zerovec/ule/
niche.rs

1// This file is part of ICU4X. For terms of use, please see the file
2// called LICENSE at the top level of the ICU4X source tree
3// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
4
5use core::{marker::Copy, mem::size_of};
6
7#[cfg(feature = "alloc")]
8use crate::map::ZeroMapKV;
9#[cfg(feature = "alloc")]
10use crate::{ZeroSlice, ZeroVec};
11
12use super::{AsULE, ULE};
13
14/// The [`ULE`] types implementing this trait guarantee that [`NicheBytes::NICHE_BIT_PATTERN`]
15/// can never occur as a valid byte representation of the type.
16///
17/// Guarantees for a valid implementation.
18/// 1. N must be equal to `core::mem::sizeo_of::<Self>()` or else it will
19///    cause panics.
20/// 2. The bit pattern [`NicheBytes::NICHE_BIT_PATTERN`] must not be incorrect as it would lead to
21///    weird behaviour.
22/// 3. The abstractions built on top of this trait must panic on an invalid N.
23/// 4. The abstractions built on this trait that use type punning must ensure that type being
24///    punned is [`ULE`].
25pub trait NicheBytes<const N: usize> {
26    const NICHE_BIT_PATTERN: [u8; N];
27}
28
29/// [`ULE`] type for [`NichedOption<U,N>`] where U implements [`NicheBytes`].
30/// The invalid bit pattern is used as the niche.
31///
32/// This uses 1 byte less than [`crate::ule::OptionULE<U>`] to represent [`NichedOption<U,N>`].
33///
34/// # Example
35///
36/// ```
37/// use core::num::NonZeroI8;
38/// use zerovec::ule::NichedOption;
39/// use zerovec::ZeroVec;
40///
41/// let bytes = &[0x00, 0x01, 0x02, 0x00];
42/// let zv_no: ZeroVec<NichedOption<NonZeroI8, 1>> =
43///     ZeroVec::parse_bytes(bytes).expect("Unable to parse as NichedOption.");
44///
45/// assert_eq!(zv_no.get(0).map(|e| e.0), Some(None));
46/// assert_eq!(zv_no.get(1).map(|e| e.0), Some(NonZeroI8::new(1)));
47/// assert_eq!(zv_no.get(2).map(|e| e.0), Some(NonZeroI8::new(2)));
48/// assert_eq!(zv_no.get(3).map(|e| e.0), Some(None));
49/// ```
50// Invariants:
51// The union stores [`NicheBytes::NICHE_BIT_PATTERN`] when None.
52// Any other bit pattern is a valid.
53#[repr(C)]
54pub union NichedOptionULE<U: NicheBytes<N> + ULE, const N: usize> {
55    /// Invariant: The value is `niche` only if the bytes equal NICHE_BIT_PATTERN.
56    niche: [u8; N],
57    /// Invariant: The value is `valid` if the `niche` field does not match NICHE_BIT_PATTERN.
58    valid: U,
59}
60
61impl<U: NicheBytes<N> + ULE + core::fmt::Debug, const N: usize> core::fmt::Debug
62    for NichedOptionULE<U, N>
63{
64    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
65        self.get().fmt(f)
66    }
67}
68
69impl<U: NicheBytes<N> + ULE, const N: usize> NichedOptionULE<U, N> {
70    /// New `NichedOptionULE<U, N>` from `Option<U>`
71    pub fn new(opt: Option<U>) -> Self {
72        assert!(N == core::mem::size_of::<U>());
73        match opt {
74            Some(u) => Self { valid: u },
75            None => Self {
76                niche: <U as NicheBytes<N>>::NICHE_BIT_PATTERN,
77            },
78        }
79    }
80
81    /// Convert to an `Option<U>`
82    pub fn get(self) -> Option<U> {
83        // Safety: The union stores NICHE_BIT_PATTERN when None otherwise a valid U
84        unsafe {
85            if self.niche == <U as NicheBytes<N>>::NICHE_BIT_PATTERN {
86                None
87            } else {
88                Some(self.valid)
89            }
90        }
91    }
92
93    /// Borrows as an `Option<&U>`.
94    pub fn as_ref(&self) -> Option<&U> {
95        // Safety: The union stores NICHE_BIT_PATTERN when None otherwise a valid U
96        unsafe {
97            if self.niche == <U as NicheBytes<N>>::NICHE_BIT_PATTERN {
98                None
99            } else {
100                Some(&self.valid)
101            }
102        }
103    }
104}
105
106impl<U: NicheBytes<N> + ULE, const N: usize> Copy for NichedOptionULE<U, N> {}
107
108impl<U: NicheBytes<N> + ULE, const N: usize> Clone for NichedOptionULE<U, N> {
109    fn clone(&self) -> Self {
110        *self
111    }
112}
113
114impl<U: NicheBytes<N> + ULE + PartialEq, const N: usize> PartialEq for NichedOptionULE<U, N> {
115    fn eq(&self, other: &Self) -> bool {
116        self.get().eq(&other.get())
117    }
118}
119
120impl<U: NicheBytes<N> + ULE + Eq, const N: usize> Eq for NichedOptionULE<U, N> {}
121
122/// Safety for ULE trait
123/// 1. NichedOptionULE does not have any padding bytes due to `#[repr(C)]` on a struct
124///    containing only ULE fields.
125///    NichedOptionULE either contains NICHE_BIT_PATTERN or valid U byte sequences.
126///    In both cases the data is initialized.
127/// 2. NichedOptionULE is aligned to 1 byte due to `#[repr(C, packed)]` on a struct containing only
128///    ULE fields.
129/// 3. validate_bytes impl returns an error if invalid bytes are encountered.
130/// 4. validate_bytes impl returns an error there are extra bytes.
131/// 5. The other ULE methods are left to their default impl.
132/// 6. NichedOptionULE equality is based on ULE equality of the subfield, assuming that NicheBytes
133///    has been implemented correctly (this is a correctness but not a safety guarantee).
134unsafe impl<U: NicheBytes<N> + ULE, const N: usize> ULE for NichedOptionULE<U, N> {
135    fn validate_bytes(bytes: &[u8]) -> Result<(), crate::ule::UleError> {
136        let size = size_of::<Self>();
137        // The implemention is only correct if NICHE_BIT_PATTERN has same number of bytes as the
138        // type.
139        debug_assert!(N == core::mem::size_of::<U>());
140
141        // The bytes should fully transmute to a collection of Self
142        if bytes.len() % size != 0 {
143            return Err(crate::ule::UleError::length::<Self>(bytes.len()));
144        }
145        bytes.chunks(size).try_for_each(|chunk| {
146            // Associated const cannot be referenced in a pattern
147            // https://doc.rust-lang.org/error-index.html#E0158
148            if chunk == <U as NicheBytes<N>>::NICHE_BIT_PATTERN {
149                Ok(())
150            } else {
151                U::validate_bytes(chunk)
152            }
153        })
154    }
155}
156
157/// Optional type which uses [`NichedOptionULE<U,N>`] as ULE type.
158///
159/// The implementors guarantee that `N == core::mem::size_of::<Self>()`
160/// [`repr(transparent)`] guarantees that the layout is same as [`Option<U>`]
161#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
162#[repr(transparent)]
163#[allow(clippy::exhaustive_structs)] // newtype
164#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
165pub struct NichedOption<U, const N: usize>(pub Option<U>);
166
167impl<U, const N: usize> Default for NichedOption<U, N> {
168    fn default() -> Self {
169        Self(None)
170    }
171}
172
173impl<U: AsULE, const N: usize> AsULE for NichedOption<U, N>
174where
175    U::ULE: NicheBytes<N>,
176{
177    type ULE = NichedOptionULE<U::ULE, N>;
178
179    fn to_unaligned(self) -> Self::ULE {
180        NichedOptionULE::new(self.0.map(U::to_unaligned))
181    }
182
183    fn from_unaligned(unaligned: Self::ULE) -> Self {
184        Self(unaligned.get().map(U::from_unaligned))
185    }
186}
187
188#[cfg(feature = "alloc")]
189impl<'a, T: AsULE + 'static, const N: usize> ZeroMapKV<'a> for NichedOption<T, N>
190where
191    T::ULE: NicheBytes<N>,
192{
193    type Container = ZeroVec<'a, NichedOption<T, N>>;
194    type Slice = ZeroSlice<NichedOption<T, N>>;
195    type GetType = <NichedOption<T, N> as AsULE>::ULE;
196    type OwnedType = Self;
197}
198
199impl<T, const N: usize> IntoIterator for NichedOption<T, N> {
200    type IntoIter = <Option<T> as IntoIterator>::IntoIter;
201    type Item = T;
202
203    fn into_iter(self) -> Self::IntoIter {
204        self.0.into_iter()
205    }
206}