zune_jpeg/
mcu_prog.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
/*
 * Copyright (c) 2023.
 *
 * This software is free software;
 *
 * You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license
 */

//!Routines for progressive decoding
/*
This file is needlessly complicated,

It is that way to ensure we don't burn memory anyhow

Memory is a scarce resource in some environments, I would like this to be viable
in such environments

Half of the complexity comes from the jpeg spec, because progressive decoding,
is one hell of a ride.

*/
use alloc::string::ToString;
use alloc::vec::Vec;
use alloc::{format, vec};
use core::cmp::min;

use zune_core::bytestream::{ZByteReader, ZReaderTrait};
use zune_core::colorspace::ColorSpace;
use zune_core::log::{debug, error, warn};

use crate::bitstream::BitStream;
use crate::components::{ComponentID, SampleRatios};
use crate::decoder::{JpegDecoder, MAX_COMPONENTS};
use crate::errors::DecodeErrors;
use crate::errors::DecodeErrors::Format;
use crate::headers::{parse_huffman, parse_sos};
use crate::marker::Marker;
use crate::mcu::DCT_BLOCK;
use crate::misc::{calculate_padded_width, setup_component_params};

impl<T: ZReaderTrait> JpegDecoder<T> {
    /// Decode a progressive image
    ///
    /// This routine decodes a progressive image, stopping if it finds any error.
    #[allow(
        clippy::needless_range_loop,
        clippy::cast_sign_loss,
        clippy::redundant_else,
        clippy::too_many_lines
    )]
    #[inline(never)]
    pub(crate) fn decode_mcu_ycbcr_progressive(
        &mut self, pixels: &mut [u8]
    ) -> Result<(), DecodeErrors> {
        setup_component_params(self)?;

        let mut mcu_height;

        // memory location for decoded pixels for components
        let mut block: [Vec<i16>; MAX_COMPONENTS] = [vec![], vec![], vec![], vec![]];
        let mut mcu_width;

        let mut seen_scans = 1;

        if self.input_colorspace == ColorSpace::Luma && self.is_interleaved {
            warn!("Grayscale image with down-sampled component, resetting component details");
            self.reset_params();
        }

        if self.is_interleaved {
            // this helps us catch component errors.
            self.set_upsampling()?;
        }
        if self.is_interleaved {
            mcu_width = self.mcu_x;
            mcu_height = self.mcu_y;
        } else {
            mcu_width = (self.info.width as usize + 7) / 8;
            mcu_height = (self.info.height as usize + 7) / 8;
        }
        if self.is_interleaved
            && self.input_colorspace.num_components() > 1
            && self.options.jpeg_get_out_colorspace().num_components() == 1
            && (self.sub_sample_ratio == SampleRatios::V
                || self.sub_sample_ratio == SampleRatios::HV)
        {
            // For a specific set of images, e.g interleaved,
            // when converting from YcbCr to grayscale, we need to
            // take into account mcu height since the MCU decoding needs to take
            // it into account for padding purposes and the post processor
            // parses two rows per mcu width.
            //
            // set coeff to be 2 to ensure that we increment two rows
            // for every mcu processed also
            mcu_height *= self.v_max;
            mcu_height /= self.h_max;
            self.coeff = 2;
        }

        mcu_width *= 64;

        if self.input_colorspace.num_components() > self.components.len() {
            let msg = format!(
                " Expected {} number of components but found {}",
                self.input_colorspace.num_components(),
                self.components.len()
            );
            return Err(DecodeErrors::Format(msg));
        }
        for i in 0..self.input_colorspace.num_components() {
            let comp = &self.components[i];
            let len = mcu_width * comp.vertical_sample * comp.horizontal_sample * mcu_height;

            block[i] = vec![0; len];
        }

        let mut stream = BitStream::new_progressive(
            self.succ_high,
            self.succ_low,
            self.spec_start,
            self.spec_end
        );

        // there are multiple scans in the stream, this should resolve the first scan
        self.parse_entropy_coded_data(&mut stream, &mut block)?;

        // extract marker
        let mut marker = stream
            .marker
            .take()
            .ok_or(DecodeErrors::FormatStatic("Marker missing where expected"))?;

        // if marker is EOI, we are done, otherwise continue scanning.
        //
        // In case we have a premature image, we print a warning or return
        // an error, depending on the strictness of the decoder, so there
        // is that logic to handle too
        'eoi: while marker != Marker::EOI {
            match marker {
                Marker::DHT => {
                    parse_huffman(self)?;
                }
                Marker::SOS => {
                    parse_sos(self)?;

                    stream.update_progressive_params(
                        self.succ_high,
                        self.succ_low,
                        self.spec_start,
                        self.spec_end
                    );

                    // after every SOS, marker, parse data for that scan.
                    self.parse_entropy_coded_data(&mut stream, &mut block)?;
                    // extract marker, might either indicate end of image or we continue
                    // scanning(hence the continue statement to determine).
                    match get_marker(&mut self.stream, &mut stream) {
                        Ok(marker_n) => {
                            marker = marker_n;
                            seen_scans += 1;
                            if seen_scans > self.options.jpeg_get_max_scans() {
                                return Err(DecodeErrors::Format(format!(
                                    "Too many scans, exceeded limit of {}",
                                    self.options.jpeg_get_max_scans()
                                )));
                            }

                            stream.reset();
                            continue 'eoi;
                        }
                        Err(msg) => {
                            if self.options.get_strict_mode() {
                                return Err(msg);
                            }
                            error!("{:?}", msg);
                            break 'eoi;
                        }
                    }
                }
                _ => {
                    break 'eoi;
                }
            }

            match get_marker(&mut self.stream, &mut stream) {
                Ok(marker_n) => {
                    marker = marker_n;
                }
                Err(e) => {
                    if self.options.get_strict_mode() {
                        return Err(e);
                    }
                    error!("{}", e);
                }
            }
        }

        self.finish_progressive_decoding(&block, mcu_width, pixels)
    }

    #[allow(clippy::too_many_lines, clippy::cast_sign_loss)]
    fn parse_entropy_coded_data(
        &mut self, stream: &mut BitStream, buffer: &mut [Vec<i16>; MAX_COMPONENTS]
    ) -> Result<(), DecodeErrors> {
        stream.reset();
        self.components.iter_mut().for_each(|x| x.dc_pred = 0);

        if usize::from(self.num_scans) > self.input_colorspace.num_components() {
            return Err(Format(format!(
                "Number of scans {} cannot be greater than number of components, {}",
                self.num_scans,
                self.input_colorspace.num_components()
            )));
        }

        if self.num_scans == 1 {
            // Safety checks
            if self.spec_end != 0 && self.spec_start == 0 {
                return Err(DecodeErrors::FormatStatic(
                    "Can't merge DC and AC corrupt jpeg"
                ));
            }
            // non interleaved data, process one block at a time in trivial scanline order

            let k = self.z_order[0];

            if k >= self.components.len() {
                return Err(DecodeErrors::Format(format!(
                    "Cannot find component {k}, corrupt image"
                )));
            }

            let (mcu_width, mcu_height);

            if self.components[k].component_id == ComponentID::Y
                && (self.components[k].vertical_sample != 1
                    || self.components[k].horizontal_sample != 1)
                || !self.is_interleaved
            {
                // For Y channel  or non interleaved scans ,
                // mcu's is the image dimensions divided by 8
                mcu_width = ((self.info.width + 7) / 8) as usize;
                mcu_height = ((self.info.height + 7) / 8) as usize;
            } else {
                // For other channels, in an interleaved mcu, number of MCU's
                // are determined by some weird maths done in headers.rs->parse_sos()
                mcu_width = self.mcu_x;
                mcu_height = self.mcu_y;
            }

            for i in 0..mcu_height {
                for j in 0..mcu_width {
                    if self.spec_start != 0 && self.succ_high == 0 && stream.eob_run > 0 {
                        // handle EOB runs here.
                        stream.eob_run -= 1;
                        continue;
                    }
                    let start = 64 * (j + i * (self.components[k].width_stride / 8));

                    let data: &mut [i16; 64] = buffer
                        .get_mut(k)
                        .unwrap()
                        .get_mut(start..start + 64)
                        .unwrap()
                        .try_into()
                        .unwrap();

                    if self.spec_start == 0 {
                        let pos = self.components[k].dc_huff_table & (MAX_COMPONENTS - 1);
                        let dc_table = self
                            .dc_huffman_tables
                            .get(pos)
                            .ok_or(DecodeErrors::FormatStatic(
                                "No huffman table for DC component"
                            ))?
                            .as_ref()
                            .ok_or(DecodeErrors::FormatStatic(
                                "Huffman table at index  {} not initialized"
                            ))?;

                        let dc_pred = &mut self.components[k].dc_pred;

                        if self.succ_high == 0 {
                            // first scan for this mcu
                            stream.decode_prog_dc_first(
                                &mut self.stream,
                                dc_table,
                                &mut data[0],
                                dc_pred
                            )?;
                        } else {
                            // refining scans for this MCU
                            stream.decode_prog_dc_refine(&mut self.stream, &mut data[0])?;
                        }
                    } else {
                        let pos = self.components[k].ac_huff_table;
                        let ac_table = self
                            .ac_huffman_tables
                            .get(pos)
                            .ok_or_else(|| {
                                DecodeErrors::Format(format!(
                                    "No huffman table for component:{pos}"
                                ))
                            })?
                            .as_ref()
                            .ok_or_else(|| {
                                DecodeErrors::Format(format!(
                                    "Huffman table at index  {pos} not initialized"
                                ))
                            })?;

                        if self.succ_high == 0 {
                            debug_assert!(stream.eob_run == 0, "EOB run is not zero");

                            stream.decode_mcu_ac_first(&mut self.stream, ac_table, data)?;
                        } else {
                            // refinement scan
                            stream.decode_mcu_ac_refine(&mut self.stream, ac_table, data)?;
                        }
                    }
                    // + EOB and investigate effect.
                    self.todo -= 1;

                    if self.todo == 0 {
                        self.handle_rst(stream)?;
                    }
                }
            }
        } else {
            if self.spec_end != 0 {
                return Err(DecodeErrors::HuffmanDecode(
                    "Can't merge dc and AC corrupt jpeg".to_string()
                ));
            }
            // process scan n elements in order

            // Do the error checking with allocs here.
            // Make the one in the inner loop free of allocations.
            for k in 0..self.num_scans {
                let n = self.z_order[k as usize];

                if n >= self.components.len() {
                    return Err(DecodeErrors::Format(format!(
                        "Cannot find component {n}, corrupt image"
                    )));
                }

                let component = &mut self.components[n];
                let _ = self
                    .dc_huffman_tables
                    .get(component.dc_huff_table)
                    .ok_or_else(|| {
                        DecodeErrors::Format(format!(
                            "No huffman table for component:{}",
                            component.dc_huff_table
                        ))
                    })?
                    .as_ref()
                    .ok_or_else(|| {
                        DecodeErrors::Format(format!(
                            "Huffman table at index  {} not initialized",
                            component.dc_huff_table
                        ))
                    })?;
            }
            // Interleaved scan

            // Components shall not be interleaved in progressive mode, except for
            // the DC coefficients in the first scan for each component of a progressive frame.
            for i in 0..self.mcu_y {
                for j in 0..self.mcu_x {
                    // process scan n elements in order
                    for k in 0..self.num_scans {
                        let n = self.z_order[k as usize];
                        let component = &mut self.components[n];
                        let huff_table = self
                            .dc_huffman_tables
                            .get(component.dc_huff_table)
                            .ok_or(DecodeErrors::FormatStatic("No huffman table for component"))?
                            .as_ref()
                            .ok_or(DecodeErrors::FormatStatic(
                                "Huffman table at index not initialized"
                            ))?;

                        for v_samp in 0..component.vertical_sample {
                            for h_samp in 0..component.horizontal_sample {
                                let x2 = j * component.horizontal_sample + h_samp;
                                let y2 = i * component.vertical_sample + v_samp;
                                let position = 64 * (x2 + y2 * component.width_stride / 8);

                                let data = &mut buffer[n][position];

                                if self.succ_high == 0 {
                                    stream.decode_prog_dc_first(
                                        &mut self.stream,
                                        huff_table,
                                        data,
                                        &mut component.dc_pred
                                    )?;
                                } else {
                                    stream.decode_prog_dc_refine(&mut self.stream, data)?;
                                }
                            }
                        }
                    }
                    // We want wrapping subtraction here because it means
                    // we get a higher number in the case this underflows
                    self.todo = self.todo.wrapping_sub(1);
                    // after every scan that's a mcu, count down restart markers.
                    if self.todo == 0 {
                        self.handle_rst(stream)?;
                    }
                }
            }
        }
        return Ok(());
    }

    #[allow(clippy::too_many_lines)]
    #[allow(clippy::needless_range_loop, clippy::cast_sign_loss)]
    fn finish_progressive_decoding(
        &mut self, block: &[Vec<i16>; MAX_COMPONENTS], _mcu_width: usize, pixels: &mut [u8]
    ) -> Result<(), DecodeErrors> {
        // This function is complicated because we need to replicate
        // the function in mcu.rs
        //
        // The advantage is that we do very little allocation and very lot
        // channel reusing.
        // The trick is to notice that we repeat the same procedure per MCU
        // width.
        //
        // So we can set it up that we only allocate temporary storage large enough
        // to store a single mcu width, then reuse it per invocation.
        //
        // This is advantageous to us.
        //
        // Remember we need to have the whole MCU buffer so we store 3 unprocessed
        // channels in memory, and then we allocate the whole output buffer in memory, both of
        // which are huge.
        //
        //

        let mcu_height = if self.is_interleaved {
            self.mcu_y
        } else {
            // For non-interleaved images( (1*1) subsampling)
            // number of MCU's are the widths (+7 to account for paddings) divided by 8.
            ((self.info.height + 7) / 8) as usize
        };

        // Size of our output image(width*height)
        let is_hv = usize::from(self.is_interleaved);
        let upsampler_scratch_size = is_hv * self.components[0].width_stride;
        let width = usize::from(self.info.width);
        let padded_width = calculate_padded_width(width, self.sub_sample_ratio);

        //let mut pixels = vec![0; capacity * out_colorspace_components];
        let mut upsampler_scratch_space = vec![0; upsampler_scratch_size];
        let mut tmp = [0_i32; DCT_BLOCK];

        for (pos, comp) in self.components.iter_mut().enumerate() {
            // Allocate only needed components.
            //
            // For special colorspaces i.e YCCK and CMYK, just allocate all of the needed
            // components.
            if min(
                self.options.jpeg_get_out_colorspace().num_components() - 1,
                pos
            ) == pos
                || self.input_colorspace == ColorSpace::YCCK
                || self.input_colorspace == ColorSpace::CMYK
            {
                // allocate enough space to hold a whole MCU width
                // this means we should take into account sampling ratios
                // `*8` is because each MCU spans 8 widths.
                let len = comp.width_stride * comp.vertical_sample * 8;

                comp.needed = true;
                comp.raw_coeff = vec![0; len];
            } else {
                comp.needed = false;
            }
        }

        let mut pixels_written = 0;

        // dequantize, idct and color convert.
        for i in 0..mcu_height {
            'component: for (position, component) in &mut self.components.iter_mut().enumerate() {
                if !component.needed {
                    continue 'component;
                }
                let qt_table = &component.quantization_table;

                // step is the number of pixels this iteration wil be handling
                // Given by the number of mcu's height and the length of the component block
                // Since the component block contains the whole channel as raw pixels
                // we this evenly divides the pixels into MCU blocks
                //
                // For interleaved images, this gives us the exact pixels comprising a whole MCU
                // block
                let step = block[position].len() / mcu_height;
                // where we will be reading our pixels from.
                let start = i * step;

                let slice = &block[position][start..start + step];

                let temp_channel = &mut component.raw_coeff;

                // The next logical step is to iterate width wise.
                // To figure out how many pixels we iterate by we use effective pixels
                // Given to us by component.x
                // iterate per effective pixels.
                let mcu_x = component.width_stride / 8;

                // iterate per every vertical sample.
                for k in 0..component.vertical_sample {
                    for j in 0..mcu_x {
                        // after writing a single stride, we need to skip 8 rows.
                        // This does the row calculation
                        let width_stride = k * 8 * component.width_stride;
                        let start = j * 64 + width_stride;

                        // dequantize
                        for ((x, out), qt_val) in slice[start..start + 64]
                            .iter()
                            .zip(tmp.iter_mut())
                            .zip(qt_table.iter())
                        {
                            *out = i32::from(*x) * qt_val;
                        }
                        // determine where to write.
                        let sl = &mut temp_channel[component.idct_pos..];

                        component.idct_pos += 8;
                        // tmp now contains a dequantized block so idct it
                        (self.idct_func)(&mut tmp, sl, component.width_stride);
                    }
                    // after every write of 8, skip 7 since idct write stride wise 8 times.
                    //
                    // Remember each MCU is 8x8 block, so each idct will write 8 strides into
                    // sl
                    //
                    // and component.idct_pos is one stride long
                    component.idct_pos += 7 * component.width_stride;
                }
                component.idct_pos = 0;
            }

            // process that width up until it's impossible
            self.post_process(
                pixels,
                i,
                mcu_height,
                width,
                padded_width,
                &mut pixels_written,
                &mut upsampler_scratch_space
            )?;
        }

        debug!("Finished decoding image");

        return Ok(());
    }
    pub(crate) fn reset_params(&mut self) {
        /*
        Apparently, grayscale images which can be down sampled exists, which is weird in the sense
        that it has one component Y, which is not usually down sampled.

        This means some calculations will be wrong, so for that we explicitly reset params
        for such occurrences, warn and reset the image info to appear as if it were
        a non-sampled image to ensure decoding works
        */
        self.h_max = 1;
        self.options = self.options.jpeg_set_out_colorspace(ColorSpace::Luma);
        self.v_max = 1;
        self.sub_sample_ratio = SampleRatios::None;
        self.is_interleaved = false;
        self.components[0].vertical_sample = 1;
        self.components[0].width_stride = (((self.info.width as usize) + 7) / 8) * 8;
        self.components[0].horizontal_sample = 1;
    }
}

///Get a marker from the bit-stream.
///
/// This reads until it gets a marker or end of file is encountered
fn get_marker<T>(
    reader: &mut ZByteReader<T>, stream: &mut BitStream
) -> Result<Marker, DecodeErrors>
where
    T: ZReaderTrait
{
    if let Some(marker) = stream.marker {
        stream.marker = None;
        return Ok(marker);
    }

    // read until we get a marker

    while !reader.eof() {
        let marker = reader.get_u8_err()?;

        if marker == 255 {
            let mut r = reader.get_u8_err()?;
            // 0xFF 0XFF(some images may be like that)
            while r == 0xFF {
                r = reader.get_u8_err()?;
            }

            if r != 0 {
                return Marker::from_u8(r)
                    .ok_or_else(|| DecodeErrors::Format(format!("Unknown marker 0xFF{r:X}")));
            }
        }
    }
    return Err(DecodeErrors::ExhaustedData);
}