drm/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
//! A safe interface to the Direct Rendering Manager subsystem found in various
//! operating systems.
//!
//! # Summary
//!
//! The Direct Rendering Manager (DRM) is subsystem found in various operating
//! systems that exposes graphical functionality to userspace processes. It can
//! be used to send data and commands to a GPU driver that implements the
//! interface.
//!
//! Userspace processes can access the DRM by opening a 'device node' (usually
//! found in `/dev/dri/*`) and using various `ioctl` commands on the open file
//! descriptor. Most processes use the libdrm library (part of the mesa project)
//! to execute these commands. This crate takes a more direct approach,
//! bypassing libdrm and executing the commands directly and doing minimal
//! abstraction to keep the interface safe.
//!
//! While the DRM subsystem exposes many powerful GPU interfaces, it is not
//! recommended for rendering or GPGPU operations. There are many standards made
//! for these use cases, and they are far more fitting for those sort of tasks.
//!
//! ## Usage
//!
//! To begin using this crate, the [`Device`] trait must be
//! implemented. See the trait's [example section](trait@Device#example) for
//! details on how to implement it.
//!
#![warn(missing_docs)]
pub(crate) mod util;
pub mod buffer;
pub mod control;
use std::ffi::{OsStr, OsString};
use std::time::Duration;
use std::{
io,
os::unix::{ffi::OsStringExt, io::AsFd},
};
use rustix::io::Errno;
use crate::util::*;
pub use drm_ffi::{DRM_CLOEXEC as CLOEXEC, DRM_RDWR as RDWR};
/// This trait should be implemented by any object that acts as a DRM device. It
/// is a prerequisite for using any DRM functionality.
///
/// This crate does not provide a concrete device object due to the various ways
/// it can be implemented. The user of this crate is expected to implement it
/// themselves and derive this trait as necessary. The example below
/// demonstrates how to do this using a small wrapper.
///
/// # Example
///
/// ```
/// use drm::Device;
///
/// use std::fs::File;
/// use std::fs::OpenOptions;
///
/// use std::os::unix::io::AsFd;
/// use std::os::unix::io::BorrowedFd;
///
/// #[derive(Debug)]
/// /// A simple wrapper for a device node.
/// struct Card(File);
///
/// /// Implementing [`AsFd`] is a prerequisite to implementing the traits found
/// /// in this crate. Here, we are just calling [`File::as_fd()`] on the inner
/// /// [`File`].
/// impl AsFd for Card {
/// fn as_fd(&self) -> BorrowedFd<'_> {
/// self.0.as_fd()
/// }
/// }
///
/// /// With [`AsFd`] implemented, we can now implement [`drm::Device`].
/// impl Device for Card {}
///
/// impl Card {
/// /// Simple helper method for opening a [`Card`].
/// fn open() -> Self {
/// let mut options = OpenOptions::new();
/// options.read(true);
/// options.write(true);
///
/// // The normal location of the primary device node on Linux
/// Card(options.open("/dev/dri/card0").unwrap())
/// }
/// }
/// ```
pub trait Device: AsFd {
/// Acquires the DRM Master lock for this process.
///
/// # Notes
///
/// Acquiring the DRM Master is done automatically when the primary device
/// node is opened. If you opened the primary device node and did not
/// acquire the lock, another process likely has the lock.
///
/// This function is only available to processes with CAP_SYS_ADMIN
/// privileges (usually as root)
fn acquire_master_lock(&self) -> io::Result<()> {
drm_ffi::auth::acquire_master(self.as_fd())?;
Ok(())
}
/// Releases the DRM Master lock for another process to use.
fn release_master_lock(&self) -> io::Result<()> {
drm_ffi::auth::release_master(self.as_fd())?;
Ok(())
}
/// Generates an [`AuthToken`] for this process.
#[deprecated(note = "Consider opening a render node instead.")]
fn generate_auth_token(&self) -> io::Result<AuthToken> {
let token = drm_ffi::auth::get_magic_token(self.as_fd())?;
Ok(AuthToken(token.magic))
}
/// Authenticates an [`AuthToken`] from another process.
fn authenticate_auth_token(&self, token: AuthToken) -> io::Result<()> {
drm_ffi::auth::auth_magic_token(self.as_fd(), token.0)?;
Ok(())
}
/// Requests the driver to expose or hide certain capabilities. See
/// [`ClientCapability`] for more information.
fn set_client_capability(&self, cap: ClientCapability, enable: bool) -> io::Result<()> {
drm_ffi::set_capability(self.as_fd(), cap as u64, enable)?;
Ok(())
}
/// Gets the bus ID of this device.
fn get_bus_id(&self) -> io::Result<OsString> {
let mut buffer = Vec::new();
let _ = drm_ffi::get_bus_id(self.as_fd(), Some(&mut buffer))?;
let bus_id = OsString::from_vec(buffer);
Ok(bus_id)
}
/// Check to see if our [`AuthToken`] has been authenticated
/// by the DRM Master
fn authenticated(&self) -> io::Result<bool> {
let client = drm_ffi::get_client(self.as_fd(), 0)?;
Ok(client.auth == 1)
}
/// Gets the value of a capability.
fn get_driver_capability(&self, cap: DriverCapability) -> io::Result<u64> {
let cap = drm_ffi::get_capability(self.as_fd(), cap as u64)?;
Ok(cap.value)
}
/// # Possible errors:
/// - `EFAULT`: Kernel could not copy fields into userspace
#[allow(missing_docs)]
fn get_driver(&self) -> io::Result<Driver> {
let mut name = Vec::new();
let mut date = Vec::new();
let mut desc = Vec::new();
let _ = drm_ffi::get_version(
self.as_fd(),
Some(&mut name),
Some(&mut date),
Some(&mut desc),
)?;
let name = OsString::from_vec(unsafe { transmute_vec(name) });
let date = OsString::from_vec(unsafe { transmute_vec(date) });
let desc = OsString::from_vec(unsafe { transmute_vec(desc) });
let driver = Driver { name, date, desc };
Ok(driver)
}
/// Waits for a vblank.
fn wait_vblank(
&self,
target_sequence: VblankWaitTarget,
flags: VblankWaitFlags,
high_crtc: u32,
user_data: usize,
) -> io::Result<VblankWaitReply> {
use drm_ffi::drm_vblank_seq_type::_DRM_VBLANK_HIGH_CRTC_MASK;
use drm_ffi::_DRM_VBLANK_HIGH_CRTC_SHIFT;
let high_crtc_mask = _DRM_VBLANK_HIGH_CRTC_MASK >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
if (high_crtc & !high_crtc_mask) != 0 {
return Err(Errno::INVAL.into());
}
let (sequence, wait_type) = match target_sequence {
VblankWaitTarget::Absolute(n) => {
(n, drm_ffi::drm_vblank_seq_type::_DRM_VBLANK_ABSOLUTE)
}
VblankWaitTarget::Relative(n) => {
(n, drm_ffi::drm_vblank_seq_type::_DRM_VBLANK_RELATIVE)
}
};
let type_ = wait_type | (high_crtc << _DRM_VBLANK_HIGH_CRTC_SHIFT) | flags.bits();
let reply = drm_ffi::wait_vblank(self.as_fd(), type_, sequence, user_data)?;
let time = match (reply.tval_sec, reply.tval_usec) {
(0, 0) => None,
(sec, usec) => Some(Duration::new(sec as u64, (usec * 1000) as u32)),
};
Ok(VblankWaitReply {
frame: reply.sequence,
time,
})
}
}
/// An authentication token, unique to the file descriptor of the device.
///
/// This token can be sent to another process that owns the DRM Master lock to
/// allow unprivileged use of the device, such as rendering.
///
/// # Deprecation Notes
///
/// This method of authentication is somewhat deprecated. Accessing unprivileged
/// functionality is best done by opening a render node. However, some other
/// processes may still use this method of authentication. Therefore, we still
/// provide functionality for generating and authenticating these tokens.
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
pub struct AuthToken(u32);
/// Driver version of a device.
#[derive(Debug, Clone, Hash, PartialEq, Eq)]
pub struct Driver {
/// Name of the driver
pub name: OsString,
/// Date driver was published
pub date: OsString,
/// Driver description
pub desc: OsString,
}
impl Driver {
/// Name of driver
pub fn name(&self) -> &OsStr {
self.name.as_ref()
}
/// Date driver was published
pub fn date(&self) -> &OsStr {
self.date.as_ref()
}
/// Driver description
pub fn description(&self) -> &OsStr {
self.desc.as_ref()
}
}
/// Used to check which capabilities your graphics driver has.
#[allow(clippy::upper_case_acronyms)]
#[repr(u64)]
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
pub enum DriverCapability {
/// DumbBuffer support for scanout
DumbBuffer = drm_ffi::DRM_CAP_DUMB_BUFFER as u64,
/// Unknown
VBlankHighCRTC = drm_ffi::DRM_CAP_VBLANK_HIGH_CRTC as u64,
/// Preferred depth to use for dumb buffers
DumbPreferredDepth = drm_ffi::DRM_CAP_DUMB_PREFERRED_DEPTH as u64,
/// Unknown
DumbPreferShadow = drm_ffi::DRM_CAP_DUMB_PREFER_SHADOW as u64,
/// PRIME handles are supported
Prime = drm_ffi::DRM_CAP_PRIME as u64,
/// Unknown
MonotonicTimestamp = drm_ffi::DRM_CAP_TIMESTAMP_MONOTONIC as u64,
/// Asynchronous page flipping support
ASyncPageFlip = drm_ffi::DRM_CAP_ASYNC_PAGE_FLIP as u64,
/// Width of cursor buffers
CursorWidth = drm_ffi::DRM_CAP_CURSOR_WIDTH as u64,
/// Height of cursor buffers
CursorHeight = drm_ffi::DRM_CAP_CURSOR_HEIGHT as u64,
/// Create framebuffers with modifiers
AddFB2Modifiers = drm_ffi::DRM_CAP_ADDFB2_MODIFIERS as u64,
/// Unknown
PageFlipTarget = drm_ffi::DRM_CAP_PAGE_FLIP_TARGET as u64,
/// Uses the CRTC's ID in vblank events
CRTCInVBlankEvent = drm_ffi::DRM_CAP_CRTC_IN_VBLANK_EVENT as u64,
/// SyncObj support
SyncObj = drm_ffi::DRM_CAP_SYNCOBJ as u64,
/// Timeline SyncObj support
TimelineSyncObj = drm_ffi::DRM_CAP_SYNCOBJ_TIMELINE as u64,
}
/// Used to enable/disable capabilities for the process.
#[repr(u64)]
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
pub enum ClientCapability {
/// The driver provides 3D screen control
Stereo3D = drm_ffi::DRM_CLIENT_CAP_STEREO_3D as u64,
/// The driver provides more plane types for modesetting
UniversalPlanes = drm_ffi::DRM_CLIENT_CAP_UNIVERSAL_PLANES as u64,
/// The driver provides atomic modesetting
Atomic = drm_ffi::DRM_CLIENT_CAP_ATOMIC as u64,
}
/// Used to specify a vblank sequence to wait for
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
pub enum VblankWaitTarget {
/// Wait for a specific vblank sequence number
Absolute(u32),
/// Wait for a given number of vblanks
Relative(u32),
}
bitflags::bitflags! {
/// Flags to alter the behaviour when waiting for a vblank
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct VblankWaitFlags : u32 {
/// Send event instead of blocking
const EVENT = drm_ffi::drm_vblank_seq_type::_DRM_VBLANK_EVENT;
/// If missed, wait for next vblank
const NEXT_ON_MISS = drm_ffi::drm_vblank_seq_type::_DRM_VBLANK_NEXTONMISS;
}
}
/// Data returned from a vblank wait
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
pub struct VblankWaitReply {
frame: u32,
time: Option<Duration>,
}
impl VblankWaitReply {
/// Sequence of the frame
pub fn frame(&self) -> u32 {
self.frame
}
/// Time at which the vblank occurred. [`None`] if an asynchronous event was
/// requested
pub fn time(&self) -> Option<Duration> {
self.time
}
}