kurbo/
circle.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
// Copyright 2019 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! Implementation of circle shape.

use core::{
    f64::consts::{FRAC_PI_2, PI},
    iter,
    ops::{Add, Mul, Sub},
};

use crate::{Affine, Arc, ArcAppendIter, Ellipse, PathEl, Point, Rect, Shape, Vec2};

#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;

/// A circle.
#[derive(Clone, Copy, Default, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Circle {
    /// The center.
    pub center: Point,
    /// The radius.
    pub radius: f64,
}

impl Circle {
    /// A new circle from center and radius.
    #[inline]
    pub fn new(center: impl Into<Point>, radius: f64) -> Circle {
        Circle {
            center: center.into(),
            radius,
        }
    }

    /// Create a [`CircleSegment`] by cutting out parts of this circle.
    pub fn segment(self, inner_radius: f64, start_angle: f64, sweep_angle: f64) -> CircleSegment {
        CircleSegment {
            center: self.center,
            outer_radius: self.radius,
            inner_radius,
            start_angle,
            sweep_angle,
        }
    }

    /// Is this circle [finite]?
    ///
    /// [finite]: f64::is_finite
    #[inline]
    pub fn is_finite(&self) -> bool {
        self.center.is_finite() && self.radius.is_finite()
    }

    /// Is this circle [NaN]?
    ///
    /// [NaN]: f64::is_nan
    #[inline]
    pub fn is_nan(&self) -> bool {
        self.center.is_nan() || self.radius.is_nan()
    }
}

impl Add<Vec2> for Circle {
    type Output = Circle;

    #[inline]
    fn add(self, v: Vec2) -> Circle {
        Circle {
            center: self.center + v,
            radius: self.radius,
        }
    }
}

impl Sub<Vec2> for Circle {
    type Output = Circle;

    #[inline]
    fn sub(self, v: Vec2) -> Circle {
        Circle {
            center: self.center - v,
            radius: self.radius,
        }
    }
}

impl Mul<Circle> for Affine {
    type Output = Ellipse;
    fn mul(self, other: Circle) -> Self::Output {
        self * Ellipse::from(other)
    }
}

#[doc(hidden)]
pub struct CirclePathIter {
    circle: Circle,
    delta_th: f64,
    arm_len: f64,
    ix: usize,
    n: usize,
}

impl Shape for Circle {
    type PathElementsIter<'iter> = CirclePathIter;

    fn path_elements(&self, tolerance: f64) -> CirclePathIter {
        let scaled_err = self.radius.abs() / tolerance;
        let (n, arm_len) = if scaled_err < 1.0 / 1.9608e-4 {
            // Solution from http://spencermortensen.com/articles/bezier-circle/
            (4, 0.551915024494)
        } else {
            // This is empirically determined to fall within error tolerance.
            let n = (1.1163 * scaled_err).powf(1.0 / 6.0).ceil() as usize;
            // Note: this isn't minimum error, but it is simple and we can easily
            // estimate the error.
            let arm_len = (4.0 / 3.0) * (FRAC_PI_2 / (n as f64)).tan();
            (n, arm_len)
        };
        CirclePathIter {
            circle: *self,
            delta_th: 2.0 * PI / (n as f64),
            arm_len,
            ix: 0,
            n,
        }
    }

    #[inline]
    fn area(&self) -> f64 {
        PI * self.radius.powi(2)
    }

    #[inline]
    fn perimeter(&self, _accuracy: f64) -> f64 {
        (2.0 * PI * self.radius).abs()
    }

    fn winding(&self, pt: Point) -> i32 {
        if (pt - self.center).hypot2() < self.radius.powi(2) {
            1
        } else {
            0
        }
    }

    #[inline]
    fn bounding_box(&self) -> Rect {
        let r = self.radius.abs();
        let (x, y) = self.center.into();
        Rect::new(x - r, y - r, x + r, y + r)
    }

    fn as_circle(&self) -> Option<Circle> {
        Some(*self)
    }
}

impl Iterator for CirclePathIter {
    type Item = PathEl;

    fn next(&mut self) -> Option<PathEl> {
        let a = self.arm_len;
        let r = self.circle.radius;
        let (x, y) = self.circle.center.into();
        let ix = self.ix;
        self.ix += 1;
        if ix == 0 {
            Some(PathEl::MoveTo(Point::new(x + r, y)))
        } else if ix <= self.n {
            let th1 = self.delta_th * (ix as f64);
            let th0 = th1 - self.delta_th;
            let (s0, c0) = th0.sin_cos();
            let (s1, c1) = if ix == self.n {
                (0.0, 1.0)
            } else {
                th1.sin_cos()
            };
            Some(PathEl::CurveTo(
                Point::new(x + r * (c0 - a * s0), y + r * (s0 + a * c0)),
                Point::new(x + r * (c1 + a * s1), y + r * (s1 - a * c1)),
                Point::new(x + r * c1, y + r * s1),
            ))
        } else if ix == self.n + 1 {
            Some(PathEl::ClosePath)
        } else {
            None
        }
    }
}

/// A segment of a circle.
///
/// If `inner_radius > 0`, then the shape will be a doughnut segment.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct CircleSegment {
    /// The center.
    pub center: Point,
    /// The outer radius.
    pub outer_radius: f64,
    /// The inner radius.
    pub inner_radius: f64,
    /// The angle to start drawing the segment (in radians).
    pub start_angle: f64,
    /// The arc length of the segment (in radians).
    pub sweep_angle: f64,
}

impl CircleSegment {
    /// Create a `CircleSegment` out of its constituent parts.
    pub fn new(
        center: impl Into<Point>,
        outer_radius: f64,
        inner_radius: f64,
        start_angle: f64,
        sweep_angle: f64,
    ) -> Self {
        CircleSegment {
            center: center.into(),
            outer_radius,
            inner_radius,
            start_angle,
            sweep_angle,
        }
    }

    /// Return an arc representing the outer radius.
    #[must_use]
    #[inline]
    pub fn outer_arc(&self) -> Arc {
        Arc {
            center: self.center,
            radii: Vec2::new(self.outer_radius, self.outer_radius),
            start_angle: self.start_angle,
            sweep_angle: self.sweep_angle,
            x_rotation: 0.0,
        }
    }

    /// Return an arc representing the inner radius.
    ///
    /// This is [reversed] from the outer arc, so that it is in the
    /// same direction as the arc that would be drawn (as the path
    /// elements for this circle segment produce a closed path).
    ///
    /// [reversed]: Arc::reversed
    #[must_use]
    #[inline]
    pub fn inner_arc(&self) -> Arc {
        Arc {
            center: self.center,
            radii: Vec2::new(self.inner_radius, self.inner_radius),
            start_angle: self.start_angle + self.sweep_angle,
            sweep_angle: -self.sweep_angle,
            x_rotation: 0.0,
        }
    }

    /// Is this circle segment [finite]?
    ///
    /// [finite]: f64::is_finite
    #[inline]
    pub fn is_finite(&self) -> bool {
        self.center.is_finite()
            && self.outer_radius.is_finite()
            && self.inner_radius.is_finite()
            && self.start_angle.is_finite()
            && self.sweep_angle.is_finite()
    }

    /// Is this circle segment [NaN]?
    ///
    /// [NaN]: f64::is_nan
    #[inline]
    pub fn is_nan(&self) -> bool {
        self.center.is_nan()
            || self.outer_radius.is_nan()
            || self.inner_radius.is_nan()
            || self.start_angle.is_nan()
            || self.sweep_angle.is_nan()
    }
}

impl Add<Vec2> for CircleSegment {
    type Output = CircleSegment;

    #[inline]
    fn add(self, v: Vec2) -> Self {
        Self {
            center: self.center + v,
            ..self
        }
    }
}

impl Sub<Vec2> for CircleSegment {
    type Output = CircleSegment;

    #[inline]
    fn sub(self, v: Vec2) -> Self {
        Self {
            center: self.center - v,
            ..self
        }
    }
}

type CircleSegmentPathIter = iter::Chain<
    iter::Chain<
        iter::Chain<iter::Chain<iter::Once<PathEl>, iter::Once<PathEl>>, ArcAppendIter>,
        iter::Once<PathEl>,
    >,
    ArcAppendIter,
>;

impl Shape for CircleSegment {
    type PathElementsIter<'iter> = CircleSegmentPathIter;

    fn path_elements(&self, tolerance: f64) -> CircleSegmentPathIter {
        iter::once(PathEl::MoveTo(point_on_circle(
            self.center,
            self.inner_radius,
            self.start_angle,
        )))
        // First radius
        .chain(iter::once(PathEl::LineTo(point_on_circle(
            self.center,
            self.outer_radius,
            self.start_angle,
        ))))
        // outer arc
        .chain(self.outer_arc().append_iter(tolerance))
        // second radius
        .chain(iter::once(PathEl::LineTo(point_on_circle(
            self.center,
            self.inner_radius,
            self.start_angle + self.sweep_angle,
        ))))
        // inner arc
        .chain(self.inner_arc().append_iter(tolerance))
    }

    #[inline]
    fn area(&self) -> f64 {
        0.5 * (self.outer_radius.powi(2) - self.inner_radius.powi(2)).abs() * self.sweep_angle
    }

    #[inline]
    fn perimeter(&self, _accuracy: f64) -> f64 {
        2.0 * (self.outer_radius - self.inner_radius).abs()
            + self.sweep_angle * (self.inner_radius + self.outer_radius)
    }

    fn winding(&self, pt: Point) -> i32 {
        let angle = (pt - self.center).atan2();
        if angle < self.start_angle || angle > self.start_angle + self.sweep_angle {
            return 0;
        }
        let dist2 = (pt - self.center).hypot2();
        if (dist2 < self.outer_radius.powi(2) && dist2 > self.inner_radius.powi(2)) ||
            // case where outer_radius < inner_radius
            (dist2 < self.inner_radius.powi(2) && dist2 > self.outer_radius.powi(2))
        {
            1
        } else {
            0
        }
    }

    #[inline]
    fn bounding_box(&self) -> Rect {
        // todo this is currently not tight
        let r = self.inner_radius.max(self.outer_radius);
        let (x, y) = self.center.into();
        Rect::new(x - r, y - r, x + r, y + r)
    }
}

#[inline]
fn point_on_circle(center: Point, radius: f64, angle: f64) -> Point {
    let (angle_sin, angle_cos) = angle.sin_cos();
    center
        + Vec2 {
            x: angle_cos * radius,
            y: angle_sin * radius,
        }
}

#[cfg(test)]
mod tests {
    use crate::{Circle, Point, Shape};
    use std::f64::consts::PI;

    fn assert_approx_eq(x: f64, y: f64) {
        // Note: we might want to be more rigorous in testing the accuracy
        // of the conversion into Béziers. But this seems good enough.
        assert!((x - y).abs() < 1e-7, "{x} != {y}");
    }

    #[test]
    fn area_sign() {
        let center = Point::new(5.0, 5.0);
        let c = Circle::new(center, 5.0);
        assert_approx_eq(c.area(), 25.0 * PI);

        assert_eq!(c.winding(center), 1);

        let p = c.to_path(1e-9);
        assert_approx_eq(c.area(), p.area());
        assert_eq!(c.winding(center), p.winding(center));

        let c_neg_radius = Circle::new(center, -5.0);
        assert_approx_eq(c_neg_radius.area(), 25.0 * PI);

        assert_eq!(c_neg_radius.winding(center), 1);

        let p_neg_radius = c_neg_radius.to_path(1e-9);
        assert_approx_eq(c_neg_radius.area(), p_neg_radius.area());
        assert_eq!(c_neg_radius.winding(center), p_neg_radius.winding(center));
    }
}