skrifa/outline/glyf/hint/engine/
data.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
//! Reading and writing data.
//!
//! Implements 7 instructions.
//!
//! See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#reading-and-writing-data>

use super::{
    super::{math, zone::ZonePointer},
    Engine, OpResult,
};

impl<'a> Engine<'a> {
    /// Get coordinate project in to the projection vector.
    ///
    /// GC\[a\] (0x46 - 0x47)
    ///
    /// a: 0: use current position of point p
    ///    1: use the position of point p in the original outline
    ///
    /// Pops: p: point number
    /// Pushes: value: coordinate location (F26Dot6)
    ///
    /// Measures the coordinate value of point p on the current
    /// projection_vector and pushes the value onto the stack.
    ///
    /// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#get-coordinate-projected-onto-the-projection_vector>
    /// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L4512>
    pub(super) fn op_gc(&mut self, opcode: u8) -> OpResult {
        let p = self.value_stack.pop_usize()?;
        let gs = &mut self.graphics;
        if !gs.is_pedantic && !gs.in_bounds([(gs.zp2, p)]) {
            self.value_stack.push(0)?;
            return Ok(());
        }
        let value = if (opcode & 1) != 0 {
            gs.dual_project(gs.zp2().original(p)?, Default::default())
        } else {
            gs.project(gs.zp2().point(p)?, Default::default())
        };
        self.value_stack.push(value.to_bits())?;
        Ok(())
    }

    /// Set coordinate from the stack using projection vector and freedom
    /// vector.
    ///
    /// SCFS[] (0x48)
    ///
    /// Pops: value: distance from origin to move point (F26Dot6)
    ///       p: point number
    ///
    /// Moves point p from its current position along the freedom_vector so
    /// that its component along the projection_vector becomes the value popped
    /// off the stack.
    ///
    /// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#sets-coordinate-from-the-stack-using-projection_vector-and-freedom_vector>
    /// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L4550>
    pub(super) fn op_scfs(&mut self) -> OpResult {
        let value = self.value_stack.pop_f26dot6()?;
        let p = self.value_stack.pop_usize()?;
        let gs = &mut self.graphics;
        let projection = gs.project(gs.zp2().point(p)?, Default::default());
        gs.move_point(gs.zp2, p, value.wrapping_sub(projection))?;
        if gs.zp2.is_twilight() {
            let twilight = gs.zone_mut(ZonePointer::Twilight);
            *twilight.original_mut(p)? = twilight.point(p)?;
        }
        Ok(())
    }

    /// Measure distance.
    ///
    /// MD\[a\] (0x46 - 0x47)
    ///
    /// a: 0: measure distance in grid-fitted outline
    ///    1: measure distance in original outline
    ///
    /// Pops: p1: point number
    ///       p2: point number
    /// Pushes: distance (F26Dot6)
    ///
    /// Measures the distance between outline point p1 and outline point p2.
    /// The value returned is in pixels (F26Dot6) If distance is negative, it
    /// was measured against the projection vector. Reversing the order in
    /// which the points are listed will change the sign of the result.
    ///
    /// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#measure-distance>
    /// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L4593>
    pub(super) fn op_md(&mut self, opcode: u8) -> OpResult {
        let p1 = self.value_stack.pop_usize()?;
        let p2 = self.value_stack.pop_usize()?;
        let gs = &self.graphics;
        if !gs.is_pedantic && !gs.in_bounds([(gs.zp0, p2), (gs.zp1, p1)]) {
            self.value_stack.push(0)?;
            return Ok(());
        }
        let distance = if (opcode & 1) != 0 {
            // measure in grid fitted outline
            gs.project(gs.zp0().point(p2)?, gs.zp1().point(p1)?)
                .to_bits()
        } else if gs.zp0.is_twilight() || gs.zp1.is_twilight() {
            // special case for twilight zone
            gs.dual_project(gs.zp0().original(p2)?, gs.zp1().original(p1)?)
                .to_bits()
        } else {
            // measure in original unscaled outline
            math::mul(
                gs.dual_project_unscaled(gs.zp0().unscaled(p2), gs.zp1().unscaled(p1)),
                gs.unscaled_to_pixels(),
            )
        };
        self.value_stack.push(distance)
    }

    /// Measure pixels per em.
    ///
    /// MPPEM[] (0x4B)
    ///
    /// Pushes: ppem: pixels per em (uint32)
    ///
    /// This instruction pushes the number of pixels per em onto the stack.
    /// Pixels per em is a function of the resolution of the rendering device
    /// and the current point size and the current transformation matrix.
    ///
    /// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#measure-pixels-per-em>
    /// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L2609>
    pub(super) fn op_mppem(&mut self) -> OpResult {
        self.value_stack.push(self.graphics.ppem)
    }

    /// Measure point size.
    ///
    /// MPS[] (0x4C)
    ///
    /// Pushes: pointSize: the size in points of the current glyph (F26Dot6)
    ///
    /// Measure point size can be used to obtain a value which serves as the
    /// basis for choosing whether to branch to an alternative path through the
    /// instruction stream. It makes it possible to treat point sizes below or
    /// above a certain threshold differently.
    ///
    /// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#measure-point-size>
    /// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L2623>
    pub(super) fn op_mps(&mut self) -> OpResult {
        // Note: FreeType computes this at
        // <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttdriver.c#L392>
        // which is mul_div(ppem, 64 * 72, resolution) where resolution
        // is always 72 for our purposes (Skia), resulting in ppem * 64.
        self.value_stack.push(self.graphics.ppem * 64)
    }
}

#[cfg(test)]
mod tests {
    use super::super::{super::zone::ZonePointer, math, Engine, MockEngine};
    use raw::types::F26Dot6;

    #[test]
    fn measure_ppem_and_point_size() {
        let mut mock = MockEngine::new();
        let mut engine = mock.engine();
        let ppem = 20;
        engine.graphics.ppem = ppem;
        engine.op_mppem().unwrap();
        assert_eq!(engine.value_stack.pop().unwrap(), ppem);
        engine.op_mps().unwrap();
        assert_eq!(engine.value_stack.pop().unwrap(), ppem * 64);
    }

    #[test]
    fn gc() {
        let mut mock = MockEngine::new();
        let mut engine = mock.engine();
        set_test_vectors(&mut engine);
        // current point projected coord
        let point = engine.graphics.zones[1].point_mut(1).unwrap();
        point.x = F26Dot6::from_bits(132);
        point.y = F26Dot6::from_bits(-256);
        engine.value_stack.push(1).unwrap();
        engine.op_gc(0).unwrap();
        assert_eq!(engine.value_stack.pop().unwrap(), 4);
        // original point projected coord
        let point = engine.graphics.zones[1].original_mut(1).unwrap();
        point.x = F26Dot6::from_bits(-64);
        point.y = F26Dot6::from_bits(521);
        engine.value_stack.push(1).unwrap();
        engine.op_gc(1).unwrap();
        assert_eq!(engine.value_stack.pop().unwrap(), 176);
    }

    #[test]
    fn scfs() {
        let mut mock = MockEngine::new();
        let mut engine = mock.engine();
        set_test_vectors(&mut engine);
        // This instruction is a nop in backward compatibility mode
        // and before IUP.
        engine.graphics.backward_compatibility = false;
        engine.graphics.did_iup_x = true;
        engine.graphics.did_iup_y = true;
        // use the twilight zone to test the optional code path
        engine.graphics.zp2 = ZonePointer::Twilight;
        let point = engine.graphics.zones[0].point_mut(1).unwrap();
        point.x = F26Dot6::from_bits(132);
        point.y = F26Dot6::from_bits(-256);
        // assert we're not currently the same
        assert_ne!(
            engine.graphics.zones[0].point(1).unwrap(),
            engine.graphics.zones[0].original(1).unwrap()
        );
        // push point number
        engine.value_stack.push(1).unwrap();
        // push value to match
        engine.value_stack.push(42).unwrap();
        // set coordinate from stack!
        engine.op_scfs().unwrap();
        let point = engine.graphics.zones[0].point(1).unwrap();
        assert_eq!(point.x.to_bits(), 166);
        assert_eq!(point.y.to_bits(), -239);
        // ensure that we set original = point
        assert_eq!(point, engine.graphics.zones[0].original(1).unwrap());
    }

    #[test]
    fn md_scaled() {
        let mut mock = MockEngine::new();
        let mut engine = mock.engine();
        set_test_vectors(&mut engine);
        // first path, measure in grid fitted outline
        let zone = engine.graphics.zone_mut(ZonePointer::Glyph);
        let point1 = zone.point_mut(1).unwrap();
        point1.x = F26Dot6::from_bits(132);
        point1.y = F26Dot6::from_bits(-256);
        let point2 = zone.point_mut(3).unwrap();
        point2.x = F26Dot6::from_bits(-64);
        point2.y = F26Dot6::from_bits(100);
        // now measure
        engine.value_stack.push(1).unwrap();
        engine.value_stack.push(3).unwrap();
        engine.op_md(1).unwrap();
        assert_eq!(engine.value_stack.pop().unwrap(), 16);
    }

    #[test]
    fn md_unscaled() {
        let mut mock = MockEngine::new();
        let mut engine = mock.engine();
        set_test_vectors(&mut engine);
        // second path, measure in original unscaled outline.
        // unscaled points are set in mock engine but we need a scale
        engine.graphics.scale = 375912;
        engine.value_stack.push(1).unwrap();
        engine.value_stack.push(3).unwrap();
        engine.op_md(0).unwrap();
        assert_eq!(engine.value_stack.pop().unwrap(), 11);
    }

    #[test]
    fn md_twilight() {
        let mut mock = MockEngine::new();
        let mut engine = mock.engine();
        set_test_vectors(&mut engine);
        // final path, measure in original outline, in twilight zone
        engine.graphics.zp0 = ZonePointer::Twilight;
        engine.graphics.zp1 = ZonePointer::Twilight;
        // set some points
        let zone = engine.graphics.zone_mut(ZonePointer::Twilight);
        let point1 = zone.original_mut(1).unwrap();
        point1.x = F26Dot6::from_bits(132);
        point1.y = F26Dot6::from_bits(-256);
        let point2 = zone.original_mut(3).unwrap();
        point2.x = F26Dot6::from_bits(-64);
        point2.y = F26Dot6::from_bits(100);
        // now measure
        engine.value_stack.push(1).unwrap();
        engine.value_stack.push(3).unwrap();
        engine.op_md(0).unwrap();
        assert_eq!(engine.value_stack.pop().unwrap(), 16);
    }

    fn set_test_vectors(engine: &mut Engine) {
        let v = math::normalize14(100, 50);
        engine.graphics.proj_vector = v;
        engine.graphics.dual_proj_vector = v;
        engine.graphics.freedom_vector = v;
        engine.graphics.update_projection_state();
    }
}