tiny_skia/path64/
cubic64.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
// Copyright 2012 Google Inc.
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use super::point64::{Point64, SearchAxis};
use super::quad64;
use super::Scalar64;

#[cfg(all(not(feature = "std"), feature = "no-std-float"))]
use tiny_skia_path::NoStdFloat;

pub const POINT_COUNT: usize = 4;
const PI: f64 = 3.141592653589793;

pub struct Cubic64Pair {
    pub points: [Point64; 7],
}

pub struct Cubic64 {
    pub points: [Point64; POINT_COUNT],
}

impl Cubic64 {
    pub fn new(points: [Point64; POINT_COUNT]) -> Self {
        Cubic64 { points }
    }

    pub fn as_f64_slice(&self) -> [f64; POINT_COUNT * 2] {
        [
            self.points[0].x,
            self.points[0].y,
            self.points[1].x,
            self.points[1].y,
            self.points[2].x,
            self.points[2].y,
            self.points[3].x,
            self.points[3].y,
        ]
    }

    pub fn point_at_t(&self, t: f64) -> Point64 {
        if t == 0.0 {
            return self.points[0];
        }

        if t == 1.0 {
            return self.points[3];
        }

        let one_t = 1.0 - t;
        let one_t2 = one_t * one_t;
        let a = one_t2 * one_t;
        let b = 3.0 * one_t2 * t;
        let t2 = t * t;
        let c = 3.0 * one_t * t2;
        let d = t2 * t;
        Point64::from_xy(
            a * self.points[0].x
                + b * self.points[1].x
                + c * self.points[2].x
                + d * self.points[3].x,
            a * self.points[0].y
                + b * self.points[1].y
                + c * self.points[2].y
                + d * self.points[3].y,
        )
    }

    pub fn search_roots(
        &self,
        mut extrema: usize,
        axis_intercept: f64,
        x_axis: SearchAxis,
        extreme_ts: &mut [f64; 6],
        valid_roots: &mut [f64],
    ) -> usize {
        extrema += self.find_inflections(&mut extreme_ts[extrema..]);
        extreme_ts[extrema] = 0.0;
        extrema += 1;
        extreme_ts[extrema] = 1.0;
        debug_assert!(extrema < 6);
        extreme_ts[0..extrema].sort_by(cmp_f64);
        let mut valid_count = 0;
        let mut index = 0;
        while index < extrema {
            let min = extreme_ts[index];
            index += 1;
            let max = extreme_ts[index];
            if min == max {
                continue;
            }

            let new_t = self.binary_search(min, max, axis_intercept, x_axis);
            if new_t >= 0.0 {
                if valid_count >= 3 {
                    return 0;
                }

                valid_roots[valid_count] = new_t;
                valid_count += 1;
            }
        }

        valid_count
    }

    fn find_inflections(&self, t_values: &mut [f64]) -> usize {
        let ax = self.points[1].x - self.points[0].x;
        let ay = self.points[1].y - self.points[0].y;
        let bx = self.points[2].x - 2.0 * self.points[1].x + self.points[0].x;
        let by = self.points[2].y - 2.0 * self.points[1].y + self.points[0].y;
        let cx = self.points[3].x + 3.0 * (self.points[1].x - self.points[2].x) - self.points[0].x;
        let cy = self.points[3].y + 3.0 * (self.points[1].y - self.points[2].y) - self.points[0].y;
        quad64::roots_valid_t(
            bx * cy - by * cx,
            ax * cy - ay * cx,
            ax * by - ay * bx,
            t_values,
        )
    }

    // give up when changing t no longer moves point
    // also, copy point rather than recompute it when it does change
    fn binary_search(&self, min: f64, max: f64, axis_intercept: f64, x_axis: SearchAxis) -> f64 {
        let mut t = (min + max) / 2.0;
        let mut step = (t - min) / 2.0;
        let mut cubic_at_t = self.point_at_t(t);
        let mut calc_pos = cubic_at_t.axis_coord(x_axis);
        let mut calc_dist = calc_pos - axis_intercept;
        loop {
            let prior_t = min.max(t - step);
            let less_pt = self.point_at_t(prior_t);
            if less_pt.x.approximately_equal_half(cubic_at_t.x)
                && less_pt.y.approximately_equal_half(cubic_at_t.y)
            {
                return -1.0; // binary search found no point at this axis intercept
            }

            let less_dist = less_pt.axis_coord(x_axis) - axis_intercept;
            let last_step = step;
            step /= 2.0;
            let ok = if calc_dist > 0.0 {
                calc_dist > less_dist
            } else {
                calc_dist < less_dist
            };
            if ok {
                t = prior_t;
            } else {
                let next_t = t + last_step;
                if next_t > max {
                    return -1.0;
                }

                let more_pt = self.point_at_t(next_t);
                if more_pt.x.approximately_equal_half(cubic_at_t.x)
                    && more_pt.y.approximately_equal_half(cubic_at_t.y)
                {
                    return -1.0; // binary search found no point at this axis intercept
                }

                let more_dist = more_pt.axis_coord(x_axis) - axis_intercept;
                let ok = if calc_dist > 0.0 {
                    calc_dist <= more_dist
                } else {
                    calc_dist >= more_dist
                };
                if ok {
                    continue;
                }

                t = next_t;
            }

            let test_at_t = self.point_at_t(t);
            cubic_at_t = test_at_t;
            calc_pos = cubic_at_t.axis_coord(x_axis);
            calc_dist = calc_pos - axis_intercept;

            if calc_pos.approximately_equal(axis_intercept) {
                break;
            }
        }

        t
    }

    pub fn chop_at(&self, t: f64) -> Cubic64Pair {
        let mut dst = [Point64::zero(); 7];
        if t == 0.5 {
            dst[0] = self.points[0];
            dst[1].x = (self.points[0].x + self.points[1].x) / 2.0;
            dst[1].y = (self.points[0].y + self.points[1].y) / 2.0;
            dst[2].x = (self.points[0].x + 2.0 * self.points[1].x + self.points[2].x) / 4.0;
            dst[2].y = (self.points[0].y + 2.0 * self.points[1].y + self.points[2].y) / 4.0;
            dst[3].x =
                (self.points[0].x + 3.0 * (self.points[1].x + self.points[2].x) + self.points[3].x)
                    / 8.0;
            dst[3].y =
                (self.points[0].y + 3.0 * (self.points[1].y + self.points[2].y) + self.points[3].y)
                    / 8.0;
            dst[4].x = (self.points[1].x + 2.0 * self.points[2].x + self.points[3].x) / 4.0;
            dst[4].y = (self.points[1].y + 2.0 * self.points[2].y + self.points[3].y) / 4.0;
            dst[5].x = (self.points[2].x + self.points[3].x) / 2.0;
            dst[5].y = (self.points[2].y + self.points[3].y) / 2.0;
            dst[6] = self.points[3];

            Cubic64Pair { points: dst }
        } else {
            interp_cubic_coords_x(&self.points, t, &mut dst);
            interp_cubic_coords_y(&self.points, t, &mut dst);
            Cubic64Pair { points: dst }
        }
    }
}

pub fn coefficients(src: &[f64]) -> (f64, f64, f64, f64) {
    let mut a = src[6]; // d
    let mut b = src[4] * 3.0; // 3*c
    let mut c = src[2] * 3.0; // 3*b
    let d = src[0]; // a
    a -= d - c + b; // A =   -a + 3*b - 3*c + d
    b += 3.0 * d - 2.0 * c; // B =  3*a - 6*b + 3*c
    c -= 3.0 * d; // C = -3*a + 3*b

    (a, b, c, d)
}

// from SkGeometry.cpp (and Numeric Solutions, 5.6)
pub fn roots_valid_t(a: f64, b: f64, c: f64, d: f64, t: &mut [f64; 3]) -> usize {
    let mut s = [0.0; 3];
    let real_roots = roots_real(a, b, c, d, &mut s);
    let mut found_roots = quad64::push_valid_ts(&s, real_roots, t);
    'outer: for index in 0..real_roots {
        let t_value = s[index];
        if !t_value.approximately_one_or_less() && t_value.between(1.0, 1.00005) {
            for idx2 in 0..found_roots {
                if t[idx2].approximately_equal(1.0) {
                    continue 'outer;
                }
            }

            debug_assert!(found_roots < 3);
            t[found_roots] = 1.0;
            found_roots += 1;
        } else if !t_value.approximately_zero_or_more() && t_value.between(-0.00005, 0.0) {
            for idx2 in 0..found_roots {
                if t[idx2].approximately_equal(0.0) {
                    continue 'outer;
                }
            }

            debug_assert!(found_roots < 3);
            t[found_roots] = 0.0;
            found_roots += 1;
        }
    }

    found_roots
}

fn roots_real(a: f64, b: f64, c: f64, d: f64, s: &mut [f64; 3]) -> usize {
    if a.approximately_zero()
        && a.approximately_zero_when_compared_to(b)
        && a.approximately_zero_when_compared_to(c)
        && a.approximately_zero_when_compared_to(d)
    {
        // we're just a quadratic
        return quad64::roots_real(b, c, d, s);
    }

    if d.approximately_zero_when_compared_to(a)
        && d.approximately_zero_when_compared_to(b)
        && d.approximately_zero_when_compared_to(c)
    {
        // 0 is one root
        let mut num = quad64::roots_real(a, b, c, s);
        for i in 0..num {
            if s[i].approximately_zero() {
                return num;
            }
        }

        s[num] = 0.0;
        num += 1;

        return num;
    }

    if (a + b + c + d).approximately_zero() {
        // 1 is one root
        let mut num = quad64::roots_real(a, a + b, -d, s);
        for i in 0..num {
            if s[i].almost_dequal_ulps(1.0) {
                return num;
            }
        }
        s[num] = 1.0;
        num += 1;
        return num;
    }

    let (a, b, c) = {
        let inv_a = 1.0 / a;
        let a = b * inv_a;
        let b = c * inv_a;
        let c = d * inv_a;
        (a, b, c)
    };

    let a2 = a * a;
    let q = (a2 - b * 3.0) / 9.0;
    let r = (2.0 * a2 * a - 9.0 * a * b + 27.0 * c) / 54.0;
    let r2 = r * r;
    let q3 = q * q * q;
    let r2_minus_q3 = r2 - q3;
    let adiv3 = a / 3.0;
    let mut offset = 0;
    if r2_minus_q3 < 0.0 {
        // we have 3 real roots

        // the divide/root can, due to finite precisions, be slightly outside of -1...1
        let theta = (r / q3.sqrt()).bound(-1.0, 1.0).acos();
        let neg2_root_q = -2.0 * q.sqrt();

        let mut rr = neg2_root_q * (theta / 3.0).cos() - adiv3;
        s[offset] = rr;
        offset += 1;

        rr = neg2_root_q * ((theta + 2.0 * PI) / 3.0).cos() - adiv3;
        if !s[0].almost_dequal_ulps(rr) {
            s[offset] = rr;
            offset += 1;
        }

        rr = neg2_root_q * ((theta - 2.0 * PI) / 3.0).cos() - adiv3;
        if !s[0].almost_dequal_ulps(rr) && (offset == 1 || !s[1].almost_dequal_ulps(rr)) {
            s[offset] = rr;
            offset += 1;
        }
    } else {
        // we have 1 real root
        let sqrt_r2_minus_q3 = r2_minus_q3.sqrt();
        let mut a = r.abs() + sqrt_r2_minus_q3;
        a = super::cube_root(a);
        if r > 0.0 {
            a = -a;
        }

        if a != 0.0 {
            a += q / a;
        }

        let mut r2 = a - adiv3;
        s[offset] = r2;
        offset += 1;
        if r2.almost_dequal_ulps(q3) {
            r2 = -a / 2.0 - adiv3;
            if !s[0].almost_dequal_ulps(r2) {
                s[offset] = r2;
                offset += 1;
            }
        }
    }

    offset
}

// Cubic64'(t) = At^2 + Bt + C, where
// A = 3(-a + 3(b - c) + d)
// B = 6(a - 2b + c)
// C = 3(b - a)
// Solve for t, keeping only those that fit between 0 < t < 1
pub fn find_extrema(src: &[f64], t_values: &mut [f64]) -> usize {
    // we divide A,B,C by 3 to simplify
    let a = src[0];
    let b = src[2];
    let c = src[4];
    let d = src[6];
    let a2 = d - a + 3.0 * (b - c);
    let b2 = 2.0 * (a - b - b + c);
    let c2 = b - a;

    quad64::roots_valid_t(a2, b2, c2, t_values)
}

// Skia doesn't seems to care about NaN/inf during sorting, so we don't too.
fn cmp_f64(a: &f64, b: &f64) -> core::cmp::Ordering {
    if a < b {
        core::cmp::Ordering::Less
    } else if a > b {
        core::cmp::Ordering::Greater
    } else {
        core::cmp::Ordering::Equal
    }
}

// classic one t subdivision
fn interp_cubic_coords_x(src: &[Point64; 4], t: f64, dst: &mut [Point64; 7]) {
    use super::interp;

    let ab = interp(src[0].x, src[1].x, t);
    let bc = interp(src[1].x, src[2].x, t);
    let cd = interp(src[2].x, src[3].x, t);
    let abc = interp(ab, bc, t);
    let bcd = interp(bc, cd, t);
    let abcd = interp(abc, bcd, t);

    dst[0].x = src[0].x;
    dst[1].x = ab;
    dst[2].x = abc;
    dst[3].x = abcd;
    dst[4].x = bcd;
    dst[5].x = cd;
    dst[6].x = src[3].x;
}

fn interp_cubic_coords_y(src: &[Point64; 4], t: f64, dst: &mut [Point64; 7]) {
    use super::interp;

    let ab = interp(src[0].y, src[1].y, t);
    let bc = interp(src[1].y, src[2].y, t);
    let cd = interp(src[2].y, src[3].y, t);
    let abc = interp(ab, bc, t);
    let bcd = interp(bc, cd, t);
    let abcd = interp(abc, bcd, t);

    dst[0].y = src[0].y;
    dst[1].y = ab;
    dst[2].y = abc;
    dst[3].y = abcd;
    dst[4].y = bcd;
    dst[5].y = cd;
    dst[6].y = src[3].y;
}