kurbo/
insets.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
// Copyright 2019 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! A description of the distances between the edges of two rectangles.

use core::ops::{Add, Neg, Sub};

use crate::{Rect, Size};

/// Insets from the edges of a rectangle.
///
///
/// The inset value for each edge can be thought of as a delta computed from
/// the center of the rect to that edge. For instance, with an inset of `2.0` on
/// the x-axis, a rectangle with the origin `(0.0, 0.0)` with that inset added
/// will have the new origin at `(-2.0, 0.0)`.
///
/// Put alternatively, a positive inset represents increased distance from center,
/// and a negative inset represents decreased distance from center.
///
/// # Examples
///
/// Positive insets added to a [`Rect`] produce a larger [`Rect`]:
/// ```
/// # use kurbo::{Insets, Rect};
/// let rect = Rect::from_origin_size((0., 0.,), (10., 10.,));
/// let insets = Insets::uniform_xy(3., 0.,);
///
/// let inset_rect = rect + insets;
/// assert_eq!(inset_rect.width(), 16.0, "10.0 + 3.0 × 2");
/// assert_eq!(inset_rect.x0, -3.0);
/// ```
///
/// Negative insets added to a [`Rect`] produce a smaller [`Rect`]:
///
/// ```
/// # use kurbo::{Insets, Rect};
/// let rect = Rect::from_origin_size((0., 0.,), (10., 10.,));
/// let insets = Insets::uniform_xy(-3., 0.,);
///
/// let inset_rect = rect + insets;
/// assert_eq!(inset_rect.width(), 4.0, "10.0 - 3.0 × 2");
/// assert_eq!(inset_rect.x0, 3.0);
/// ```
///
/// [`Insets`] operate on the absolute rectangle [`Rect::abs`], and so ignore
/// existing negative widths and heights.
///
/// ```
/// # use kurbo::{Insets, Rect};
/// let rect = Rect::new(7., 11., 0., 0.,);
/// let insets = Insets::uniform_xy(0., 1.,);
///
/// assert_eq!(rect.width(), -7.0);
///
/// let inset_rect = rect + insets;
/// assert_eq!(inset_rect.width(), 7.0);
/// assert_eq!(inset_rect.x0, 0.0);
/// assert_eq!(inset_rect.height(), 13.0);
/// ```
///
/// The width and height of an inset operation can still be negative if the
/// [`Insets`]' dimensions are greater than the dimensions of the original [`Rect`].
///
/// ```
/// # use kurbo::{Insets, Rect};
/// let rect = Rect::new(0., 0., 3., 5.);
/// let insets = Insets::uniform_xy(0., 7.,);
///
/// let inset_rect = rect - insets;
/// assert_eq!(inset_rect.height(), -9., "5 - 7 × 2")
/// ```
///
/// `Rect - Rect = Insets`:
///
///
/// ```
/// # use kurbo::{Insets, Rect};
/// let rect = Rect::new(0., 0., 5., 11.);
/// let insets = Insets::uniform_xy(1., 7.,);
///
/// let inset_rect = rect + insets;
/// let insets2 = inset_rect - rect;
///
/// assert_eq!(insets2.x0, insets.x0);
/// assert_eq!(insets2.y1, insets.y1);
/// assert_eq!(insets2.x_value(), insets.x_value());
/// assert_eq!(insets2.y_value(), insets.y_value());
/// ```
#[derive(Clone, Copy, Default, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Insets {
    /// The minimum x coordinate (left edge).
    pub x0: f64,
    /// The minimum y coordinate (top edge in y-down spaces).
    pub y0: f64,
    /// The maximum x coordinate (right edge).
    pub x1: f64,
    /// The maximum y coordinate (bottom edge in y-down spaces).
    pub y1: f64,
}

impl Insets {
    /// Zeroed insets.
    pub const ZERO: Insets = Insets::uniform(0.);

    /// New uniform insets.
    #[inline]
    pub const fn uniform(d: f64) -> Insets {
        Insets {
            x0: d,
            y0: d,
            x1: d,
            y1: d,
        }
    }

    /// New insets with uniform values along each axis.
    #[inline]
    pub const fn uniform_xy(x: f64, y: f64) -> Insets {
        Insets {
            x0: x,
            y0: y,
            x1: x,
            y1: y,
        }
    }

    /// New insets. The ordering of the arguments is "left, top, right, bottom",
    /// assuming a y-down coordinate space.
    #[inline]
    pub const fn new(x0: f64, y0: f64, x1: f64, y1: f64) -> Insets {
        Insets { x0, y0, x1, y1 }
    }

    /// The total delta on the x-axis represented by these insets.
    ///
    /// # Examples
    ///
    /// ```
    /// use kurbo::Insets;
    ///
    /// let insets = Insets::uniform_xy(3., 8.);
    /// assert_eq!(insets.x_value(), 6.);
    ///
    /// let insets = Insets::new(5., 0., -12., 0.,);
    /// assert_eq!(insets.x_value(), -7.);
    /// ```
    #[inline]
    pub fn x_value(self) -> f64 {
        self.x0 + self.x1
    }

    /// The total delta on the y-axis represented by these insets.
    ///
    /// # Examples
    ///
    /// ```
    /// use kurbo::Insets;
    ///
    /// let insets = Insets::uniform_xy(3., 7.);
    /// assert_eq!(insets.y_value(), 14.);
    ///
    /// let insets = Insets::new(5., 10., -12., 4.,);
    /// assert_eq!(insets.y_value(), 14.);
    /// ```
    #[inline]
    pub fn y_value(self) -> f64 {
        self.y0 + self.y1
    }

    /// Returns the total delta represented by these insets as a [`Size`].
    ///
    /// This is equivalent to creating a [`Size`] from the values returned by
    /// [`x_value`] and [`y_value`].
    ///
    /// This function may return a size with negative values.
    ///
    /// # Examples
    ///
    /// ```
    /// use kurbo::{Insets, Size};
    ///
    /// let insets = Insets::new(11.1, -43.3, 3.333, -0.0);
    /// assert_eq!(insets.size(), Size::new(insets.x_value(), insets.y_value()));
    /// ```
    ///
    /// [`x_value`]: Insets::x_value
    /// [`y_value`]: Insets::y_value
    pub fn size(self) -> Size {
        Size::new(self.x_value(), self.y_value())
    }

    /// Return `true` iff all values are nonnegative.
    pub fn are_nonnegative(self) -> bool {
        let Insets { x0, y0, x1, y1 } = self;
        x0 >= 0.0 && y0 >= 0.0 && x1 >= 0.0 && y1 >= 0.0
    }

    /// Return new `Insets` with all negative values replaced with `0.0`.
    ///
    /// This is provided as a convenience for applications where negative insets
    /// are not meaningful.
    ///
    /// # Examples
    ///
    /// ```
    /// use kurbo::Insets;
    ///
    /// let insets = Insets::new(-10., 3., -0.2, 4.);
    /// let nonnegative = insets.nonnegative();
    /// assert_eq!(nonnegative.x_value(), 0.0);
    /// assert_eq!(nonnegative.y_value(), 7.0);
    /// ```
    pub fn nonnegative(self) -> Insets {
        let Insets { x0, y0, x1, y1 } = self;
        Insets {
            x0: x0.max(0.0),
            y0: y0.max(0.0),
            x1: x1.max(0.0),
            y1: y1.max(0.0),
        }
    }

    /// Are these insets finite?
    #[inline]
    pub fn is_finite(&self) -> bool {
        self.x0.is_finite() && self.y0.is_finite() && self.x1.is_finite() && self.y1.is_finite()
    }

    /// Are these insets NaN?
    #[inline]
    pub fn is_nan(&self) -> bool {
        self.x0.is_nan() || self.y0.is_nan() || self.x1.is_nan() || self.y1.is_nan()
    }
}

impl Neg for Insets {
    type Output = Insets;

    #[inline]
    fn neg(self) -> Insets {
        Insets::new(-self.x0, -self.y0, -self.x1, -self.y1)
    }
}

impl Add<Rect> for Insets {
    type Output = Rect;

    #[inline]
    #[allow(clippy::suspicious_arithmetic_impl)]
    fn add(self, other: Rect) -> Rect {
        let other = other.abs();
        Rect::new(
            other.x0 - self.x0,
            other.y0 - self.y0,
            other.x1 + self.x1,
            other.y1 + self.y1,
        )
    }
}

impl Add<Insets> for Rect {
    type Output = Rect;

    #[inline]
    fn add(self, other: Insets) -> Rect {
        other + self
    }
}

impl Sub<Rect> for Insets {
    type Output = Rect;

    #[inline]
    fn sub(self, other: Rect) -> Rect {
        other + -self
    }
}

impl Sub<Insets> for Rect {
    type Output = Rect;

    #[inline]
    fn sub(self, other: Insets) -> Rect {
        other - self
    }
}

impl From<f64> for Insets {
    fn from(src: f64) -> Insets {
        Insets::uniform(src)
    }
}

impl From<(f64, f64)> for Insets {
    fn from(src: (f64, f64)) -> Insets {
        Insets::uniform_xy(src.0, src.1)
    }
}

impl From<(f64, f64, f64, f64)> for Insets {
    fn from(src: (f64, f64, f64, f64)) -> Insets {
        Insets::new(src.0, src.1, src.2, src.3)
    }
}