.into(),
};
let ret = f(&mut vec);
*self = Self::new_owned(vec);
ret
}
/// Allows the ZeroVec to be mutated by converting it to an owned variant (if necessary)
/// and returning a slice to its backing buffer. [`Self::with_mut()`] allows for mutation
/// of the vector itself.
///
/// # Example
///
/// ```rust
/// # use crate::zerovec::ule::AsULE;
/// use zerovec::ZeroVec;
///
/// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
/// let mut zerovec: ZeroVec<u16> =
/// ZeroVec::parse_byte_slice(bytes).expect("infallible");
/// assert!(!zerovec.is_owned());
///
/// zerovec.to_mut_slice()[1] = 5u16.to_unaligned();
/// assert!(zerovec.is_owned());
/// ```
pub fn to_mut_slice(&mut self) -> &mut [T::ULE] {
if !self.is_owned() {
// `buf` is either a valid vector or slice of `T::ULE`s, either
// way it's always valid
let slice = self.vector.as_slice();
*self = ZeroVec::new_owned(slice.into());
}
unsafe { self.vector.buf.as_mut() }
}
/// Remove all elements from this ZeroVec and reset it to an empty borrowed state.
pub fn clear(&mut self) {
*self = Self::new_borrowed(&[])
}
/// Removes the first element of the ZeroVec. The ZeroVec remains in the same
/// borrowed or owned state.
///
/// # Examples
///
/// ```
/// # use crate::zerovec::ule::AsULE;
/// use zerovec::ZeroVec;
///
/// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
/// let mut zerovec: ZeroVec<u16> =
/// ZeroVec::parse_byte_slice(bytes).expect("infallible");
/// assert!(!zerovec.is_owned());
///
/// let first = zerovec.take_first().unwrap();
/// assert_eq!(first, 0x00D3);
/// assert!(!zerovec.is_owned());
///
/// let mut zerovec = zerovec.into_owned();
/// assert!(zerovec.is_owned());
/// let first = zerovec.take_first().unwrap();
/// assert_eq!(first, 0x0119);
/// assert!(zerovec.is_owned());
/// ```
pub fn take_first(&mut self) -> Option<T> {
match core::mem::take(self).into_cow() {
Cow::Owned(mut vec) => {
if vec.is_empty() {
return None;
}
let ule = vec.remove(0);
let rv = T::from_unaligned(ule);
*self = ZeroVec::new_owned(vec);
Some(rv)
}
Cow::Borrowed(b) => {
let (ule, remainder) = b.split_first()?;
let rv = T::from_unaligned(*ule);
*self = ZeroVec::new_borrowed(remainder);
Some(rv)
}
}
}
/// Removes the last element of the ZeroVec. The ZeroVec remains in the same
/// borrowed or owned state.
///
/// # Examples
///
/// ```
/// # use crate::zerovec::ule::AsULE;
/// use zerovec::ZeroVec;
///
/// let bytes: &[u8] = &[0xD3, 0x00, 0x19, 0x01, 0xA5, 0x01, 0xCD, 0x01];
/// let mut zerovec: ZeroVec<u16> =
/// ZeroVec::parse_byte_slice(bytes).expect("infallible");
/// assert!(!zerovec.is_owned());
///
/// let last = zerovec.take_last().unwrap();
/// assert_eq!(last, 0x01CD);
/// assert!(!zerovec.is_owned());
///
/// let mut zerovec = zerovec.into_owned();
/// assert!(zerovec.is_owned());
/// let last = zerovec.take_last().unwrap();
/// assert_eq!(last, 0x01A5);
/// assert!(zerovec.is_owned());
/// ```
pub fn take_last(&mut self) -> Option<T> {
match core::mem::take(self).into_cow() {
Cow::Owned(mut vec) => {
let ule = vec.pop()?;
let rv = T::from_unaligned(ule);
*self = ZeroVec::new_owned(vec);
Some(rv)
}
Cow::Borrowed(b) => {
let (ule, remainder) = b.split_last()?;
let rv = T::from_unaligned(*ule);
*self = ZeroVec::new_borrowed(remainder);
Some(rv)
}
}
}
/// Converts the type into a `Cow<'a, [T::ULE]>`, which is
/// the logical equivalent of this type's internal representation
#[inline]
pub fn into_cow(self) -> Cow<'a, [T::ULE]> {
let this = mem::ManuallyDrop::new(self);
if this.is_owned() {
let vec = unsafe {
// safe to call: we know it's owned,
// and `self`/`this` are thenceforth no longer used or dropped
{ this }.vector.get_vec()
};
Cow::Owned(vec)
} else {
// We can extend the lifetime of the slice to 'a
// since we know it is borrowed
let slice = unsafe { { this }.vector.as_arbitrary_slice() };
Cow::Borrowed(slice)
}
}
}
impl<T: AsULE> FromIterator<T> for ZeroVec<'_, T> {
/// Creates an owned [`ZeroVec`] from an iterator of values.
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = T>,
{
ZeroVec::new_owned(iter.into_iter().map(|t| t.to_unaligned()).collect())
}
}
/// Convenience wrapper for [`ZeroSlice::from_ule_slice`]. The value will be created at compile-time,
/// meaning that all arguments must also be constant.
///
/// # Arguments
///
/// * `$aligned` - The type of an element in its canonical, aligned form, e.g., `char`.
/// * `$convert` - A const function that converts an `$aligned` into its unaligned equivalent, e.g.,
/// `const fn from_aligned(a: CanonicalType) -> CanonicalType::ULE`.
/// * `$x` - The elements that the `ZeroSlice` will hold.
///
/// # Examples
///
/// Using array-conversion functions provided by this crate:
///
/// ```
/// use zerovec::{ZeroSlice, zeroslice, ule::AsULE};
/// use zerovec::ule::UnvalidatedChar;
///
/// const SIGNATURE: &ZeroSlice<char> = zeroslice!(char; <char as AsULE>::ULE::from_aligned; ['b', 'y', 'e', '✌']);
/// const EMPTY: &ZeroSlice<u32> = zeroslice![];
/// const UC: &ZeroSlice<UnvalidatedChar> =
/// zeroslice!(
/// UnvalidatedChar;
/// <UnvalidatedChar as AsULE>::ULE::from_unvalidated_char;
/// [UnvalidatedChar::from_char('a')]
/// );
/// let empty: &ZeroSlice<u32> = zeroslice![];
/// let nums = zeroslice!(u32; <u32 as AsULE>::ULE::from_unsigned; [1, 2, 3, 4, 5]);
/// assert_eq!(nums.last().unwrap(), 5);
/// ```
///
/// Using a custom array-conversion function:
///
/// ```
/// use zerovec::{ule::AsULE, ule::RawBytesULE, zeroslice, ZeroSlice};
///
/// const fn be_convert(num: i16) -> <i16 as AsULE>::ULE {
/// RawBytesULE(num.to_be_bytes())
/// }
///
/// const NUMBERS_BE: &ZeroSlice<i16> =
/// zeroslice!(i16; be_convert; [1, -2, 3, -4, 5]);
/// ```
#[macro_export]
macro_rules! zeroslice {
() => (
$crate::ZeroSlice::new_empty()
);
($aligned:ty; $convert:expr; [$($x:expr),+ $(,)?]) => (
$crate::ZeroSlice::<$aligned>::from_ule_slice(
{const X: &[<$aligned as $crate::ule::AsULE>::ULE] = &[
$($convert($x)),*
]; X}
)
);
}
/// Creates a borrowed `ZeroVec`. Convenience wrapper for `zeroslice!(...).as_zerovec()`. The value
/// will be created at compile-time, meaning that all arguments must also be constant.
///
/// See [`zeroslice!`](crate::zeroslice) for more information.
///
/// # Examples
///
/// ```
/// use zerovec::{ZeroVec, zerovec, ule::AsULE};
///
/// const SIGNATURE: ZeroVec<char> = zerovec!(char; <char as AsULE>::ULE::from_aligned; ['a', 'y', 'e', '✌']);
/// assert!(!SIGNATURE.is_owned());
///
/// const EMPTY: ZeroVec<u32> = zerovec![];
/// assert!(!EMPTY.is_owned());
/// ```
#[macro_export]
macro_rules! zerovec {
() => (
$crate::ZeroVec::new()
);
($aligned:ty; $convert:expr; [$($x:expr),+ $(,)?]) => (
$crate::zeroslice![$aligned; $convert; [$($x),+]].as_zerovec()
);
}
#[cfg(test)]
mod tests {
use super::*;
use crate::samples::*;
#[test]
fn test_get() {
{
let zerovec = ZeroVec::from_slice_or_alloc(TEST_SLICE);
assert_eq!(zerovec.get(0), Some(TEST_SLICE[0]));
assert_eq!(zerovec.get(1), Some(TEST_SLICE[1]));
assert_eq!(zerovec.get(2), Some(TEST_SLICE[2]));
}
{
let zerovec = ZeroVec::<u32>::parse_byte_slice(TEST_BUFFER_LE).unwrap();
assert_eq!(zerovec.get(0), Some(TEST_SLICE[0]));
assert_eq!(zerovec.get(1), Some(TEST_SLICE[1]));
assert_eq!(zerovec.get(2), Some(TEST_SLICE[2]));
}
}
#[test]
fn test_binary_search() {
{
let zerovec = ZeroVec::from_slice_or_alloc(TEST_SLICE);
assert_eq!(Ok(3), zerovec.binary_search(&0x0e0d0c));
assert_eq!(Err(3), zerovec.binary_search(&0x0c0d0c));
}
{
let zerovec = ZeroVec::<u32>::parse_byte_slice(TEST_BUFFER_LE).unwrap();
assert_eq!(Ok(3), zerovec.binary_search(&0x0e0d0c));
assert_eq!(Err(3), zerovec.binary_search(&0x0c0d0c));
}
}
#[test]
fn test_odd_alignment() {
assert_eq!(
Some(0x020100),
ZeroVec::<u32>::parse_byte_slice(TEST_BUFFER_LE)
.unwrap()
.get(0)
);
assert_eq!(
Some(0x04000201),
ZeroVec::<u32>::parse_byte_slice(&TEST_BUFFER_LE[1..77])
.unwrap()
.get(0)
);
assert_eq!(
Some(0x05040002),
ZeroVec::<u32>::parse_byte_slice(&TEST_BUFFER_LE[2..78])
.unwrap()
.get(0)
);
assert_eq!(
Some(0x06050400),
ZeroVec::<u32>::parse_byte_slice(&TEST_BUFFER_LE[3..79])
.unwrap()
.get(0)
);
assert_eq!(
Some(0x060504),
ZeroVec::<u32>::parse_byte_slice(&TEST_BUFFER_LE[4..])
.unwrap()
.get(0)
);
assert_eq!(
Some(0x4e4d4c00),
ZeroVec::<u32>::parse_byte_slice(&TEST_BUFFER_LE[75..79])
.unwrap()
.get(0)
);
assert_eq!(
Some(0x4e4d4c00),
ZeroVec::<u32>::parse_byte_slice(&TEST_BUFFER_LE[3..79])
.unwrap()
.get(18)
);
assert_eq!(
Some(0x4e4d4c),
ZeroVec::<u32>::parse_byte_slice(&TEST_BUFFER_LE[76..])
.unwrap()
.get(0)
);
assert_eq!(
Some(0x4e4d4c),
ZeroVec::<u32>::parse_byte_slice(TEST_BUFFER_LE)
.unwrap()
.get(19)
);
// TODO(#1144): Check for correct slice length in RawBytesULE
// assert_eq!(
// None,
// ZeroVec::<u32>::parse_byte_slice(&TEST_BUFFER_LE[77..])
// .unwrap()
// .get(0)
// );
assert_eq!(
None,
ZeroVec::<u32>::parse_byte_slice(TEST_BUFFER_LE)
.unwrap()
.get(20)
);
assert_eq!(
None,
ZeroVec::<u32>::parse_byte_slice(&TEST_BUFFER_LE[3..79])
.unwrap()
.get(19)
);
}
}