zune_jpeg/idct/scalar.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
/*
* Copyright (c) 2023.
*
* This software is free software;
*
* You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license
*/
//! Platform independent IDCT algorithm
//!
//! Not as fast as AVX one.
const SCALE_BITS: i32 = 512 + 65536 + (128 << 17);
#[allow(unused_assignments)]
#[allow(
clippy::too_many_lines,
clippy::op_ref,
clippy::cast_possible_truncation
)]
pub fn idct_int(in_vector: &mut [i32; 64], out_vector: &mut [i16], stride: usize) {
// Temporary variables.
let mut pos = 0;
let mut i = 0;
// Don't check for zeroes inside loop, lift it and check outside
// we want to accelerate the case with 63 0 ac coeff
if &in_vector[1..] == &[0_i32; 63] {
// okay then if you work, yay, let's write you really quick
let coeff = [(((in_vector[0] >> 3) + 128) as i16).clamp(0, 255); 8];
macro_rules! store {
($index:tt) => {
// position of the MCU
let mcu_stride: &mut [i16; 8] = out_vector
.get_mut($index..$index + 8)
.unwrap()
.try_into()
.unwrap();
// copy coefficients
mcu_stride.copy_from_slice(&coeff);
// increment index
$index += stride;
};
}
// write to four positions
store!(pos);
store!(pos);
store!(pos);
store!(pos);
store!(pos);
store!(pos);
store!(pos);
store!(pos);
} else {
// because the compiler fails to see that it can be auto_vectorised so i'll
// leave it here check out [idct_int_slow, and idct_int_1D to get what i mean ] https://godbolt.org/z/8hqW9z9j9
for ptr in 0..8 {
let p2 = in_vector[ptr + 16];
let p3 = in_vector[ptr + 48];
let p1 = (p2 + p3).wrapping_mul(2217);
let t2 = p1 + p3 * -7567;
let t3 = p1 + p2 * 3135;
let p2 = in_vector[ptr];
let p3 = in_vector[32 + ptr];
let t0 = fsh(p2 + p3);
let t1 = fsh(p2 - p3);
let x0 = t0 + t3 + 512;
let x3 = t0 - t3 + 512;
let x1 = t1 + t2 + 512;
let x2 = t1 - t2 + 512;
// odd part
let mut t0 = in_vector[ptr + 56];
let mut t1 = in_vector[ptr + 40];
let mut t2 = in_vector[ptr + 24];
let mut t3 = in_vector[ptr + 8];
let p3 = t0 + t2;
let p4 = t1 + t3;
let p1 = t0 + t3;
let p2 = t1 + t2;
let p5 = (p3 + p4) * 4816;
t0 *= 1223;
t1 *= 8410;
t2 *= 12586;
t3 *= 6149;
let p1 = p5 + p1 * -3685;
let p2 = p5 + p2 * -10497;
let p3 = p3 * -8034;
let p4 = p4 * -1597;
t3 += p1 + p4;
t2 += p2 + p3;
t1 += p2 + p4;
t0 += p1 + p3;
// constants scaled things up by 1<<12; let's bring them back
// down, but keep 2 extra bits of precision
in_vector[ptr] = (x0 + t3) >> 10;
in_vector[ptr + 8] = (x1 + t2) >> 10;
in_vector[ptr + 16] = (x2 + t1) >> 10;
in_vector[ptr + 24] = (x3 + t0) >> 10;
in_vector[ptr + 32] = (x3 - t0) >> 10;
in_vector[ptr + 40] = (x2 - t1) >> 10;
in_vector[ptr + 48] = (x1 - t2) >> 10;
in_vector[ptr + 56] = (x0 - t3) >> 10;
}
// This is vectorised in architectures supporting SSE 4.1
while i < 64 {
// We won't try to short circuit here because it rarely works
// Even part
let p2 = in_vector[i + 2];
let p3 = in_vector[i + 6];
let p1 = (p2 + p3) * 2217;
let t2 = p1 + p3 * -7567;
let t3 = p1 + p2 * 3135;
let p2 = in_vector[i];
let p3 = in_vector[i + 4];
let t0 = fsh(p2 + p3);
let t1 = fsh(p2 - p3);
// constants scaled things up by 1<<12, plus we had 1<<2 from first
// loop, plus horizontal and vertical each scale by sqrt(8) so together
// we've got an extra 1<<3, so 1<<17 total we need to remove.
// so we want to round that, which means adding 0.5 * 1<<17,
// aka 65536. Also, we'll end up with -128 to 127 that we want
// to encode as 0..255 by adding 128, so we'll add that before the shift
let x0 = t0 + t3 + SCALE_BITS;
let x3 = t0 - t3 + SCALE_BITS;
let x1 = t1 + t2 + SCALE_BITS;
let x2 = t1 - t2 + SCALE_BITS;
// odd part
let mut t0 = in_vector[i + 7];
let mut t1 = in_vector[i + 5];
let mut t2 = in_vector[i + 3];
let mut t3 = in_vector[i + 1];
let p3 = t0 + t2;
let p4 = t1 + t3;
let p1 = t0 + t3;
let p2 = t1 + t2;
let p5 = (p3 + p4) * f2f(1.175875602);
t0 = t0.wrapping_mul(1223);
t1 = t1.wrapping_mul(8410);
t2 = t2.wrapping_mul(12586);
t3 = t3.wrapping_mul(6149);
let p1 = p5 + p1 * -3685;
let p2 = p5 + p2 * -10497;
let p3 = p3 * -8034;
let p4 = p4 * -1597;
t3 += p1 + p4;
t2 += p2 + p3;
t1 += p2 + p4;
t0 += p1 + p3;
let out: &mut [i16; 8] = out_vector
.get_mut(pos..pos + 8)
.unwrap()
.try_into()
.unwrap();
out[0] = clamp((x0 + t3) >> 17);
out[1] = clamp((x1 + t2) >> 17);
out[2] = clamp((x2 + t1) >> 17);
out[3] = clamp((x3 + t0) >> 17);
out[4] = clamp((x3 - t0) >> 17);
out[5] = clamp((x2 - t1) >> 17);
out[6] = clamp((x1 - t2) >> 17);
out[7] = clamp((x0 - t3) >> 17);
i += 8;
pos += stride;
}
}
}
#[inline]
#[allow(clippy::cast_possible_truncation)]
/// Multiply a number by 4096
fn f2f(x: f32) -> i32 {
(x * 4096.0 + 0.5) as i32
}
#[inline]
/// Multiply a number by 4096
fn fsh(x: i32) -> i32 {
x << 12
}
/// Clamp values between 0 and 255
#[inline]
#[allow(clippy::cast_possible_truncation)]
fn clamp(a: i32) -> i16 {
a.clamp(0, 255) as i16
}