regex_automata/meta/
wrappers.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
/*!
This module contains a boat load of wrappers around each of our internal regex
engines. They encapsulate a few things:

1. The wrappers manage the conditional existence of the regex engine. Namely,
the PikeVM is the only required regex engine. The rest are optional. These
wrappers present a uniform API regardless of which engines are available. And
availability might be determined by compile time features or by dynamic
configuration via `meta::Config`. Encapsulating the conditional compilation
features is in particular a huge simplification for the higher level code that
composes these engines.
2. The wrappers manage construction of each engine, including skipping it if
the engine is unavailable or configured to not be used.
3. The wrappers manage whether an engine *can* be used for a particular
search configuration. For example, `BoundedBacktracker::get` only returns a
backtracking engine when the haystack is bigger than the maximum supported
length. The wrappers also sometimes take a position on when an engine *ought*
to be used, but only in cases where the logic is extremely local to the engine
itself. Otherwise, things like "choose between the backtracker and the one-pass
DFA" are managed by the higher level meta strategy code.

There are also corresponding wrappers for the various `Cache` types for each
regex engine that needs them. If an engine is unavailable or not used, then a
cache for it will *not* actually be allocated.
*/

use alloc::vec::Vec;

use crate::{
    meta::{
        error::{BuildError, RetryError, RetryFailError},
        regex::RegexInfo,
    },
    nfa::thompson::{pikevm, NFA},
    util::{prefilter::Prefilter, primitives::NonMaxUsize},
    HalfMatch, Input, Match, MatchKind, PatternID, PatternSet,
};

#[cfg(feature = "dfa-build")]
use crate::dfa;
#[cfg(feature = "dfa-onepass")]
use crate::dfa::onepass;
#[cfg(feature = "hybrid")]
use crate::hybrid;
#[cfg(feature = "nfa-backtrack")]
use crate::nfa::thompson::backtrack;

#[derive(Debug)]
pub(crate) struct PikeVM(PikeVMEngine);

impl PikeVM {
    pub(crate) fn new(
        info: &RegexInfo,
        pre: Option<Prefilter>,
        nfa: &NFA,
    ) -> Result<PikeVM, BuildError> {
        PikeVMEngine::new(info, pre, nfa).map(PikeVM)
    }

    pub(crate) fn create_cache(&self) -> PikeVMCache {
        PikeVMCache::new(self)
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn get(&self) -> &PikeVMEngine {
        &self.0
    }
}

#[derive(Debug)]
pub(crate) struct PikeVMEngine(pikevm::PikeVM);

impl PikeVMEngine {
    pub(crate) fn new(
        info: &RegexInfo,
        pre: Option<Prefilter>,
        nfa: &NFA,
    ) -> Result<PikeVMEngine, BuildError> {
        let pikevm_config = pikevm::Config::new()
            .match_kind(info.config().get_match_kind())
            .prefilter(pre);
        let engine = pikevm::Builder::new()
            .configure(pikevm_config)
            .build_from_nfa(nfa.clone())
            .map_err(BuildError::nfa)?;
        debug!("PikeVM built");
        Ok(PikeVMEngine(engine))
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn is_match(
        &self,
        cache: &mut PikeVMCache,
        input: &Input<'_>,
    ) -> bool {
        self.0.is_match(cache.0.as_mut().unwrap(), input.clone())
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn search_slots(
        &self,
        cache: &mut PikeVMCache,
        input: &Input<'_>,
        slots: &mut [Option<NonMaxUsize>],
    ) -> Option<PatternID> {
        self.0.search_slots(cache.0.as_mut().unwrap(), input, slots)
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn which_overlapping_matches(
        &self,
        cache: &mut PikeVMCache,
        input: &Input<'_>,
        patset: &mut PatternSet,
    ) {
        self.0.which_overlapping_matches(
            cache.0.as_mut().unwrap(),
            input,
            patset,
        )
    }
}

#[derive(Clone, Debug)]
pub(crate) struct PikeVMCache(Option<pikevm::Cache>);

impl PikeVMCache {
    pub(crate) fn none() -> PikeVMCache {
        PikeVMCache(None)
    }

    pub(crate) fn new(builder: &PikeVM) -> PikeVMCache {
        PikeVMCache(Some(builder.get().0.create_cache()))
    }

    pub(crate) fn reset(&mut self, builder: &PikeVM) {
        self.0.as_mut().unwrap().reset(&builder.get().0);
    }

    pub(crate) fn memory_usage(&self) -> usize {
        self.0.as_ref().map_or(0, |c| c.memory_usage())
    }
}

#[derive(Debug)]
pub(crate) struct BoundedBacktracker(Option<BoundedBacktrackerEngine>);

impl BoundedBacktracker {
    pub(crate) fn new(
        info: &RegexInfo,
        pre: Option<Prefilter>,
        nfa: &NFA,
    ) -> Result<BoundedBacktracker, BuildError> {
        BoundedBacktrackerEngine::new(info, pre, nfa).map(BoundedBacktracker)
    }

    pub(crate) fn create_cache(&self) -> BoundedBacktrackerCache {
        BoundedBacktrackerCache::new(self)
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn get(
        &self,
        input: &Input<'_>,
    ) -> Option<&BoundedBacktrackerEngine> {
        let engine = self.0.as_ref()?;
        // It is difficult to make the backtracker give up early if it is
        // guaranteed to eventually wind up in a match state. This is because
        // of the greedy nature of a backtracker: it just blindly mushes
        // forward. Every other regex engine is able to give up more quickly,
        // so even if the backtracker might be able to zip through faster than
        // (say) the PikeVM, we prefer the theoretical benefit that some other
        // engine might be able to scan much less of the haystack than the
        // backtracker.
        //
        // Now, if the haystack is really short already, then we allow the
        // backtracker to run. (This hasn't been litigated quantitatively with
        // benchmarks. Just a hunch.)
        if input.get_earliest() && input.haystack().len() > 128 {
            return None;
        }
        // If the backtracker is just going to return an error because the
        // haystack is too long, then obviously do not use it.
        if input.get_span().len() > engine.max_haystack_len() {
            return None;
        }
        Some(engine)
    }
}

#[derive(Debug)]
pub(crate) struct BoundedBacktrackerEngine(
    #[cfg(feature = "nfa-backtrack")] backtrack::BoundedBacktracker,
    #[cfg(not(feature = "nfa-backtrack"))] (),
);

impl BoundedBacktrackerEngine {
    pub(crate) fn new(
        info: &RegexInfo,
        pre: Option<Prefilter>,
        nfa: &NFA,
    ) -> Result<Option<BoundedBacktrackerEngine>, BuildError> {
        #[cfg(feature = "nfa-backtrack")]
        {
            if !info.config().get_backtrack()
                || info.config().get_match_kind() != MatchKind::LeftmostFirst
            {
                return Ok(None);
            }
            let backtrack_config = backtrack::Config::new().prefilter(pre);
            let engine = backtrack::Builder::new()
                .configure(backtrack_config)
                .build_from_nfa(nfa.clone())
                .map_err(BuildError::nfa)?;
            debug!(
                "BoundedBacktracker built (max haystack length: {:?})",
                engine.max_haystack_len()
            );
            Ok(Some(BoundedBacktrackerEngine(engine)))
        }
        #[cfg(not(feature = "nfa-backtrack"))]
        {
            Ok(None)
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn is_match(
        &self,
        cache: &mut BoundedBacktrackerCache,
        input: &Input<'_>,
    ) -> bool {
        #[cfg(feature = "nfa-backtrack")]
        {
            // OK because we only permit access to this engine when we know
            // the haystack is short enough for the backtracker to run without
            // reporting an error.
            self.0
                .try_is_match(cache.0.as_mut().unwrap(), input.clone())
                .unwrap()
        }
        #[cfg(not(feature = "nfa-backtrack"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn search_slots(
        &self,
        cache: &mut BoundedBacktrackerCache,
        input: &Input<'_>,
        slots: &mut [Option<NonMaxUsize>],
    ) -> Option<PatternID> {
        #[cfg(feature = "nfa-backtrack")]
        {
            // OK because we only permit access to this engine when we know
            // the haystack is short enough for the backtracker to run without
            // reporting an error.
            self.0
                .try_search_slots(cache.0.as_mut().unwrap(), input, slots)
                .unwrap()
        }
        #[cfg(not(feature = "nfa-backtrack"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn max_haystack_len(&self) -> usize {
        #[cfg(feature = "nfa-backtrack")]
        {
            self.0.max_haystack_len()
        }
        #[cfg(not(feature = "nfa-backtrack"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }
}

#[derive(Clone, Debug)]
pub(crate) struct BoundedBacktrackerCache(
    #[cfg(feature = "nfa-backtrack")] Option<backtrack::Cache>,
    #[cfg(not(feature = "nfa-backtrack"))] (),
);

impl BoundedBacktrackerCache {
    pub(crate) fn none() -> BoundedBacktrackerCache {
        #[cfg(feature = "nfa-backtrack")]
        {
            BoundedBacktrackerCache(None)
        }
        #[cfg(not(feature = "nfa-backtrack"))]
        {
            BoundedBacktrackerCache(())
        }
    }

    pub(crate) fn new(
        builder: &BoundedBacktracker,
    ) -> BoundedBacktrackerCache {
        #[cfg(feature = "nfa-backtrack")]
        {
            BoundedBacktrackerCache(
                builder.0.as_ref().map(|e| e.0.create_cache()),
            )
        }
        #[cfg(not(feature = "nfa-backtrack"))]
        {
            BoundedBacktrackerCache(())
        }
    }

    pub(crate) fn reset(&mut self, builder: &BoundedBacktracker) {
        #[cfg(feature = "nfa-backtrack")]
        if let Some(ref e) = builder.0 {
            self.0.as_mut().unwrap().reset(&e.0);
        }
    }

    pub(crate) fn memory_usage(&self) -> usize {
        #[cfg(feature = "nfa-backtrack")]
        {
            self.0.as_ref().map_or(0, |c| c.memory_usage())
        }
        #[cfg(not(feature = "nfa-backtrack"))]
        {
            0
        }
    }
}

#[derive(Debug)]
pub(crate) struct OnePass(Option<OnePassEngine>);

impl OnePass {
    pub(crate) fn new(info: &RegexInfo, nfa: &NFA) -> OnePass {
        OnePass(OnePassEngine::new(info, nfa))
    }

    pub(crate) fn create_cache(&self) -> OnePassCache {
        OnePassCache::new(self)
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn get(&self, input: &Input<'_>) -> Option<&OnePassEngine> {
        let engine = self.0.as_ref()?;
        if !input.get_anchored().is_anchored()
            && !engine.get_nfa().is_always_start_anchored()
        {
            return None;
        }
        Some(engine)
    }

    pub(crate) fn memory_usage(&self) -> usize {
        self.0.as_ref().map_or(0, |e| e.memory_usage())
    }
}

#[derive(Debug)]
pub(crate) struct OnePassEngine(
    #[cfg(feature = "dfa-onepass")] onepass::DFA,
    #[cfg(not(feature = "dfa-onepass"))] (),
);

impl OnePassEngine {
    pub(crate) fn new(info: &RegexInfo, nfa: &NFA) -> Option<OnePassEngine> {
        #[cfg(feature = "dfa-onepass")]
        {
            if !info.config().get_onepass() {
                return None;
            }
            // In order to even attempt building a one-pass DFA, we require
            // that we either have at least one explicit capturing group or
            // there's a Unicode word boundary somewhere. If we don't have
            // either of these things, then the lazy DFA will almost certainly
            // be useable and be much faster. The only case where it might
            // not is if the lazy DFA isn't utilizing its cache effectively,
            // but in those cases, the underlying regex is almost certainly
            // not one-pass or is too big to fit within the current one-pass
            // implementation limits.
            if info.props_union().explicit_captures_len() == 0
                && !info.props_union().look_set().contains_word_unicode()
            {
                debug!("not building OnePass because it isn't worth it");
                return None;
            }
            let onepass_config = onepass::Config::new()
                .match_kind(info.config().get_match_kind())
                // Like for the lazy DFA, we unconditionally enable this
                // because it doesn't cost much and makes the API more
                // flexible.
                .starts_for_each_pattern(true)
                .byte_classes(info.config().get_byte_classes())
                .size_limit(info.config().get_onepass_size_limit());
            let result = onepass::Builder::new()
                .configure(onepass_config)
                .build_from_nfa(nfa.clone());
            let engine = match result {
                Ok(engine) => engine,
                Err(_err) => {
                    debug!("OnePass failed to build: {}", _err);
                    return None;
                }
            };
            debug!("OnePass built, {} bytes", engine.memory_usage());
            Some(OnePassEngine(engine))
        }
        #[cfg(not(feature = "dfa-onepass"))]
        {
            None
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn search_slots(
        &self,
        cache: &mut OnePassCache,
        input: &Input<'_>,
        slots: &mut [Option<NonMaxUsize>],
    ) -> Option<PatternID> {
        #[cfg(feature = "dfa-onepass")]
        {
            // OK because we only permit getting a OnePassEngine when we know
            // the search is anchored and thus an error cannot occur.
            self.0
                .try_search_slots(cache.0.as_mut().unwrap(), input, slots)
                .unwrap()
        }
        #[cfg(not(feature = "dfa-onepass"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }

    pub(crate) fn memory_usage(&self) -> usize {
        #[cfg(feature = "dfa-onepass")]
        {
            self.0.memory_usage()
        }
        #[cfg(not(feature = "dfa-onepass"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn get_nfa(&self) -> &NFA {
        #[cfg(feature = "dfa-onepass")]
        {
            self.0.get_nfa()
        }
        #[cfg(not(feature = "dfa-onepass"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }
}

#[derive(Clone, Debug)]
pub(crate) struct OnePassCache(
    #[cfg(feature = "dfa-onepass")] Option<onepass::Cache>,
    #[cfg(not(feature = "dfa-onepass"))] (),
);

impl OnePassCache {
    pub(crate) fn none() -> OnePassCache {
        #[cfg(feature = "dfa-onepass")]
        {
            OnePassCache(None)
        }
        #[cfg(not(feature = "dfa-onepass"))]
        {
            OnePassCache(())
        }
    }

    pub(crate) fn new(builder: &OnePass) -> OnePassCache {
        #[cfg(feature = "dfa-onepass")]
        {
            OnePassCache(builder.0.as_ref().map(|e| e.0.create_cache()))
        }
        #[cfg(not(feature = "dfa-onepass"))]
        {
            OnePassCache(())
        }
    }

    pub(crate) fn reset(&mut self, builder: &OnePass) {
        #[cfg(feature = "dfa-onepass")]
        if let Some(ref e) = builder.0 {
            self.0.as_mut().unwrap().reset(&e.0);
        }
    }

    pub(crate) fn memory_usage(&self) -> usize {
        #[cfg(feature = "dfa-onepass")]
        {
            self.0.as_ref().map_or(0, |c| c.memory_usage())
        }
        #[cfg(not(feature = "dfa-onepass"))]
        {
            0
        }
    }
}

#[derive(Debug)]
pub(crate) struct Hybrid(Option<HybridEngine>);

impl Hybrid {
    pub(crate) fn none() -> Hybrid {
        Hybrid(None)
    }

    pub(crate) fn new(
        info: &RegexInfo,
        pre: Option<Prefilter>,
        nfa: &NFA,
        nfarev: &NFA,
    ) -> Hybrid {
        Hybrid(HybridEngine::new(info, pre, nfa, nfarev))
    }

    pub(crate) fn create_cache(&self) -> HybridCache {
        HybridCache::new(self)
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn get(&self, _input: &Input<'_>) -> Option<&HybridEngine> {
        let engine = self.0.as_ref()?;
        Some(engine)
    }

    pub(crate) fn is_some(&self) -> bool {
        self.0.is_some()
    }
}

#[derive(Debug)]
pub(crate) struct HybridEngine(
    #[cfg(feature = "hybrid")] hybrid::regex::Regex,
    #[cfg(not(feature = "hybrid"))] (),
);

impl HybridEngine {
    pub(crate) fn new(
        info: &RegexInfo,
        pre: Option<Prefilter>,
        nfa: &NFA,
        nfarev: &NFA,
    ) -> Option<HybridEngine> {
        #[cfg(feature = "hybrid")]
        {
            if !info.config().get_hybrid() {
                return None;
            }
            let dfa_config = hybrid::dfa::Config::new()
                .match_kind(info.config().get_match_kind())
                .prefilter(pre.clone())
                // Enabling this is necessary for ensuring we can service any
                // kind of 'Input' search without error. For the lazy DFA,
                // this is not particularly costly, since the start states are
                // generated lazily.
                .starts_for_each_pattern(true)
                .byte_classes(info.config().get_byte_classes())
                .unicode_word_boundary(true)
                .specialize_start_states(pre.is_some())
                .cache_capacity(info.config().get_hybrid_cache_capacity())
                // This makes it possible for building a lazy DFA to
                // fail even though the NFA has already been built. Namely,
                // if the cache capacity is too small to fit some minimum
                // number of states (which is small, like 4 or 5), then the
                // DFA will refuse to build.
                //
                // We shouldn't enable this to make building always work, since
                // this could cause the allocation of a cache bigger than the
                // provided capacity amount.
                //
                // This is effectively the only reason why building a lazy DFA
                // could fail. If it does, then we simply suppress the error
                // and return None.
                .skip_cache_capacity_check(false)
                // This and enabling heuristic Unicode word boundary support
                // above make it so the lazy DFA can quit at match time.
                .minimum_cache_clear_count(Some(3))
                .minimum_bytes_per_state(Some(10));
            let result = hybrid::dfa::Builder::new()
                .configure(dfa_config.clone())
                .build_from_nfa(nfa.clone());
            let fwd = match result {
                Ok(fwd) => fwd,
                Err(_err) => {
                    debug!("forward lazy DFA failed to build: {}", _err);
                    return None;
                }
            };
            let result = hybrid::dfa::Builder::new()
                .configure(
                    dfa_config
                        .clone()
                        .match_kind(MatchKind::All)
                        .prefilter(None)
                        .specialize_start_states(false),
                )
                .build_from_nfa(nfarev.clone());
            let rev = match result {
                Ok(rev) => rev,
                Err(_err) => {
                    debug!("reverse lazy DFA failed to build: {}", _err);
                    return None;
                }
            };
            let engine =
                hybrid::regex::Builder::new().build_from_dfas(fwd, rev);
            debug!("lazy DFA built");
            Some(HybridEngine(engine))
        }
        #[cfg(not(feature = "hybrid"))]
        {
            None
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn try_search(
        &self,
        cache: &mut HybridCache,
        input: &Input<'_>,
    ) -> Result<Option<Match>, RetryFailError> {
        #[cfg(feature = "hybrid")]
        {
            let cache = cache.0.as_mut().unwrap();
            self.0.try_search(cache, input).map_err(|e| e.into())
        }
        #[cfg(not(feature = "hybrid"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn try_search_half_fwd(
        &self,
        cache: &mut HybridCache,
        input: &Input<'_>,
    ) -> Result<Option<HalfMatch>, RetryFailError> {
        #[cfg(feature = "hybrid")]
        {
            let fwd = self.0.forward();
            let mut fwdcache = cache.0.as_mut().unwrap().as_parts_mut().0;
            fwd.try_search_fwd(&mut fwdcache, input).map_err(|e| e.into())
        }
        #[cfg(not(feature = "hybrid"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn try_search_half_fwd_stopat(
        &self,
        cache: &mut HybridCache,
        input: &Input<'_>,
    ) -> Result<Result<HalfMatch, usize>, RetryFailError> {
        #[cfg(feature = "hybrid")]
        {
            let dfa = self.0.forward();
            let mut cache = cache.0.as_mut().unwrap().as_parts_mut().0;
            crate::meta::stopat::hybrid_try_search_half_fwd(
                dfa, &mut cache, input,
            )
        }
        #[cfg(not(feature = "hybrid"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn try_search_half_rev(
        &self,
        cache: &mut HybridCache,
        input: &Input<'_>,
    ) -> Result<Option<HalfMatch>, RetryFailError> {
        #[cfg(feature = "hybrid")]
        {
            let rev = self.0.reverse();
            let mut revcache = cache.0.as_mut().unwrap().as_parts_mut().1;
            rev.try_search_rev(&mut revcache, input).map_err(|e| e.into())
        }
        #[cfg(not(feature = "hybrid"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn try_search_half_rev_limited(
        &self,
        cache: &mut HybridCache,
        input: &Input<'_>,
        min_start: usize,
    ) -> Result<Option<HalfMatch>, RetryError> {
        #[cfg(feature = "hybrid")]
        {
            let dfa = self.0.reverse();
            let mut cache = cache.0.as_mut().unwrap().as_parts_mut().1;
            crate::meta::limited::hybrid_try_search_half_rev(
                dfa, &mut cache, input, min_start,
            )
        }
        #[cfg(not(feature = "hybrid"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }

    #[inline]
    pub(crate) fn try_which_overlapping_matches(
        &self,
        cache: &mut HybridCache,
        input: &Input<'_>,
        patset: &mut PatternSet,
    ) -> Result<(), RetryFailError> {
        #[cfg(feature = "hybrid")]
        {
            let fwd = self.0.forward();
            let mut fwdcache = cache.0.as_mut().unwrap().as_parts_mut().0;
            fwd.try_which_overlapping_matches(&mut fwdcache, input, patset)
                .map_err(|e| e.into())
        }
        #[cfg(not(feature = "hybrid"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }
}

#[derive(Clone, Debug)]
pub(crate) struct HybridCache(
    #[cfg(feature = "hybrid")] Option<hybrid::regex::Cache>,
    #[cfg(not(feature = "hybrid"))] (),
);

impl HybridCache {
    pub(crate) fn none() -> HybridCache {
        #[cfg(feature = "hybrid")]
        {
            HybridCache(None)
        }
        #[cfg(not(feature = "hybrid"))]
        {
            HybridCache(())
        }
    }

    pub(crate) fn new(builder: &Hybrid) -> HybridCache {
        #[cfg(feature = "hybrid")]
        {
            HybridCache(builder.0.as_ref().map(|e| e.0.create_cache()))
        }
        #[cfg(not(feature = "hybrid"))]
        {
            HybridCache(())
        }
    }

    pub(crate) fn reset(&mut self, builder: &Hybrid) {
        #[cfg(feature = "hybrid")]
        if let Some(ref e) = builder.0 {
            self.0.as_mut().unwrap().reset(&e.0);
        }
    }

    pub(crate) fn memory_usage(&self) -> usize {
        #[cfg(feature = "hybrid")]
        {
            self.0.as_ref().map_or(0, |c| c.memory_usage())
        }
        #[cfg(not(feature = "hybrid"))]
        {
            0
        }
    }
}

#[derive(Debug)]
pub(crate) struct DFA(Option<DFAEngine>);

impl DFA {
    pub(crate) fn none() -> DFA {
        DFA(None)
    }

    pub(crate) fn new(
        info: &RegexInfo,
        pre: Option<Prefilter>,
        nfa: &NFA,
        nfarev: &NFA,
    ) -> DFA {
        DFA(DFAEngine::new(info, pre, nfa, nfarev))
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn get(&self, _input: &Input<'_>) -> Option<&DFAEngine> {
        let engine = self.0.as_ref()?;
        Some(engine)
    }

    pub(crate) fn is_some(&self) -> bool {
        self.0.is_some()
    }

    pub(crate) fn memory_usage(&self) -> usize {
        self.0.as_ref().map_or(0, |e| e.memory_usage())
    }
}

#[derive(Debug)]
pub(crate) struct DFAEngine(
    #[cfg(feature = "dfa-build")] dfa::regex::Regex,
    #[cfg(not(feature = "dfa-build"))] (),
);

impl DFAEngine {
    pub(crate) fn new(
        info: &RegexInfo,
        pre: Option<Prefilter>,
        nfa: &NFA,
        nfarev: &NFA,
    ) -> Option<DFAEngine> {
        #[cfg(feature = "dfa-build")]
        {
            if !info.config().get_dfa() {
                return None;
            }
            // If our NFA is anything but small, don't even bother with a DFA.
            if let Some(state_limit) = info.config().get_dfa_state_limit() {
                if nfa.states().len() > state_limit {
                    debug!(
                        "skipping full DFA because NFA has {} states, \
                         which exceeds the heuristic limit of {}",
                        nfa.states().len(),
                        state_limit,
                    );
                    return None;
                }
            }
            // We cut the size limit in four because the total heap used by
            // DFA construction is determinization aux memory and the DFA
            // itself, and those things are configured independently in the
            // lower level DFA builder API. And then split that in two because
            // of forward and reverse DFAs.
            let size_limit = info.config().get_dfa_size_limit().map(|n| n / 4);
            let dfa_config = dfa::dense::Config::new()
                .match_kind(info.config().get_match_kind())
                .prefilter(pre.clone())
                // Enabling this is necessary for ensuring we can service any
                // kind of 'Input' search without error. For the full DFA, this
                // can be quite costly. But since we have such a small bound
                // on the size of the DFA, in practice, any multl-regexes are
                // probably going to blow the limit anyway.
                .starts_for_each_pattern(true)
                .byte_classes(info.config().get_byte_classes())
                .unicode_word_boundary(true)
                .specialize_start_states(pre.is_some())
                .determinize_size_limit(size_limit)
                .dfa_size_limit(size_limit);
            let result = dfa::dense::Builder::new()
                .configure(dfa_config.clone())
                .build_from_nfa(&nfa);
            let fwd = match result {
                Ok(fwd) => fwd,
                Err(_err) => {
                    debug!("forward full DFA failed to build: {}", _err);
                    return None;
                }
            };
            let result = dfa::dense::Builder::new()
                .configure(
                    dfa_config
                        .clone()
                        // We never need unanchored reverse searches, so
                        // there's no point in building it into the DFA, which
                        // WILL take more space. (This isn't done for the lazy
                        // DFA because the DFA is, well, lazy. It doesn't pay
                        // the cost for supporting unanchored searches unless
                        // you actually do an unanchored search, which we
                        // don't.)
                        .start_kind(dfa::StartKind::Anchored)
                        .match_kind(MatchKind::All)
                        .prefilter(None)
                        .specialize_start_states(false),
                )
                .build_from_nfa(&nfarev);
            let rev = match result {
                Ok(rev) => rev,
                Err(_err) => {
                    debug!("reverse full DFA failed to build: {}", _err);
                    return None;
                }
            };
            let engine = dfa::regex::Builder::new().build_from_dfas(fwd, rev);
            debug!(
                "fully compiled forward and reverse DFAs built, {} bytes",
                engine.forward().memory_usage()
                    + engine.reverse().memory_usage(),
            );
            Some(DFAEngine(engine))
        }
        #[cfg(not(feature = "dfa-build"))]
        {
            None
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn try_search(
        &self,
        input: &Input<'_>,
    ) -> Result<Option<Match>, RetryFailError> {
        #[cfg(feature = "dfa-build")]
        {
            self.0.try_search(input).map_err(|e| e.into())
        }
        #[cfg(not(feature = "dfa-build"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn try_search_half_fwd(
        &self,
        input: &Input<'_>,
    ) -> Result<Option<HalfMatch>, RetryFailError> {
        #[cfg(feature = "dfa-build")]
        {
            use crate::dfa::Automaton;
            self.0.forward().try_search_fwd(input).map_err(|e| e.into())
        }
        #[cfg(not(feature = "dfa-build"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn try_search_half_fwd_stopat(
        &self,
        input: &Input<'_>,
    ) -> Result<Result<HalfMatch, usize>, RetryFailError> {
        #[cfg(feature = "dfa-build")]
        {
            let dfa = self.0.forward();
            crate::meta::stopat::dfa_try_search_half_fwd(dfa, input)
        }
        #[cfg(not(feature = "dfa-build"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn try_search_half_rev(
        &self,
        input: &Input<'_>,
    ) -> Result<Option<HalfMatch>, RetryFailError> {
        #[cfg(feature = "dfa-build")]
        {
            use crate::dfa::Automaton;
            self.0.reverse().try_search_rev(&input).map_err(|e| e.into())
        }
        #[cfg(not(feature = "dfa-build"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn try_search_half_rev_limited(
        &self,
        input: &Input<'_>,
        min_start: usize,
    ) -> Result<Option<HalfMatch>, RetryError> {
        #[cfg(feature = "dfa-build")]
        {
            let dfa = self.0.reverse();
            crate::meta::limited::dfa_try_search_half_rev(
                dfa, input, min_start,
            )
        }
        #[cfg(not(feature = "dfa-build"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }

    #[inline]
    pub(crate) fn try_which_overlapping_matches(
        &self,
        input: &Input<'_>,
        patset: &mut PatternSet,
    ) -> Result<(), RetryFailError> {
        #[cfg(feature = "dfa-build")]
        {
            use crate::dfa::Automaton;
            self.0
                .forward()
                .try_which_overlapping_matches(input, patset)
                .map_err(|e| e.into())
        }
        #[cfg(not(feature = "dfa-build"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }

    pub(crate) fn memory_usage(&self) -> usize {
        #[cfg(feature = "dfa-build")]
        {
            self.0.forward().memory_usage() + self.0.reverse().memory_usage()
        }
        #[cfg(not(feature = "dfa-build"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }
}

#[derive(Debug)]
pub(crate) struct ReverseHybrid(Option<ReverseHybridEngine>);

impl ReverseHybrid {
    pub(crate) fn none() -> ReverseHybrid {
        ReverseHybrid(None)
    }

    pub(crate) fn new(info: &RegexInfo, nfarev: &NFA) -> ReverseHybrid {
        ReverseHybrid(ReverseHybridEngine::new(info, nfarev))
    }

    pub(crate) fn create_cache(&self) -> ReverseHybridCache {
        ReverseHybridCache::new(self)
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn get(
        &self,
        _input: &Input<'_>,
    ) -> Option<&ReverseHybridEngine> {
        let engine = self.0.as_ref()?;
        Some(engine)
    }
}

#[derive(Debug)]
pub(crate) struct ReverseHybridEngine(
    #[cfg(feature = "hybrid")] hybrid::dfa::DFA,
    #[cfg(not(feature = "hybrid"))] (),
);

impl ReverseHybridEngine {
    pub(crate) fn new(
        info: &RegexInfo,
        nfarev: &NFA,
    ) -> Option<ReverseHybridEngine> {
        #[cfg(feature = "hybrid")]
        {
            if !info.config().get_hybrid() {
                return None;
            }
            // Since we only use this for reverse searches, we can hard-code
            // a number of things like match semantics, prefilters, starts
            // for each pattern and so on.
            let dfa_config = hybrid::dfa::Config::new()
                .match_kind(MatchKind::All)
                .prefilter(None)
                .starts_for_each_pattern(false)
                .byte_classes(info.config().get_byte_classes())
                .unicode_word_boundary(true)
                .specialize_start_states(false)
                .cache_capacity(info.config().get_hybrid_cache_capacity())
                .skip_cache_capacity_check(false)
                .minimum_cache_clear_count(Some(3))
                .minimum_bytes_per_state(Some(10));
            let result = hybrid::dfa::Builder::new()
                .configure(dfa_config)
                .build_from_nfa(nfarev.clone());
            let rev = match result {
                Ok(rev) => rev,
                Err(_err) => {
                    debug!("lazy reverse DFA failed to build: {}", _err);
                    return None;
                }
            };
            debug!("lazy reverse DFA built");
            Some(ReverseHybridEngine(rev))
        }
        #[cfg(not(feature = "hybrid"))]
        {
            None
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn try_search_half_rev_limited(
        &self,
        cache: &mut ReverseHybridCache,
        input: &Input<'_>,
        min_start: usize,
    ) -> Result<Option<HalfMatch>, RetryError> {
        #[cfg(feature = "hybrid")]
        {
            let dfa = &self.0;
            let mut cache = cache.0.as_mut().unwrap();
            crate::meta::limited::hybrid_try_search_half_rev(
                dfa, &mut cache, input, min_start,
            )
        }
        #[cfg(not(feature = "hybrid"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }
}

#[derive(Clone, Debug)]
pub(crate) struct ReverseHybridCache(
    #[cfg(feature = "hybrid")] Option<hybrid::dfa::Cache>,
    #[cfg(not(feature = "hybrid"))] (),
);

impl ReverseHybridCache {
    pub(crate) fn none() -> ReverseHybridCache {
        #[cfg(feature = "hybrid")]
        {
            ReverseHybridCache(None)
        }
        #[cfg(not(feature = "hybrid"))]
        {
            ReverseHybridCache(())
        }
    }

    pub(crate) fn new(builder: &ReverseHybrid) -> ReverseHybridCache {
        #[cfg(feature = "hybrid")]
        {
            ReverseHybridCache(builder.0.as_ref().map(|e| e.0.create_cache()))
        }
        #[cfg(not(feature = "hybrid"))]
        {
            ReverseHybridCache(())
        }
    }

    pub(crate) fn reset(&mut self, builder: &ReverseHybrid) {
        #[cfg(feature = "hybrid")]
        if let Some(ref e) = builder.0 {
            self.0.as_mut().unwrap().reset(&e.0);
        }
    }

    pub(crate) fn memory_usage(&self) -> usize {
        #[cfg(feature = "hybrid")]
        {
            self.0.as_ref().map_or(0, |c| c.memory_usage())
        }
        #[cfg(not(feature = "hybrid"))]
        {
            0
        }
    }
}

#[derive(Debug)]
pub(crate) struct ReverseDFA(Option<ReverseDFAEngine>);

impl ReverseDFA {
    pub(crate) fn none() -> ReverseDFA {
        ReverseDFA(None)
    }

    pub(crate) fn new(info: &RegexInfo, nfarev: &NFA) -> ReverseDFA {
        ReverseDFA(ReverseDFAEngine::new(info, nfarev))
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn get(&self, _input: &Input<'_>) -> Option<&ReverseDFAEngine> {
        let engine = self.0.as_ref()?;
        Some(engine)
    }

    pub(crate) fn is_some(&self) -> bool {
        self.0.is_some()
    }

    pub(crate) fn memory_usage(&self) -> usize {
        self.0.as_ref().map_or(0, |e| e.memory_usage())
    }
}

#[derive(Debug)]
pub(crate) struct ReverseDFAEngine(
    #[cfg(feature = "dfa-build")] dfa::dense::DFA<Vec<u32>>,
    #[cfg(not(feature = "dfa-build"))] (),
);

impl ReverseDFAEngine {
    pub(crate) fn new(
        info: &RegexInfo,
        nfarev: &NFA,
    ) -> Option<ReverseDFAEngine> {
        #[cfg(feature = "dfa-build")]
        {
            if !info.config().get_dfa() {
                return None;
            }
            // If our NFA is anything but small, don't even bother with a DFA.
            if let Some(state_limit) = info.config().get_dfa_state_limit() {
                if nfarev.states().len() > state_limit {
                    debug!(
                        "skipping full reverse DFA because NFA has {} states, \
                         which exceeds the heuristic limit of {}",
                        nfarev.states().len(),
                        state_limit,
					);
                    return None;
                }
            }
            // We cut the size limit in two because the total heap used by DFA
            // construction is determinization aux memory and the DFA itself,
            // and those things are configured independently in the lower level
            // DFA builder API.
            let size_limit = info.config().get_dfa_size_limit().map(|n| n / 2);
            // Since we only use this for reverse searches, we can hard-code
            // a number of things like match semantics, prefilters, starts
            // for each pattern and so on. We also disable acceleration since
            // it's incompatible with limited searches (which is the only
            // operation we support for this kind of engine at the moment).
            let dfa_config = dfa::dense::Config::new()
                .match_kind(MatchKind::All)
                .prefilter(None)
                .accelerate(false)
                .start_kind(dfa::StartKind::Anchored)
                .starts_for_each_pattern(false)
                .byte_classes(info.config().get_byte_classes())
                .unicode_word_boundary(true)
                .specialize_start_states(false)
                .determinize_size_limit(size_limit)
                .dfa_size_limit(size_limit);
            let result = dfa::dense::Builder::new()
                .configure(dfa_config)
                .build_from_nfa(&nfarev);
            let rev = match result {
                Ok(rev) => rev,
                Err(_err) => {
                    debug!("full reverse DFA failed to build: {}", _err);
                    return None;
                }
            };
            debug!(
                "fully compiled reverse DFA built, {} bytes",
                rev.memory_usage()
            );
            Some(ReverseDFAEngine(rev))
        }
        #[cfg(not(feature = "dfa-build"))]
        {
            None
        }
    }

    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn try_search_half_rev_limited(
        &self,
        input: &Input<'_>,
        min_start: usize,
    ) -> Result<Option<HalfMatch>, RetryError> {
        #[cfg(feature = "dfa-build")]
        {
            let dfa = &self.0;
            crate::meta::limited::dfa_try_search_half_rev(
                dfa, input, min_start,
            )
        }
        #[cfg(not(feature = "dfa-build"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }

    pub(crate) fn memory_usage(&self) -> usize {
        #[cfg(feature = "dfa-build")]
        {
            self.0.memory_usage()
        }
        #[cfg(not(feature = "dfa-build"))]
        {
            // Impossible to reach because this engine is never constructed
            // if the requisite features aren't enabled.
            unreachable!()
        }
    }
}