fdeflate/
huffman.rs

1use crate::decompress::{EXCEPTIONAL_ENTRY, LITERAL_ENTRY, SECONDARY_TABLE_ENTRY};
2
3/// Return the next code, or if the codeword is already all ones (which is the final code), return
4/// the same code again.
5fn next_codeword(mut codeword: u16, table_size: u16) -> u16 {
6    if codeword == table_size - 1 {
7        return codeword;
8    }
9
10    let adv = (u16::BITS - 1) - (codeword ^ (table_size - 1)).leading_zeros();
11    let bit = 1 << adv;
12    codeword &= bit - 1;
13    codeword |= bit;
14    codeword
15}
16
17#[allow(clippy::needless_range_loop)]
18pub fn build_table(
19    lengths: &[u8],
20    entries: &[u32],
21    codes: &mut [u16],
22    primary_table: &mut [u32],
23    secondary_table: &mut Vec<u16>,
24    is_distance_table: bool,
25    double_literal: bool,
26) -> bool {
27    // Count the number of symbols with each code length.
28    let mut histogram = [0; 16];
29    for &length in lengths {
30        histogram[length as usize] += 1;
31    }
32
33    // Determine the maximum code length.
34    let mut max_length = 15;
35    while max_length > 1 && histogram[max_length] == 0 {
36        max_length -= 1;
37    }
38
39    // Handle zero and one symbol huffman codes (which are only allowed for distance codes).
40    if is_distance_table {
41        if max_length == 0 {
42            primary_table.fill(0);
43            secondary_table.clear();
44            return true;
45        } else if max_length == 1 && histogram[1] == 1 {
46            let symbol = lengths.iter().position(|&l| l == 1).unwrap();
47            codes[symbol] = 0;
48            let entry = entries
49                .get(symbol)
50                .cloned()
51                .unwrap_or((symbol as u32) << 16)
52                | 1;
53            for chunk in primary_table.chunks_mut(2) {
54                chunk[0] = entry;
55                chunk[1] = 0;
56            }
57            return true;
58        }
59    }
60
61    // Sort symbols by code length. Given the histogram, we can determine the starting offset
62    // for each code length.
63    let mut offsets = [0; 16];
64    let mut codespace_used = 0;
65    offsets[1] = histogram[0];
66    for i in 1..max_length {
67        offsets[i + 1] = offsets[i] + histogram[i];
68        codespace_used = (codespace_used << 1) + histogram[i];
69    }
70    codespace_used = (codespace_used << 1) + histogram[max_length];
71
72    // Check that the provided lengths form a valid Huffman tree.
73    if codespace_used != (1 << max_length) {
74        return false;
75    }
76
77    // Sort the symbols by code length.
78    let mut next_index = offsets;
79    let mut sorted_symbols = [0; 288];
80    for symbol in 0..lengths.len() {
81        let length = lengths[symbol];
82        sorted_symbols[next_index[length as usize]] = symbol;
83        next_index[length as usize] += 1;
84    }
85
86    let mut codeword = 0u16;
87    let mut i = histogram[0];
88
89    // Populate the primary decoding table
90    let primary_table_bits = primary_table.len().ilog2() as usize;
91    let primary_table_mask = (1 << primary_table_bits) - 1;
92    for length in 1..=primary_table_bits {
93        let current_table_end = 1 << length;
94
95        // Loop over all symbols with the current code length and set their table entries.
96        for _ in 0..histogram[length] {
97            let symbol = sorted_symbols[i];
98            i += 1;
99
100            primary_table[codeword as usize] = entries
101                .get(symbol)
102                .cloned()
103                .unwrap_or((symbol as u32) << 16)
104                | length as u32;
105
106            codes[symbol] = codeword;
107            codeword = next_codeword(codeword, current_table_end as u16);
108        }
109
110        if double_literal {
111            for len1 in 1..(length - 1) {
112                let len2 = length - len1;
113                for sym1_index in offsets[len1]..next_index[len1] {
114                    for sym2_index in offsets[len2]..next_index[len2] {
115                        let sym1 = sorted_symbols[sym1_index];
116                        let sym2 = sorted_symbols[sym2_index];
117                        if sym1 < 256 && sym2 < 256 {
118                            let codeword1 = codes[sym1];
119                            let codeword2 = codes[sym2];
120                            let codeword = codeword1 | (codeword2 << len1);
121                            let entry = (sym1 as u32) << 16
122                                | (sym2 as u32) << 24
123                                | LITERAL_ENTRY
124                                | (2 << 8);
125                            primary_table[codeword as usize] = entry | (length as u32);
126                        }
127                    }
128                }
129            }
130        }
131
132        // If we aren't at the maximum table size, double the size of the table.
133        if length < primary_table_bits {
134            primary_table.copy_within(0..current_table_end, current_table_end);
135        }
136    }
137
138    // Populate the secondary decoding table.
139    secondary_table.clear();
140    if max_length > primary_table_bits {
141        let mut subtable_start = 0;
142        let mut subtable_prefix = !0;
143        for length in (primary_table_bits + 1)..=max_length {
144            let subtable_size = 1 << (length - primary_table_bits);
145            for _ in 0..histogram[length] {
146                // If the codeword's prefix doesn't match the current subtable, create a new
147                // subtable.
148                if codeword & primary_table_mask != subtable_prefix {
149                    subtable_prefix = codeword & primary_table_mask;
150                    subtable_start = secondary_table.len();
151                    primary_table[subtable_prefix as usize] = ((subtable_start as u32) << 16)
152                        | EXCEPTIONAL_ENTRY
153                        | SECONDARY_TABLE_ENTRY
154                        | (subtable_size as u32 - 1);
155                    secondary_table.resize(subtable_start + subtable_size, 0);
156                }
157
158                // Lookup the symbol.
159                let symbol = sorted_symbols[i];
160                i += 1;
161
162                // Insert the symbol into the secondary table and advance to the next codeword.
163                codes[symbol] = codeword;
164                secondary_table[subtable_start + (codeword >> primary_table_bits) as usize] =
165                    ((symbol as u16) << 4) | (length as u16);
166                codeword = next_codeword(codeword, 1 << length);
167            }
168
169            // If there are more codes with the same subtable prefix, extend the subtable.
170            if length < max_length && codeword & primary_table_mask == subtable_prefix {
171                secondary_table.extend_from_within(subtable_start..);
172                let subtable_size = secondary_table.len() - subtable_start;
173                primary_table[subtable_prefix as usize] = ((subtable_start as u32) << 16)
174                    | EXCEPTIONAL_ENTRY
175                    | SECONDARY_TABLE_ENTRY
176                    | (subtable_size as u32 - 1);
177            }
178        }
179    }
180
181    true
182}