1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
// Copyright 2023 The AccessKit Authors. All rights reserved.
// Licensed under the Apache License, Version 2.0 (found in
// the LICENSE-APACHE file) or the MIT license (found in
// the LICENSE-MIT file), at your option.
// Derived from kurbo.
// Copyright 2018 The kurbo Authors.
// Licensed under the Apache License, Version 2.0 (found in
// the LICENSE-APACHE file) or the MIT license (found in
// the LICENSE-MIT file), at your option.
use std::{
fmt,
ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign},
};
/// A 2D affine transform. Derived from [kurbo](https://github.com/linebender/kurbo).
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(C)]
pub struct Affine([f64; 6]);
impl Affine {
/// The identity transform.
pub const IDENTITY: Affine = Affine::scale(1.0);
/// A transform that is flipped on the y-axis. Useful for converting between
/// y-up and y-down spaces.
pub const FLIP_Y: Affine = Affine::new([1.0, 0., 0., -1.0, 0., 0.]);
/// A transform that is flipped on the x-axis.
pub const FLIP_X: Affine = Affine::new([-1.0, 0., 0., 1.0, 0., 0.]);
/// Construct an affine transform from coefficients.
///
/// If the coefficients are `(a, b, c, d, e, f)`, then the resulting
/// transformation represents this augmented matrix:
///
/// ```text
/// | a c e |
/// | b d f |
/// | 0 0 1 |
/// ```
///
/// Note that this convention is transposed from PostScript and
/// Direct2D, but is consistent with the
/// [Wikipedia](https://en.wikipedia.org/wiki/Affine_transformation)
/// formulation of affine transformation as augmented matrix. The
/// idea is that `(A * B) * v == A * (B * v)`, where `*` is the
/// [`Mul`](std::ops::Mul) trait.
#[inline]
pub const fn new(c: [f64; 6]) -> Affine {
Affine(c)
}
/// An affine transform representing uniform scaling.
#[inline]
pub const fn scale(s: f64) -> Affine {
Affine([s, 0.0, 0.0, s, 0.0, 0.0])
}
/// An affine transform representing non-uniform scaling
/// with different scale values for x and y
#[inline]
pub const fn scale_non_uniform(s_x: f64, s_y: f64) -> Affine {
Affine([s_x, 0.0, 0.0, s_y, 0.0, 0.0])
}
/// An affine transform representing rotation.
///
/// The convention for rotation is that a positive angle rotates a
/// positive X direction into positive Y. Thus, in a Y-down coordinate
/// system (as is common for graphics), it is a clockwise rotation, and
/// in Y-up (traditional for math), it is anti-clockwise.
///
/// The angle, `th`, is expressed in radians.
#[inline]
pub fn rotate(th: f64) -> Affine {
let (s, c) = th.sin_cos();
Affine([c, s, -s, c, 0.0, 0.0])
}
/// An affine transform representing translation.
#[inline]
pub fn translate<V: Into<Vec2>>(p: V) -> Affine {
let p = p.into();
Affine([1.0, 0.0, 0.0, 1.0, p.x, p.y])
}
/// Creates an affine transformation that takes the unit square to the given rectangle.
///
/// Useful when you want to draw into the unit square but have your output fill any rectangle.
/// In this case push the `Affine` onto the transform stack.
pub fn map_unit_square(rect: Rect) -> Affine {
Affine([rect.width(), 0., 0., rect.height(), rect.x0, rect.y0])
}
/// Get the coefficients of the transform.
#[inline]
pub fn as_coeffs(self) -> [f64; 6] {
self.0
}
/// Compute the determinant of this transform.
pub fn determinant(self) -> f64 {
self.0[0] * self.0[3] - self.0[1] * self.0[2]
}
/// Compute the inverse transform.
///
/// Produces NaN values when the determinant is zero.
pub fn inverse(self) -> Affine {
let inv_det = self.determinant().recip();
Affine([
inv_det * self.0[3],
-inv_det * self.0[1],
-inv_det * self.0[2],
inv_det * self.0[0],
inv_det * (self.0[2] * self.0[5] - self.0[3] * self.0[4]),
inv_det * (self.0[1] * self.0[4] - self.0[0] * self.0[5]),
])
}
/// Compute the bounding box of a transformed rectangle.
///
/// Returns the minimal `Rect` that encloses the given `Rect` after affine transformation.
/// If the transform is axis-aligned, then this bounding box is "tight", in other words the
/// returned `Rect` is the transformed rectangle.
///
/// The returned rectangle always has non-negative width and height.
pub fn transform_rect_bbox(self, rect: Rect) -> Rect {
let p00 = self * Point::new(rect.x0, rect.y0);
let p01 = self * Point::new(rect.x0, rect.y1);
let p10 = self * Point::new(rect.x1, rect.y0);
let p11 = self * Point::new(rect.x1, rect.y1);
Rect::from_points(p00, p01).union(Rect::from_points(p10, p11))
}
/// Is this map finite?
#[inline]
pub fn is_finite(&self) -> bool {
self.0[0].is_finite()
&& self.0[1].is_finite()
&& self.0[2].is_finite()
&& self.0[3].is_finite()
&& self.0[4].is_finite()
&& self.0[5].is_finite()
}
/// Is this map NaN?
#[inline]
pub fn is_nan(&self) -> bool {
self.0[0].is_nan()
|| self.0[1].is_nan()
|| self.0[2].is_nan()
|| self.0[3].is_nan()
|| self.0[4].is_nan()
|| self.0[5].is_nan()
}
}
impl Default for Affine {
#[inline]
fn default() -> Affine {
Affine::IDENTITY
}
}
impl Mul<Point> for Affine {
type Output = Point;
#[inline]
fn mul(self, other: Point) -> Point {
Point::new(
self.0[0] * other.x + self.0[2] * other.y + self.0[4],
self.0[1] * other.x + self.0[3] * other.y + self.0[5],
)
}
}
impl Mul for Affine {
type Output = Affine;
#[inline]
fn mul(self, other: Affine) -> Affine {
Affine([
self.0[0] * other.0[0] + self.0[2] * other.0[1],
self.0[1] * other.0[0] + self.0[3] * other.0[1],
self.0[0] * other.0[2] + self.0[2] * other.0[3],
self.0[1] * other.0[2] + self.0[3] * other.0[3],
self.0[0] * other.0[4] + self.0[2] * other.0[5] + self.0[4],
self.0[1] * other.0[4] + self.0[3] * other.0[5] + self.0[5],
])
}
}
impl MulAssign for Affine {
#[inline]
fn mul_assign(&mut self, other: Affine) {
*self = self.mul(other);
}
}
impl Mul<Affine> for f64 {
type Output = Affine;
#[inline]
fn mul(self, other: Affine) -> Affine {
Affine([
self * other.0[0],
self * other.0[1],
self * other.0[2],
self * other.0[3],
self * other.0[4],
self * other.0[5],
])
}
}
/// A 2D point. Derived from [kurbo](https://github.com/linebender/kurbo).
#[derive(Clone, Copy, Default, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(C)]
pub struct Point {
/// The x coordinate.
pub x: f64,
/// The y coordinate.
pub y: f64,
}
impl Point {
/// The point (0, 0).
pub const ZERO: Point = Point::new(0., 0.);
/// The point at the origin; (0, 0).
pub const ORIGIN: Point = Point::new(0., 0.);
/// Create a new `Point` with the provided `x` and `y` coordinates.
#[inline]
pub const fn new(x: f64, y: f64) -> Self {
Point { x, y }
}
/// Convert this point into a `Vec2`.
#[inline]
pub const fn to_vec2(self) -> Vec2 {
Vec2::new(self.x, self.y)
}
}
impl From<(f64, f64)> for Point {
#[inline]
fn from(v: (f64, f64)) -> Point {
Point { x: v.0, y: v.1 }
}
}
impl From<Point> for (f64, f64) {
#[inline]
fn from(v: Point) -> (f64, f64) {
(v.x, v.y)
}
}
impl Add<Vec2> for Point {
type Output = Point;
#[inline]
fn add(self, other: Vec2) -> Self {
Point::new(self.x + other.x, self.y + other.y)
}
}
impl AddAssign<Vec2> for Point {
#[inline]
fn add_assign(&mut self, other: Vec2) {
*self = Point::new(self.x + other.x, self.y + other.y);
}
}
impl Sub<Vec2> for Point {
type Output = Point;
#[inline]
fn sub(self, other: Vec2) -> Self {
Point::new(self.x - other.x, self.y - other.y)
}
}
impl SubAssign<Vec2> for Point {
#[inline]
fn sub_assign(&mut self, other: Vec2) {
*self = Point::new(self.x - other.x, self.y - other.y);
}
}
impl Add<(f64, f64)> for Point {
type Output = Point;
#[inline]
fn add(self, (x, y): (f64, f64)) -> Self {
Point::new(self.x + x, self.y + y)
}
}
impl AddAssign<(f64, f64)> for Point {
#[inline]
fn add_assign(&mut self, (x, y): (f64, f64)) {
*self = Point::new(self.x + x, self.y + y);
}
}
impl Sub<(f64, f64)> for Point {
type Output = Point;
#[inline]
fn sub(self, (x, y): (f64, f64)) -> Self {
Point::new(self.x - x, self.y - y)
}
}
impl SubAssign<(f64, f64)> for Point {
#[inline]
fn sub_assign(&mut self, (x, y): (f64, f64)) {
*self = Point::new(self.x - x, self.y - y);
}
}
impl Sub<Point> for Point {
type Output = Vec2;
#[inline]
fn sub(self, other: Point) -> Vec2 {
Vec2::new(self.x - other.x, self.y - other.y)
}
}
impl fmt::Debug for Point {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "({:?}, {:?})", self.x, self.y)
}
}
/// A rectangle. Derived from [kurbo](https://github.com/linebender/kurbo).
#[derive(Clone, Copy, Default, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(C)]
pub struct Rect {
/// The minimum x coordinate (left edge).
pub x0: f64,
/// The minimum y coordinate (top edge in y-down spaces).
pub y0: f64,
/// The maximum x coordinate (right edge).
pub x1: f64,
/// The maximum y coordinate (bottom edge in y-down spaces).
pub y1: f64,
}
impl From<(Point, Point)> for Rect {
fn from(points: (Point, Point)) -> Rect {
Rect::from_points(points.0, points.1)
}
}
impl From<(Point, Size)> for Rect {
fn from(params: (Point, Size)) -> Rect {
Rect::from_origin_size(params.0, params.1)
}
}
impl Add<Vec2> for Rect {
type Output = Rect;
#[inline]
fn add(self, v: Vec2) -> Rect {
Rect::new(self.x0 + v.x, self.y0 + v.y, self.x1 + v.x, self.y1 + v.y)
}
}
impl Sub<Vec2> for Rect {
type Output = Rect;
#[inline]
fn sub(self, v: Vec2) -> Rect {
Rect::new(self.x0 - v.x, self.y0 - v.y, self.x1 - v.x, self.y1 - v.y)
}
}
impl fmt::Debug for Rect {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if f.alternate() {
write!(
f,
"Rect {{ origin: {:?}, size: {:?} }}",
self.origin(),
self.size()
)
} else {
write!(
f,
"Rect {{ x0: {:?}, y0: {:?}, x1: {:?}, y1: {:?} }}",
self.x0, self.y0, self.x1, self.y1
)
}
}
}
impl Rect {
/// The empty rectangle at the origin.
pub const ZERO: Rect = Rect::new(0., 0., 0., 0.);
/// A new rectangle from minimum and maximum coordinates.
#[inline]
pub const fn new(x0: f64, y0: f64, x1: f64, y1: f64) -> Rect {
Rect { x0, y0, x1, y1 }
}
/// A new rectangle from two points.
///
/// The result will have non-negative width and height.
#[inline]
pub fn from_points(p0: impl Into<Point>, p1: impl Into<Point>) -> Rect {
let p0 = p0.into();
let p1 = p1.into();
Rect::new(p0.x, p0.y, p1.x, p1.y).abs()
}
/// A new rectangle from origin and size.
///
/// The result will have non-negative width and height.
#[inline]
pub fn from_origin_size(origin: impl Into<Point>, size: impl Into<Size>) -> Rect {
let origin = origin.into();
Rect::from_points(origin, origin + size.into().to_vec2())
}
/// Create a new `Rect` with the same size as `self` and a new origin.
#[inline]
pub fn with_origin(self, origin: impl Into<Point>) -> Rect {
Rect::from_origin_size(origin, self.size())
}
/// Create a new `Rect` with the same origin as `self` and a new size.
#[inline]
pub fn with_size(self, size: impl Into<Size>) -> Rect {
Rect::from_origin_size(self.origin(), size)
}
/// The width of the rectangle.
///
/// Note: nothing forbids negative width.
#[inline]
pub fn width(&self) -> f64 {
self.x1 - self.x0
}
/// The height of the rectangle.
///
/// Note: nothing forbids negative height.
#[inline]
pub fn height(&self) -> f64 {
self.y1 - self.y0
}
/// Returns the minimum value for the x-coordinate of the rectangle.
#[inline]
pub fn min_x(&self) -> f64 {
self.x0.min(self.x1)
}
/// Returns the maximum value for the x-coordinate of the rectangle.
#[inline]
pub fn max_x(&self) -> f64 {
self.x0.max(self.x1)
}
/// Returns the minimum value for the y-coordinate of the rectangle.
#[inline]
pub fn min_y(&self) -> f64 {
self.y0.min(self.y1)
}
/// Returns the maximum value for the y-coordinate of the rectangle.
#[inline]
pub fn max_y(&self) -> f64 {
self.y0.max(self.y1)
}
/// The origin of the rectangle.
///
/// This is the top left corner in a y-down space and with
/// non-negative width and height.
#[inline]
pub fn origin(&self) -> Point {
Point::new(self.x0, self.y0)
}
/// The size of the rectangle.
#[inline]
pub fn size(&self) -> Size {
Size::new(self.width(), self.height())
}
/// Take absolute value of width and height.
///
/// The resulting rect has the same extents as the original, but is
/// guaranteed to have non-negative width and height.
#[inline]
pub fn abs(&self) -> Rect {
let Rect { x0, y0, x1, y1 } = *self;
Rect::new(x0.min(x1), y0.min(y1), x0.max(x1), y0.max(y1))
}
/// The area of the rectangle.
#[inline]
pub fn area(&self) -> f64 {
self.width() * self.height()
}
/// Whether this rectangle has zero area.
///
/// Note: a rectangle with negative area is not considered empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.area() == 0.0
}
/// Returns `true` if `point` lies within `self`.
#[inline]
pub fn contains(&self, point: Point) -> bool {
point.x >= self.x0 && point.x < self.x1 && point.y >= self.y0 && point.y < self.y1
}
/// The smallest rectangle enclosing two rectangles.
///
/// Results are valid only if width and height are non-negative.
#[inline]
pub fn union(&self, other: Rect) -> Rect {
Rect::new(
self.x0.min(other.x0),
self.y0.min(other.y0),
self.x1.max(other.x1),
self.y1.max(other.y1),
)
}
/// Compute the union with one point.
///
/// This method includes the perimeter of zero-area rectangles.
/// Thus, a succession of `union_pt` operations on a series of
/// points yields their enclosing rectangle.
///
/// Results are valid only if width and height are non-negative.
pub fn union_pt(&self, pt: Point) -> Rect {
Rect::new(
self.x0.min(pt.x),
self.y0.min(pt.y),
self.x1.max(pt.x),
self.y1.max(pt.y),
)
}
/// The intersection of two rectangles.
///
/// The result is zero-area if either input has negative width or
/// height. The result always has non-negative width and height.
#[inline]
pub fn intersect(&self, other: Rect) -> Rect {
let x0 = self.x0.max(other.x0);
let y0 = self.y0.max(other.y0);
let x1 = self.x1.min(other.x1);
let y1 = self.y1.min(other.y1);
Rect::new(x0, y0, x1.max(x0), y1.max(y0))
}
}
/// A 2D size. Derived from [kurbo](https://github.com/linebender/kurbo).
#[derive(Clone, Copy, Default, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(C)]
pub struct Size {
/// The width.
pub width: f64,
/// The height.
pub height: f64,
}
impl Size {
/// A size with zero width or height.
pub const ZERO: Size = Size::new(0., 0.);
/// Create a new `Size` with the provided `width` and `height`.
#[inline]
pub const fn new(width: f64, height: f64) -> Self {
Size { width, height }
}
/// Convert this size into a [`Vec2`], with `width` mapped to `x` and `height`
/// mapped to `y`.
#[inline]
pub const fn to_vec2(self) -> Vec2 {
Vec2::new(self.width, self.height)
}
}
impl fmt::Debug for Size {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}W×{:?}H", self.width, self.height)
}
}
impl MulAssign<f64> for Size {
#[inline]
fn mul_assign(&mut self, other: f64) {
*self = Size {
width: self.width * other,
height: self.height * other,
};
}
}
impl Mul<Size> for f64 {
type Output = Size;
#[inline]
fn mul(self, other: Size) -> Size {
other * self
}
}
impl Mul<f64> for Size {
type Output = Size;
#[inline]
fn mul(self, other: f64) -> Size {
Size {
width: self.width * other,
height: self.height * other,
}
}
}
impl DivAssign<f64> for Size {
#[inline]
fn div_assign(&mut self, other: f64) {
*self = Size {
width: self.width / other,
height: self.height / other,
};
}
}
impl Div<f64> for Size {
type Output = Size;
#[inline]
fn div(self, other: f64) -> Size {
Size {
width: self.width / other,
height: self.height / other,
}
}
}
impl Add<Size> for Size {
type Output = Size;
#[inline]
fn add(self, other: Size) -> Size {
Size {
width: self.width + other.width,
height: self.height + other.height,
}
}
}
impl AddAssign<Size> for Size {
#[inline]
fn add_assign(&mut self, other: Size) {
*self = *self + other;
}
}
impl Sub<Size> for Size {
type Output = Size;
#[inline]
fn sub(self, other: Size) -> Size {
Size {
width: self.width - other.width,
height: self.height - other.height,
}
}
}
impl SubAssign<Size> for Size {
#[inline]
fn sub_assign(&mut self, other: Size) {
*self = *self - other;
}
}
impl From<(f64, f64)> for Size {
#[inline]
fn from(v: (f64, f64)) -> Size {
Size {
width: v.0,
height: v.1,
}
}
}
impl From<Size> for (f64, f64) {
#[inline]
fn from(v: Size) -> (f64, f64) {
(v.width, v.height)
}
}
/// A 2D vector. Derived from [kurbo](https://github.com/linebender/kurbo).
///
/// This is intended primarily for a vector in the mathematical sense,
/// but it can be interpreted as a translation, and converted to and
/// from a point (vector relative to the origin) and size.
#[derive(Clone, Copy, Default, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(C)]
pub struct Vec2 {
/// The x-coordinate.
pub x: f64,
/// The y-coordinate.
pub y: f64,
}
impl Vec2 {
/// The vector (0, 0).
pub const ZERO: Vec2 = Vec2::new(0., 0.);
/// Create a new vector.
#[inline]
pub const fn new(x: f64, y: f64) -> Vec2 {
Vec2 { x, y }
}
/// Convert this vector into a `Point`.
#[inline]
pub const fn to_point(self) -> Point {
Point::new(self.x, self.y)
}
/// Convert this vector into a `Size`.
#[inline]
pub const fn to_size(self) -> Size {
Size::new(self.x, self.y)
}
}
impl From<(f64, f64)> for Vec2 {
#[inline]
fn from(v: (f64, f64)) -> Vec2 {
Vec2 { x: v.0, y: v.1 }
}
}
impl From<Vec2> for (f64, f64) {
#[inline]
fn from(v: Vec2) -> (f64, f64) {
(v.x, v.y)
}
}
impl Add for Vec2 {
type Output = Vec2;
#[inline]
fn add(self, other: Vec2) -> Vec2 {
Vec2 {
x: self.x + other.x,
y: self.y + other.y,
}
}
}
impl AddAssign for Vec2 {
#[inline]
fn add_assign(&mut self, other: Vec2) {
*self = Vec2 {
x: self.x + other.x,
y: self.y + other.y,
}
}
}
impl Sub for Vec2 {
type Output = Vec2;
#[inline]
fn sub(self, other: Vec2) -> Vec2 {
Vec2 {
x: self.x - other.x,
y: self.y - other.y,
}
}
}
impl SubAssign for Vec2 {
#[inline]
fn sub_assign(&mut self, other: Vec2) {
*self = Vec2 {
x: self.x - other.x,
y: self.y - other.y,
}
}
}
impl Mul<f64> for Vec2 {
type Output = Vec2;
#[inline]
fn mul(self, other: f64) -> Vec2 {
Vec2 {
x: self.x * other,
y: self.y * other,
}
}
}
impl MulAssign<f64> for Vec2 {
#[inline]
fn mul_assign(&mut self, other: f64) {
*self = Vec2 {
x: self.x * other,
y: self.y * other,
};
}
}
impl Mul<Vec2> for f64 {
type Output = Vec2;
#[inline]
fn mul(self, other: Vec2) -> Vec2 {
other * self
}
}
impl Div<f64> for Vec2 {
type Output = Vec2;
/// Note: division by a scalar is implemented by multiplying by the reciprocal.
///
/// This is more efficient but has different roundoff behavior than division.
#[inline]
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, other: f64) -> Vec2 {
self * other.recip()
}
}
impl DivAssign<f64> for Vec2 {
#[inline]
fn div_assign(&mut self, other: f64) {
self.mul_assign(other.recip());
}
}
impl Neg for Vec2 {
type Output = Vec2;
#[inline]
fn neg(self) -> Vec2 {
Vec2 {
x: -self.x,
y: -self.y,
}
}
}