half/vec.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
//! Contains utility functions and traits to convert between vectors of [`u16`] bits and [`f16`] or
//! [`bf16`] vectors.
//!
//! The utility [`HalfBitsVecExt`] sealed extension trait is implemented for [`Vec<u16>`] vectors,
//! while the utility [`HalfFloatVecExt`] sealed extension trait is implemented for both
//! [`Vec<f16>`] and [`Vec<bf16>`] vectors. These traits provide efficient conversions and
//! reinterpret casting of larger buffers of floating point values, and are automatically included
//! in the [`prelude`][crate::prelude] module.
//!
//! This module is only available with the `std` or `alloc` feature.
use super::{bf16, f16, slice::HalfFloatSliceExt};
#[cfg(feature = "alloc")]
#[allow(unused_imports)]
use alloc::{vec, vec::Vec};
use core::mem;
/// Extensions to [`Vec<f16>`] and [`Vec<bf16>`] to support reinterpret operations.
///
/// This trait is sealed and cannot be implemented outside of this crate.
pub trait HalfFloatVecExt: private::SealedHalfFloatVec {
/// Reinterprets a vector of [`f16`]or [`bf16`] numbers as a vector of [`u16`] bits.
///
/// This is a zero-copy operation. The reinterpreted vector has the same memory location as
/// `self`.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let float_buffer = vec![f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.)];
/// let int_buffer = float_buffer.reinterpret_into();
///
/// assert_eq!(int_buffer, [f16::from_f32(1.).to_bits(), f16::from_f32(2.).to_bits(), f16::from_f32(3.).to_bits()]);
/// ```
#[must_use]
fn reinterpret_into(self) -> Vec<u16>;
/// Converts all of the elements of a `[f32]` slice into a new [`f16`] or [`bf16`] vector.
///
/// The conversion operation is vectorized over the slice, meaning the conversion may be more
/// efficient than converting individual elements on some hardware that supports SIMD
/// conversions. See [crate documentation][crate] for more information on hardware conversion
/// support.
///
/// # Examples
/// ```rust
/// # use half::prelude::*;
/// let float_values = [1., 2., 3., 4.];
/// let vec: Vec<f16> = Vec::from_f32_slice(&float_values);
///
/// assert_eq!(vec, vec![f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.), f16::from_f32(4.)]);
/// ```
#[must_use]
fn from_f32_slice(slice: &[f32]) -> Self;
/// Converts all of the elements of a `[f64]` slice into a new [`f16`] or [`bf16`] vector.
///
/// The conversion operation is vectorized over the slice, meaning the conversion may be more
/// efficient than converting individual elements on some hardware that supports SIMD
/// conversions. See [crate documentation][crate] for more information on hardware conversion
/// support.
///
/// # Examples
/// ```rust
/// # use half::prelude::*;
/// let float_values = [1., 2., 3., 4.];
/// let vec: Vec<f16> = Vec::from_f64_slice(&float_values);
///
/// assert_eq!(vec, vec![f16::from_f64(1.), f16::from_f64(2.), f16::from_f64(3.), f16::from_f64(4.)]);
/// ```
#[must_use]
fn from_f64_slice(slice: &[f64]) -> Self;
}
/// Extensions to [`Vec<u16>`] to support reinterpret operations.
///
/// This trait is sealed and cannot be implemented outside of this crate.
pub trait HalfBitsVecExt: private::SealedHalfBitsVec {
/// Reinterprets a vector of [`u16`] bits as a vector of [`f16`] or [`bf16`] numbers.
///
/// `H` is the type to cast to, and must be either the [`f16`] or [`bf16`] type.
///
/// This is a zero-copy operation. The reinterpreted vector has the same memory location as
/// `self`.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let int_buffer = vec![f16::from_f32(1.).to_bits(), f16::from_f32(2.).to_bits(), f16::from_f32(3.).to_bits()];
/// let float_buffer = int_buffer.reinterpret_into::<f16>();
///
/// assert_eq!(float_buffer, [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.)]);
/// ```
#[must_use]
fn reinterpret_into<H>(self) -> Vec<H>
where
H: crate::private::SealedHalf;
}
mod private {
use crate::{bf16, f16};
#[cfg(feature = "alloc")]
#[allow(unused_imports)]
use alloc::vec::Vec;
pub trait SealedHalfFloatVec {}
impl SealedHalfFloatVec for Vec<f16> {}
impl SealedHalfFloatVec for Vec<bf16> {}
pub trait SealedHalfBitsVec {}
impl SealedHalfBitsVec for Vec<u16> {}
}
impl HalfFloatVecExt for Vec<f16> {
#[inline]
fn reinterpret_into(mut self) -> Vec<u16> {
// An f16 array has same length and capacity as u16 array
let length = self.len();
let capacity = self.capacity();
// Actually reinterpret the contents of the Vec<f16> as u16,
// knowing that structs are represented as only their members in memory,
// which is the u16 part of `f16(u16)`
let pointer = self.as_mut_ptr() as *mut u16;
// Prevent running a destructor on the old Vec<u16>, so the pointer won't be deleted
mem::forget(self);
// Finally construct a new Vec<f16> from the raw pointer
// SAFETY: We are reconstructing full length and capacity of original vector,
// using its original pointer, and the size of elements are identical.
unsafe { Vec::from_raw_parts(pointer, length, capacity) }
}
#[allow(clippy::uninit_vec)]
fn from_f32_slice(slice: &[f32]) -> Self {
let mut vec = vec![f16::from_bits(0); slice.len()];
vec.convert_from_f32_slice(slice);
vec
}
#[allow(clippy::uninit_vec)]
fn from_f64_slice(slice: &[f64]) -> Self {
let mut vec = vec![f16::from_bits(0); slice.len()];
vec.convert_from_f64_slice(slice);
vec
}
}
impl HalfFloatVecExt for Vec<bf16> {
#[inline]
fn reinterpret_into(mut self) -> Vec<u16> {
// An f16 array has same length and capacity as u16 array
let length = self.len();
let capacity = self.capacity();
// Actually reinterpret the contents of the Vec<f16> as u16,
// knowing that structs are represented as only their members in memory,
// which is the u16 part of `f16(u16)`
let pointer = self.as_mut_ptr() as *mut u16;
// Prevent running a destructor on the old Vec<u16>, so the pointer won't be deleted
mem::forget(self);
// Finally construct a new Vec<f16> from the raw pointer
// SAFETY: We are reconstructing full length and capacity of original vector,
// using its original pointer, and the size of elements are identical.
unsafe { Vec::from_raw_parts(pointer, length, capacity) }
}
#[allow(clippy::uninit_vec)]
fn from_f32_slice(slice: &[f32]) -> Self {
let mut vec = vec![bf16::from_bits(0); slice.len()];
vec.convert_from_f32_slice(slice);
vec
}
#[allow(clippy::uninit_vec)]
fn from_f64_slice(slice: &[f64]) -> Self {
let mut vec = vec![bf16::from_bits(0); slice.len()];
vec.convert_from_f64_slice(slice);
vec
}
}
impl HalfBitsVecExt for Vec<u16> {
// This is safe because all traits are sealed
#[inline]
fn reinterpret_into<H>(mut self) -> Vec<H>
where
H: crate::private::SealedHalf,
{
// An f16 array has same length and capacity as u16 array
let length = self.len();
let capacity = self.capacity();
// Actually reinterpret the contents of the Vec<u16> as f16,
// knowing that structs are represented as only their members in memory,
// which is the u16 part of `f16(u16)`
let pointer = self.as_mut_ptr() as *mut H;
// Prevent running a destructor on the old Vec<u16>, so the pointer won't be deleted
mem::forget(self);
// Finally construct a new Vec<f16> from the raw pointer
// SAFETY: We are reconstructing full length and capacity of original vector,
// using its original pointer, and the size of elements are identical.
unsafe { Vec::from_raw_parts(pointer, length, capacity) }
}
}
#[cfg(test)]
mod test {
use super::{HalfBitsVecExt, HalfFloatVecExt};
use crate::{bf16, f16};
#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::vec;
#[test]
fn test_vec_conversions_f16() {
let numbers = vec![f16::E, f16::PI, f16::EPSILON, f16::FRAC_1_SQRT_2];
let bits = vec![
f16::E.to_bits(),
f16::PI.to_bits(),
f16::EPSILON.to_bits(),
f16::FRAC_1_SQRT_2.to_bits(),
];
let bits_cloned = bits.clone();
// Convert from bits to numbers
let from_bits = bits.reinterpret_into::<f16>();
assert_eq!(&from_bits[..], &numbers[..]);
// Convert from numbers back to bits
let to_bits = from_bits.reinterpret_into();
assert_eq!(&to_bits[..], &bits_cloned[..]);
}
#[test]
fn test_vec_conversions_bf16() {
let numbers = vec![bf16::E, bf16::PI, bf16::EPSILON, bf16::FRAC_1_SQRT_2];
let bits = vec![
bf16::E.to_bits(),
bf16::PI.to_bits(),
bf16::EPSILON.to_bits(),
bf16::FRAC_1_SQRT_2.to_bits(),
];
let bits_cloned = bits.clone();
// Convert from bits to numbers
let from_bits = bits.reinterpret_into::<bf16>();
assert_eq!(&from_bits[..], &numbers[..]);
// Convert from numbers back to bits
let to_bits = from_bits.reinterpret_into();
assert_eq!(&to_bits[..], &bits_cloned[..]);
}
}