zune_jpeg/color_convert/avx.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
/*
* Copyright (c) 2023.
*
* This software is free software;
*
* You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license
*/
//! AVX color conversion routines
//!
//! Okay these codes are cool
//!
//! Herein lies super optimized codes to do color conversions.
//!
//!
//! 1. The YCbCr to RGB use integer approximations and not the floating point equivalent.
//! That means we may be +- 2 of pixels generated by libjpeg-turbo jpeg decoding
//! (also libjpeg uses routines like `Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G`)
//!
//! Firstly, we use integers (fun fact:there is no part of this code base where were dealing with
//! floating points.., fun fact: the first fun fact wasn't even fun.)
//!
//! Secondly ,we have cool clamping code, especially for rgba , where we don't need clamping and we
//! spend our time cursing that Intel decided permute instructions to work like 2 128 bit vectors(the compiler opitmizes
//! it out to something cool).
//!
//! There isn't a lot here (not as fun as bitstream ) but I hope you find what you're looking for.
//!
//! O and ~~subscribe to my youtube channel~~
#![cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#![cfg(feature = "x86")]
#![allow(
clippy::wildcard_imports,
clippy::cast_possible_truncation,
clippy::too_many_arguments,
clippy::inline_always,
clippy::doc_markdown,
dead_code
)]
#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;
pub union YmmRegister {
// both are 32 when using std::mem::size_of
mm256: __m256i,
// for avx color conversion
array: [i16; 16]
}
//--------------------------------------------------------------------------------------------------
// AVX conversion routines
//--------------------------------------------------------------------------------------------------
///
/// Convert YCBCR to RGB using AVX instructions
///
/// # Note
///**IT IS THE RESPONSIBILITY OF THE CALLER TO CALL THIS IN CPUS SUPPORTING
/// AVX2 OTHERWISE THIS IS UB**
///
/// *Peace*
///
/// This library itself will ensure that it's never called in CPU's not
/// supporting AVX2
///
/// # Arguments
/// - `y`,`cb`,`cr`: A reference of 8 i32's
/// - `out`: The output array where we store our converted items
/// - `offset`: The position from 0 where we write these RGB values
#[inline(always)]
pub fn ycbcr_to_rgb_avx2(
y: &[i16; 16], cb: &[i16; 16], cr: &[i16; 16], out: &mut [u8], offset: &mut usize
) {
// call this in another function to tell RUST to vectorize this
// storing
unsafe {
ycbcr_to_rgb_avx2_1(y, cb, cr, out, offset);
}
}
#[inline]
#[target_feature(enable = "avx2")]
#[target_feature(enable = "avx")]
unsafe fn ycbcr_to_rgb_avx2_1(
y: &[i16; 16], cb: &[i16; 16], cr: &[i16; 16], out: &mut [u8], offset: &mut usize
) {
// Load output buffer
let tmp: &mut [u8; 48] = out
.get_mut(*offset..*offset + 48)
.expect("Slice to small cannot write")
.try_into()
.unwrap();
let (r, g, b) = ycbcr_to_rgb_baseline(y, cb, cr);
let mut j = 0;
let mut i = 0;
while i < 48 {
tmp[i] = r.array[j] as u8;
tmp[i + 1] = g.array[j] as u8;
tmp[i + 2] = b.array[j] as u8;
i += 3;
j += 1;
}
*offset += 48;
}
/// Baseline implementation of YCBCR to RGB for avx,
///
/// It uses integer operations as opposed to floats, the approximation is
/// difficult for the eye to see, but this means that it may produce different
/// values with libjpeg_turbo. if accuracy is of utmost importance, use that.
///
/// this function should be called for most implementations, including
/// - ycbcr->rgb
/// - ycbcr->rgba
/// - ycbcr->brga
/// - ycbcr->rgbx
#[inline]
#[target_feature(enable = "avx2")]
#[target_feature(enable = "avx")]
unsafe fn ycbcr_to_rgb_baseline(
y: &[i16; 16], cb: &[i16; 16], cr: &[i16; 16]
) -> (YmmRegister, YmmRegister, YmmRegister) {
// Load values into a register
//
// dst[127:0] := MEM[loaddr+127:loaddr]
// dst[255:128] := MEM[hiaddr+127:hiaddr]
let y_c = _mm256_loadu_si256(y.as_ptr().cast());
let cb_c = _mm256_loadu_si256(cb.as_ptr().cast());
let cr_c = _mm256_loadu_si256(cr.as_ptr().cast());
// AVX version of integer version in https://stackoverflow.com/questions/4041840/function-to-convert-ycbcr-to-rgb
// Cb = Cb-128;
let cb_r = _mm256_sub_epi16(cb_c, _mm256_set1_epi16(128));
// cr = Cb -128;
let cr_r = _mm256_sub_epi16(cr_c, _mm256_set1_epi16(128));
// Calculate Y->R
// r = Y + 45 * Cr / 32
// 45*cr
let r1 = _mm256_mullo_epi16(_mm256_set1_epi16(45), cr_r);
// r1>>5
let r2 = _mm256_srai_epi16::<5>(r1);
//y+r2
let r = YmmRegister {
mm256: clamp_avx(_mm256_add_epi16(y_c, r2))
};
// g = Y - (11 * Cb + 23 * Cr) / 32 ;
// 11*cb
let g1 = _mm256_mullo_epi16(_mm256_set1_epi16(11), cb_r);
// 23*cr
let g2 = _mm256_mullo_epi16(_mm256_set1_epi16(23), cr_r);
//(11
//(11 * Cb + 23 * Cr)
let g3 = _mm256_add_epi16(g1, g2);
// (11 * Cb + 23 * Cr) / 32
let g4 = _mm256_srai_epi16::<5>(g3);
// Y - (11 * Cb + 23 * Cr) / 32 ;
let g = YmmRegister {
mm256: clamp_avx(_mm256_sub_epi16(y_c, g4))
};
// b = Y + 113 * Cb / 64
// 113 * cb
let b1 = _mm256_mullo_epi16(_mm256_set1_epi16(113), cb_r);
//113 * Cb / 64
let b2 = _mm256_srai_epi16::<6>(b1);
// b = Y + 113 * Cb / 64 ;
let b = YmmRegister {
mm256: clamp_avx(_mm256_add_epi16(b2, y_c))
};
return (r, g, b);
}
#[inline]
#[target_feature(enable = "avx2")]
/// A baseline implementation of YCbCr to RGB conversion which does not carry
/// out clamping
///
/// This is used by the `ycbcr_to_rgba_avx` and `ycbcr_to_rgbx` conversion
/// routines
unsafe fn ycbcr_to_rgb_baseline_no_clamp(
y: &[i16; 16], cb: &[i16; 16], cr: &[i16; 16]
) -> (__m256i, __m256i, __m256i) {
// Load values into a register
//
let y_c = _mm256_loadu_si256(y.as_ptr().cast());
let cb_c = _mm256_loadu_si256(cb.as_ptr().cast());
let cr_c = _mm256_loadu_si256(cr.as_ptr().cast());
// AVX version of integer version in https://stackoverflow.com/questions/4041840/function-to-convert-ycbcr-to-rgb
// Cb = Cb-128;
let cb_r = _mm256_sub_epi16(cb_c, _mm256_set1_epi16(128));
// cr = Cb -128;
let cr_r = _mm256_sub_epi16(cr_c, _mm256_set1_epi16(128));
// Calculate Y->R
// r = Y + 45 * Cr / 32
// 45*cr
let r1 = _mm256_mullo_epi16(_mm256_set1_epi16(45), cr_r);
// r1>>5
let r2 = _mm256_srai_epi16::<5>(r1);
//y+r2
let r = _mm256_add_epi16(y_c, r2);
// g = Y - (11 * Cb + 23 * Cr) / 32 ;
// 11*cb
let g1 = _mm256_mullo_epi16(_mm256_set1_epi16(11), cb_r);
// 23*cr
let g2 = _mm256_mullo_epi16(_mm256_set1_epi16(23), cr_r);
//(11
//(11 * Cb + 23 * Cr)
let g3 = _mm256_add_epi16(g1, g2);
// (11 * Cb + 23 * Cr) / 32
let g4 = _mm256_srai_epi16::<5>(g3);
// Y - (11 * Cb + 23 * Cr) / 32 ;
let g = _mm256_sub_epi16(y_c, g4);
// b = Y + 113 * Cb / 64
// 113 * cb
let b1 = _mm256_mullo_epi16(_mm256_set1_epi16(113), cb_r);
//113 * Cb / 64
let b2 = _mm256_srai_epi16::<6>(b1);
// b = Y + 113 * Cb / 64 ;
let b = _mm256_add_epi16(b2, y_c);
return (r, g, b);
}
#[inline(always)]
pub fn ycbcr_to_rgba_avx2(
y: &[i16; 16], cb: &[i16; 16], cr: &[i16; 16], out: &mut [u8], offset: &mut usize
) {
unsafe {
ycbcr_to_rgba_unsafe(y, cb, cr, out, offset);
}
}
#[inline]
#[target_feature(enable = "avx2")]
#[rustfmt::skip]
unsafe fn ycbcr_to_rgba_unsafe(
y: &[i16; 16], cb: &[i16; 16], cr: &[i16; 16],
out: &mut [u8],
offset: &mut usize,
)
{
// check if we have enough space to write.
let tmp:& mut [u8; 64] = out.get_mut(*offset..*offset + 64).expect("Slice to small cannot write").try_into().unwrap();
let (r, g, b) = ycbcr_to_rgb_baseline_no_clamp(y, cb, cr);
// set alpha channel to 255 for opaque
// And no these comments were not from me pressing the keyboard
// Pack the integers into u8's using signed saturation.
let c = _mm256_packus_epi16(r, g); //aaaaa_bbbbb_aaaaa_bbbbbb
let d = _mm256_packus_epi16(b, _mm256_set1_epi16(255)); // cccccc_dddddd_ccccccc_ddddd
// transpose_u16 and interleave channels
let e = _mm256_unpacklo_epi8(c, d); //ab_ab_ab_ab_ab_ab_ab_ab
let f = _mm256_unpackhi_epi8(c, d); //cd_cd_cd_cd_cd_cd_cd_cd
// final transpose_u16
let g = _mm256_unpacklo_epi8(e, f); //abcd_abcd_abcd_abcd_abcd
let h = _mm256_unpackhi_epi8(e, f);
// undo packus shuffling...
let i = _mm256_permute2x128_si256::<{ shuffle(3, 2, 1, 0) }>(g, h);
let j = _mm256_permute2x128_si256::<{ shuffle(1, 2, 3, 0) }>(g, h);
let k = _mm256_permute2x128_si256::<{ shuffle(3, 2, 0, 1) }>(g, h);
let l = _mm256_permute2x128_si256::<{ shuffle(0, 3, 2, 1) }>(g, h);
let m = _mm256_blend_epi32::<0b1111_0000>(i, j);
let n = _mm256_blend_epi32::<0b1111_0000>(k, l);
// Store
// Use streaming instructions to prevent polluting the cache?
_mm256_storeu_si256(tmp.as_mut_ptr().cast(), m);
_mm256_storeu_si256(tmp[32..].as_mut_ptr().cast(), n);
*offset += 64;
}
/// Clamp values between 0 and 255
///
/// This function clamps all values in `reg` to be between 0 and 255
///( the accepted values for RGB)
#[inline]
#[target_feature(enable = "avx2")]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
unsafe fn clamp_avx(reg: __m256i) -> __m256i {
// the lowest value
let min_s = _mm256_set1_epi16(0);
// Highest value
let max_s = _mm256_set1_epi16(255);
let max_v = _mm256_max_epi16(reg, min_s); //max(a,0)
let min_v = _mm256_min_epi16(max_v, max_s); //min(max(a,0),255)
return min_v;
}
#[inline]
const fn shuffle(z: i32, y: i32, x: i32, w: i32) -> i32 {
(z << 6) | (y << 4) | (x << 2) | w
}