glam/f64/
dmat2.rs

1// Generated from mat.rs.tera template. Edit the template, not the generated file.
2
3use crate::{f64::math, swizzles::*, DMat3, DVec2, Mat2};
4#[cfg(not(target_arch = "spirv"))]
5use core::fmt;
6use core::iter::{Product, Sum};
7use core::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
8
9/// Creates a 2x2 matrix from two column vectors.
10#[inline(always)]
11#[must_use]
12pub const fn dmat2(x_axis: DVec2, y_axis: DVec2) -> DMat2 {
13    DMat2::from_cols(x_axis, y_axis)
14}
15
16/// A 2x2 column major matrix.
17#[derive(Clone, Copy)]
18#[cfg_attr(feature = "cuda", repr(align(16)))]
19#[repr(C)]
20pub struct DMat2 {
21    pub x_axis: DVec2,
22    pub y_axis: DVec2,
23}
24
25impl DMat2 {
26    /// A 2x2 matrix with all elements set to `0.0`.
27    pub const ZERO: Self = Self::from_cols(DVec2::ZERO, DVec2::ZERO);
28
29    /// A 2x2 identity matrix, where all diagonal elements are `1`, and all off-diagonal elements are `0`.
30    pub const IDENTITY: Self = Self::from_cols(DVec2::X, DVec2::Y);
31
32    /// All NAN:s.
33    pub const NAN: Self = Self::from_cols(DVec2::NAN, DVec2::NAN);
34
35    #[allow(clippy::too_many_arguments)]
36    #[inline(always)]
37    #[must_use]
38    const fn new(m00: f64, m01: f64, m10: f64, m11: f64) -> Self {
39        Self {
40            x_axis: DVec2::new(m00, m01),
41            y_axis: DVec2::new(m10, m11),
42        }
43    }
44
45    /// Creates a 2x2 matrix from two column vectors.
46    #[inline(always)]
47    #[must_use]
48    pub const fn from_cols(x_axis: DVec2, y_axis: DVec2) -> Self {
49        Self { x_axis, y_axis }
50    }
51
52    /// Creates a 2x2 matrix from a `[f64; 4]` array stored in column major order.
53    /// If your data is stored in row major you will need to `transpose` the returned
54    /// matrix.
55    #[inline]
56    #[must_use]
57    pub const fn from_cols_array(m: &[f64; 4]) -> Self {
58        Self::new(m[0], m[1], m[2], m[3])
59    }
60
61    /// Creates a `[f64; 4]` array storing data in column major order.
62    /// If you require data in row major order `transpose` the matrix first.
63    #[inline]
64    #[must_use]
65    pub const fn to_cols_array(&self) -> [f64; 4] {
66        [self.x_axis.x, self.x_axis.y, self.y_axis.x, self.y_axis.y]
67    }
68
69    /// Creates a 2x2 matrix from a `[[f64; 2]; 2]` 2D array stored in column major order.
70    /// If your data is in row major order you will need to `transpose` the returned
71    /// matrix.
72    #[inline]
73    #[must_use]
74    pub const fn from_cols_array_2d(m: &[[f64; 2]; 2]) -> Self {
75        Self::from_cols(DVec2::from_array(m[0]), DVec2::from_array(m[1]))
76    }
77
78    /// Creates a `[[f64; 2]; 2]` 2D array storing data in column major order.
79    /// If you require data in row major order `transpose` the matrix first.
80    #[inline]
81    #[must_use]
82    pub const fn to_cols_array_2d(&self) -> [[f64; 2]; 2] {
83        [self.x_axis.to_array(), self.y_axis.to_array()]
84    }
85
86    /// Creates a 2x2 matrix with its diagonal set to `diagonal` and all other entries set to 0.
87    #[doc(alias = "scale")]
88    #[inline]
89    #[must_use]
90    pub const fn from_diagonal(diagonal: DVec2) -> Self {
91        Self::new(diagonal.x, 0.0, 0.0, diagonal.y)
92    }
93
94    /// Creates a 2x2 matrix containing the combining non-uniform `scale` and rotation of
95    /// `angle` (in radians).
96    #[inline]
97    #[must_use]
98    pub fn from_scale_angle(scale: DVec2, angle: f64) -> Self {
99        let (sin, cos) = math::sin_cos(angle);
100        Self::new(cos * scale.x, sin * scale.x, -sin * scale.y, cos * scale.y)
101    }
102
103    /// Creates a 2x2 matrix containing a rotation of `angle` (in radians).
104    #[inline]
105    #[must_use]
106    pub fn from_angle(angle: f64) -> Self {
107        let (sin, cos) = math::sin_cos(angle);
108        Self::new(cos, sin, -sin, cos)
109    }
110
111    /// Creates a 2x2 matrix from a 3x3 matrix, discarding the 2nd row and column.
112    #[inline]
113    #[must_use]
114    pub fn from_mat3(m: DMat3) -> Self {
115        Self::from_cols(m.x_axis.xy(), m.y_axis.xy())
116    }
117
118    /// Creates a 2x2 matrix from the first 4 values in `slice`.
119    ///
120    /// # Panics
121    ///
122    /// Panics if `slice` is less than 4 elements long.
123    #[inline]
124    #[must_use]
125    pub const fn from_cols_slice(slice: &[f64]) -> Self {
126        Self::new(slice[0], slice[1], slice[2], slice[3])
127    }
128
129    /// Writes the columns of `self` to the first 4 elements in `slice`.
130    ///
131    /// # Panics
132    ///
133    /// Panics if `slice` is less than 4 elements long.
134    #[inline]
135    pub fn write_cols_to_slice(self, slice: &mut [f64]) {
136        slice[0] = self.x_axis.x;
137        slice[1] = self.x_axis.y;
138        slice[2] = self.y_axis.x;
139        slice[3] = self.y_axis.y;
140    }
141
142    /// Returns the matrix column for the given `index`.
143    ///
144    /// # Panics
145    ///
146    /// Panics if `index` is greater than 1.
147    #[inline]
148    #[must_use]
149    pub fn col(&self, index: usize) -> DVec2 {
150        match index {
151            0 => self.x_axis,
152            1 => self.y_axis,
153            _ => panic!("index out of bounds"),
154        }
155    }
156
157    /// Returns a mutable reference to the matrix column for the given `index`.
158    ///
159    /// # Panics
160    ///
161    /// Panics if `index` is greater than 1.
162    #[inline]
163    pub fn col_mut(&mut self, index: usize) -> &mut DVec2 {
164        match index {
165            0 => &mut self.x_axis,
166            1 => &mut self.y_axis,
167            _ => panic!("index out of bounds"),
168        }
169    }
170
171    /// Returns the matrix row for the given `index`.
172    ///
173    /// # Panics
174    ///
175    /// Panics if `index` is greater than 1.
176    #[inline]
177    #[must_use]
178    pub fn row(&self, index: usize) -> DVec2 {
179        match index {
180            0 => DVec2::new(self.x_axis.x, self.y_axis.x),
181            1 => DVec2::new(self.x_axis.y, self.y_axis.y),
182            _ => panic!("index out of bounds"),
183        }
184    }
185
186    /// Returns `true` if, and only if, all elements are finite.
187    /// If any element is either `NaN`, positive or negative infinity, this will return `false`.
188    #[inline]
189    #[must_use]
190    pub fn is_finite(&self) -> bool {
191        self.x_axis.is_finite() && self.y_axis.is_finite()
192    }
193
194    /// Returns `true` if any elements are `NaN`.
195    #[inline]
196    #[must_use]
197    pub fn is_nan(&self) -> bool {
198        self.x_axis.is_nan() || self.y_axis.is_nan()
199    }
200
201    /// Returns the transpose of `self`.
202    #[inline]
203    #[must_use]
204    pub fn transpose(&self) -> Self {
205        Self {
206            x_axis: DVec2::new(self.x_axis.x, self.y_axis.x),
207            y_axis: DVec2::new(self.x_axis.y, self.y_axis.y),
208        }
209    }
210
211    /// Returns the determinant of `self`.
212    #[inline]
213    #[must_use]
214    pub fn determinant(&self) -> f64 {
215        self.x_axis.x * self.y_axis.y - self.x_axis.y * self.y_axis.x
216    }
217
218    /// Returns the inverse of `self`.
219    ///
220    /// If the matrix is not invertible the returned matrix will be invalid.
221    ///
222    /// # Panics
223    ///
224    /// Will panic if the determinant of `self` is zero when `glam_assert` is enabled.
225    #[inline]
226    #[must_use]
227    pub fn inverse(&self) -> Self {
228        let inv_det = {
229            let det = self.determinant();
230            glam_assert!(det != 0.0);
231            det.recip()
232        };
233        Self::new(
234            self.y_axis.y * inv_det,
235            self.x_axis.y * -inv_det,
236            self.y_axis.x * -inv_det,
237            self.x_axis.x * inv_det,
238        )
239    }
240
241    /// Transforms a 2D vector.
242    #[inline]
243    #[must_use]
244    pub fn mul_vec2(&self, rhs: DVec2) -> DVec2 {
245        #[allow(clippy::suspicious_operation_groupings)]
246        DVec2::new(
247            (self.x_axis.x * rhs.x) + (self.y_axis.x * rhs.y),
248            (self.x_axis.y * rhs.x) + (self.y_axis.y * rhs.y),
249        )
250    }
251
252    /// Multiplies two 2x2 matrices.
253    #[inline]
254    #[must_use]
255    pub fn mul_mat2(&self, rhs: &Self) -> Self {
256        Self::from_cols(self.mul(rhs.x_axis), self.mul(rhs.y_axis))
257    }
258
259    /// Adds two 2x2 matrices.
260    #[inline]
261    #[must_use]
262    pub fn add_mat2(&self, rhs: &Self) -> Self {
263        Self::from_cols(self.x_axis.add(rhs.x_axis), self.y_axis.add(rhs.y_axis))
264    }
265
266    /// Subtracts two 2x2 matrices.
267    #[inline]
268    #[must_use]
269    pub fn sub_mat2(&self, rhs: &Self) -> Self {
270        Self::from_cols(self.x_axis.sub(rhs.x_axis), self.y_axis.sub(rhs.y_axis))
271    }
272
273    /// Multiplies a 2x2 matrix by a scalar.
274    #[inline]
275    #[must_use]
276    pub fn mul_scalar(&self, rhs: f64) -> Self {
277        Self::from_cols(self.x_axis.mul(rhs), self.y_axis.mul(rhs))
278    }
279
280    /// Returns true if the absolute difference of all elements between `self` and `rhs`
281    /// is less than or equal to `max_abs_diff`.
282    ///
283    /// This can be used to compare if two matrices contain similar elements. It works best
284    /// when comparing with a known value. The `max_abs_diff` that should be used used
285    /// depends on the values being compared against.
286    ///
287    /// For more see
288    /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
289    #[inline]
290    #[must_use]
291    pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f64) -> bool {
292        self.x_axis.abs_diff_eq(rhs.x_axis, max_abs_diff)
293            && self.y_axis.abs_diff_eq(rhs.y_axis, max_abs_diff)
294    }
295
296    #[inline]
297    pub fn as_mat2(&self) -> Mat2 {
298        Mat2::from_cols(self.x_axis.as_vec2(), self.y_axis.as_vec2())
299    }
300}
301
302impl Default for DMat2 {
303    #[inline]
304    fn default() -> Self {
305        Self::IDENTITY
306    }
307}
308
309impl Add<DMat2> for DMat2 {
310    type Output = Self;
311    #[inline]
312    fn add(self, rhs: Self) -> Self::Output {
313        self.add_mat2(&rhs)
314    }
315}
316
317impl AddAssign<DMat2> for DMat2 {
318    #[inline]
319    fn add_assign(&mut self, rhs: Self) {
320        *self = self.add_mat2(&rhs);
321    }
322}
323
324impl Sub<DMat2> for DMat2 {
325    type Output = Self;
326    #[inline]
327    fn sub(self, rhs: Self) -> Self::Output {
328        self.sub_mat2(&rhs)
329    }
330}
331
332impl SubAssign<DMat2> for DMat2 {
333    #[inline]
334    fn sub_assign(&mut self, rhs: Self) {
335        *self = self.sub_mat2(&rhs);
336    }
337}
338
339impl Neg for DMat2 {
340    type Output = Self;
341    #[inline]
342    fn neg(self) -> Self::Output {
343        Self::from_cols(self.x_axis.neg(), self.y_axis.neg())
344    }
345}
346
347impl Mul<DMat2> for DMat2 {
348    type Output = Self;
349    #[inline]
350    fn mul(self, rhs: Self) -> Self::Output {
351        self.mul_mat2(&rhs)
352    }
353}
354
355impl MulAssign<DMat2> for DMat2 {
356    #[inline]
357    fn mul_assign(&mut self, rhs: Self) {
358        *self = self.mul_mat2(&rhs);
359    }
360}
361
362impl Mul<DVec2> for DMat2 {
363    type Output = DVec2;
364    #[inline]
365    fn mul(self, rhs: DVec2) -> Self::Output {
366        self.mul_vec2(rhs)
367    }
368}
369
370impl Mul<DMat2> for f64 {
371    type Output = DMat2;
372    #[inline]
373    fn mul(self, rhs: DMat2) -> Self::Output {
374        rhs.mul_scalar(self)
375    }
376}
377
378impl Mul<f64> for DMat2 {
379    type Output = Self;
380    #[inline]
381    fn mul(self, rhs: f64) -> Self::Output {
382        self.mul_scalar(rhs)
383    }
384}
385
386impl MulAssign<f64> for DMat2 {
387    #[inline]
388    fn mul_assign(&mut self, rhs: f64) {
389        *self = self.mul_scalar(rhs);
390    }
391}
392
393impl Sum<Self> for DMat2 {
394    fn sum<I>(iter: I) -> Self
395    where
396        I: Iterator<Item = Self>,
397    {
398        iter.fold(Self::ZERO, Self::add)
399    }
400}
401
402impl<'a> Sum<&'a Self> for DMat2 {
403    fn sum<I>(iter: I) -> Self
404    where
405        I: Iterator<Item = &'a Self>,
406    {
407        iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
408    }
409}
410
411impl Product for DMat2 {
412    fn product<I>(iter: I) -> Self
413    where
414        I: Iterator<Item = Self>,
415    {
416        iter.fold(Self::IDENTITY, Self::mul)
417    }
418}
419
420impl<'a> Product<&'a Self> for DMat2 {
421    fn product<I>(iter: I) -> Self
422    where
423        I: Iterator<Item = &'a Self>,
424    {
425        iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b))
426    }
427}
428
429impl PartialEq for DMat2 {
430    #[inline]
431    fn eq(&self, rhs: &Self) -> bool {
432        self.x_axis.eq(&rhs.x_axis) && self.y_axis.eq(&rhs.y_axis)
433    }
434}
435
436#[cfg(not(target_arch = "spirv"))]
437impl AsRef<[f64; 4]> for DMat2 {
438    #[inline]
439    fn as_ref(&self) -> &[f64; 4] {
440        unsafe { &*(self as *const Self as *const [f64; 4]) }
441    }
442}
443
444#[cfg(not(target_arch = "spirv"))]
445impl AsMut<[f64; 4]> for DMat2 {
446    #[inline]
447    fn as_mut(&mut self) -> &mut [f64; 4] {
448        unsafe { &mut *(self as *mut Self as *mut [f64; 4]) }
449    }
450}
451
452#[cfg(not(target_arch = "spirv"))]
453impl fmt::Debug for DMat2 {
454    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
455        fmt.debug_struct(stringify!(DMat2))
456            .field("x_axis", &self.x_axis)
457            .field("y_axis", &self.y_axis)
458            .finish()
459    }
460}
461
462#[cfg(not(target_arch = "spirv"))]
463impl fmt::Display for DMat2 {
464    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
465        write!(f, "[{}, {}]", self.x_axis, self.y_axis)
466    }
467}