kurbo/
simplify.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
// Copyright 2022 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT

//! Simplification of a Bézier path.
//!
//! This module is currently experimental.
//!
//! The methods in this module create a `SimplifyBezPath` object, which can then
//! be fed to [`fit_to_bezpath`] or [`fit_to_bezpath_opt`] depending on the degree
//! of optimization desired.
//!
//! The implementation uses a number of techniques to achieve high performance and
//! accuracy. The parameter (generally written `t`) evenly divides the curve segments
//! in the original, so sampling can be done in constant time. The derivatives are
//! computed analytically, as that is straightforward with Béziers.
//!
//! The areas and moments are computed analytically (using Green's theorem), and
//! the prefix sum is stored. Thus, it is possible to analytically compute the area
//! and moment of any subdivision of the curve, also in constant time, by taking
//! the difference of two stored prefix sum values, then fixing up the subsegments.
//!
//! A current limitation (hoped to be addressed in the future) is that non-regular
//! cubic segments may have tangents computed incorrectly. This can easily happen,
//! for example when setting a control point equal to an endpoint.
//!
//! In addition, this method does not report corners (adjoining segments where the
//! tangents are not continuous). It is not clear whether it's best to handle such
//! cases here, or in client code.
//!
//! [`fit_to_bezpath`]: crate::fit_to_bezpath
//! [`fit_to_bezpath_opt`]: crate::fit_to_bezpath_opt

use alloc::vec::Vec;

use core::ops::Range;

#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;

use crate::{
    fit_to_bezpath, fit_to_bezpath_opt, BezPath, CubicBez, CurveFitSample, Line, ParamCurve,
    ParamCurveDeriv, ParamCurveFit, PathEl, PathSeg, Point, QuadBez, Vec2,
};

/// A Bézier path which has been prepared for simplification.
///
/// See the [module-level documentation] for a bit more discussion of the approach,
/// and how this struct is to be used.
///
/// [module-level documentation]: crate::simplify
pub struct SimplifyBezPath(Vec<SimplifyCubic>);

struct SimplifyCubic {
    c: CubicBez,
    // The inclusive prefix sum of the moment integrals
    moments: (f64, f64, f64),
}

/// Options for simplifying paths.
pub struct SimplifyOptions {
    /// The tangent of the minimum angle below which the path is considered smooth.
    angle_thresh: f64,
    opt_level: SimplifyOptLevel,
}

/// Optimization level for simplification.
pub enum SimplifyOptLevel {
    /// Subdivide; faster but not as optimized results.
    Subdivide,
    /// Optimize subdivision points.
    Optimize,
}

impl Default for SimplifyOptions {
    fn default() -> Self {
        let opt_level = SimplifyOptLevel::Subdivide;
        SimplifyOptions {
            angle_thresh: 1e-3,
            opt_level,
        }
    }
}

#[doc(hidden)]
/// Compute moment integrals.
///
/// This is exposed for testing purposes but is an internal detail. We can
/// add to the public, documented interface if there is a use case.
pub fn moment_integrals(c: CubicBez) -> (f64, f64, f64) {
    let (x0, y0) = (c.p0.x, c.p0.y);
    let (x1, y1) = (c.p1.x - x0, c.p1.y - y0);
    let (x2, y2) = (c.p2.x - x0, c.p2.y - y0);
    let (x3, y3) = (c.p3.x - x0, c.p3.y - y0);

    let r0 = 3. * x1;
    let r1 = 3. * y1;
    let r2 = x2 * y3;
    let r3 = x3 * y2;
    let r4 = x3 * y3;
    let r5 = 27. * y1;
    let r6 = x1 * x2;
    let r7 = 27. * y2;
    let r8 = 45. * r2;
    let r9 = 18. * x3;
    let r10 = x1 * y1;
    let r11 = 30. * x1;
    let r12 = 45. * x3;
    let r13 = x2 * y1;
    let r14 = 45. * r3;
    let r15 = x1.powi(2);
    let r16 = 18. * y3;
    let r17 = x2.powi(2);
    let r18 = 45. * y3;
    let r19 = x3.powi(2);
    let r20 = 30. * y1;
    let r21 = y2.powi(2);
    let r22 = y3.powi(2);
    let r23 = y1.powi(2);
    let a = -r0 * y2 - r0 * y3 + r1 * x2 + r1 * x3 - 6. * r2 + 6. * r3 + 10. * r4;

    // Scale and add chord
    let lift = x3 * y0;
    let area = a * 0.05 + lift;
    let x = r10 * r9 - r11 * r4 + r12 * r13 + r14 * x2 - r15 * r16 - r15 * r7 - r17 * r18
        + r17 * r5
        + r19 * r20
        + 105. * r19 * y2
        + 280. * r19 * y3
        - 105. * r2 * x3
        + r5 * r6
        - r6 * r7
        - r8 * x1;
    let y = -r10 * r16 - r10 * r7 - r11 * r22 + r12 * r21 + r13 * r7 + r14 * y1 - r18 * x1 * y2
        + r20 * r4
        - 27. * r21 * x1
        - 105. * r22 * x2
        + 140. * r22 * x3
        + r23 * r9
        + 27. * r23 * x2
        + 105. * r3 * y3
        - r8 * y2;

    let mx = x * (1. / 840.) + x0 * area + 0.5 * x3 * lift;
    let my = y * (1. / 420.) + y0 * a * 0.1 + y0 * lift;

    (area, mx, my)
}

impl SimplifyBezPath {
    /// Set up a new Bézier path for simplification.
    ///
    /// Currently this is not dealing with discontinuities at all, but it
    /// could be extended to do so.
    pub fn new(path: impl IntoIterator<Item = PathEl>) -> Self {
        let (mut a, mut x, mut y) = (0.0, 0.0, 0.0);
        let els = crate::segments(path)
            .map(|seg| {
                let c = seg.to_cubic();
                let (ai, xi, yi) = moment_integrals(c);
                a += ai;
                x += xi;
                y += yi;
                SimplifyCubic {
                    c,
                    moments: (a, x, y),
                }
            })
            .collect();
        SimplifyBezPath(els)
    }

    /// Resolve a `t` value to a cubic.
    ///
    /// Also return the resulting `t` value for the selected cubic.
    fn scale(&self, t: f64) -> (usize, f64) {
        let t_scale = t * self.0.len() as f64;
        let t_floor = t_scale.floor();
        (t_floor as usize, t_scale - t_floor)
    }

    fn moment_integrals(&self, i: usize, range: Range<f64>) -> (f64, f64, f64) {
        if range.end == range.start {
            (0.0, 0.0, 0.0)
        } else {
            moment_integrals(self.0[i].c.subsegment(range))
        }
    }
}

impl ParamCurveFit for SimplifyBezPath {
    fn sample_pt_deriv(&self, t: f64) -> (Point, Vec2) {
        let (mut i, mut t0) = self.scale(t);
        let n = self.0.len();
        if i == n {
            i -= 1;
            t0 = 1.0;
        }
        let c = self.0[i].c;
        (c.eval(t0), c.deriv().eval(t0).to_vec2() * n as f64)
    }

    fn sample_pt_tangent(&self, t: f64, _: f64) -> CurveFitSample {
        let (mut i, mut t0) = self.scale(t);
        if i == self.0.len() {
            i -= 1;
            t0 = 1.0;
        }
        let c = self.0[i].c;
        let p = c.eval(t0);
        let tangent = c.deriv().eval(t0).to_vec2();
        CurveFitSample { p, tangent }
    }

    // We could use the default implementation, but provide our own, mostly
    // because it is possible to efficiently provide an analytically accurate
    // answer.
    fn moment_integrals(&self, range: Range<f64>) -> (f64, f64, f64) {
        let (i0, t0) = self.scale(range.start);
        let (i1, t1) = self.scale(range.end);
        if i0 == i1 {
            self.moment_integrals(i0, t0..t1)
        } else {
            let (a0, x0, y0) = self.moment_integrals(i0, t0..1.0);
            let (a1, x1, y1) = self.moment_integrals(i1, 0.0..t1);
            let (mut a, mut x, mut y) = (a0 + a1, x0 + x1, y0 + y1);
            if i1 > i0 + 1 {
                let (a2, x2, y2) = self.0[i0].moments;
                let (a3, x3, y3) = self.0[i1 - 1].moments;
                a += a3 - a2;
                x += x3 - x2;
                y += y3 - y2;
            }
            (a, x, y)
        }
    }

    fn break_cusp(&self, _: Range<f64>) -> Option<f64> {
        None
    }
}

#[derive(Default)]
struct SimplifyState {
    queue: BezPath,
    result: BezPath,
    needs_moveto: bool,
}

impl SimplifyState {
    fn add_seg(&mut self, seg: PathSeg) {
        if self.queue.is_empty() {
            self.queue.move_to(seg.start());
        }
        match seg {
            PathSeg::Line(l) => self.queue.line_to(l.p1),
            PathSeg::Quad(q) => self.queue.quad_to(q.p1, q.p2),
            PathSeg::Cubic(c) => self.queue.curve_to(c.p1, c.p2, c.p3),
        }
    }

    fn flush(&mut self, accuracy: f64, options: &SimplifyOptions) {
        if self.queue.is_empty() {
            return;
        }
        if self.queue.elements().len() == 2 {
            // Queue is just one segment (count is moveto + primitive)
            // Just output the segment, no simplification is possible.
            self.result
                .extend(self.queue.iter().skip(!self.needs_moveto as usize));
        } else {
            let s = SimplifyBezPath::new(&self.queue);
            let b = match options.opt_level {
                SimplifyOptLevel::Subdivide => fit_to_bezpath(&s, accuracy),
                SimplifyOptLevel::Optimize => fit_to_bezpath_opt(&s, accuracy),
            };
            self.result
                .extend(b.iter().skip(!self.needs_moveto as usize));
        }
        self.needs_moveto = false;
        self.queue.truncate(0);
    }
}

/// Simplify a Bézier path.
///
/// This function simplifies an arbitrary Bézier path; it is designed to handle
/// multiple subpaths and also corners.
///
/// The underlying curve-fitting approach works best if the source path is very
/// smooth. If it contains higher frequency noise, then results may be poor, as
/// the resulting curve matches the original with G1 continuity at each subdivision
/// point, and also preserves the area. For such inputs, consider some form of
/// smoothing or low-pass filtering before simplification. In particular, if the
/// input is derived from a sequence of points, consider fitting a smooth spline.
///
/// We may add such capabilities in the future, possibly as opt-in smoothing
/// specified through the options.
pub fn simplify_bezpath(
    path: impl IntoIterator<Item = PathEl>,
    accuracy: f64,
    options: &SimplifyOptions,
) -> BezPath {
    let mut last_pt = None;
    let mut last_seg: Option<PathSeg> = None;
    let mut state = SimplifyState::default();
    for el in path {
        let mut this_seg = None;
        match el {
            PathEl::MoveTo(p) => {
                state.flush(accuracy, options);
                state.needs_moveto = true;
                last_pt = Some(p);
            }
            PathEl::LineTo(p) => {
                let last = last_pt.unwrap();
                if last == p {
                    continue;
                }
                this_seg = Some(PathSeg::Line(Line::new(last, p)));
            }
            PathEl::QuadTo(p1, p2) => {
                let last = last_pt.unwrap();
                if last == p1 && last == p2 {
                    continue;
                }
                this_seg = Some(PathSeg::Quad(QuadBez::new(last, p1, p2)));
            }
            PathEl::CurveTo(p1, p2, p3) => {
                let last = last_pt.unwrap();
                if last == p1 && last == p2 && last == p3 {
                    continue;
                }
                this_seg = Some(PathSeg::Cubic(CubicBez::new(last, p1, p2, p3)));
            }
            PathEl::ClosePath => {
                state.flush(accuracy, options);
                state.result.close_path();
                state.needs_moveto = true;
                last_seg = None;
                continue;
            }
        }
        if let Some(seg) = this_seg {
            if let Some(last) = last_seg {
                let last_tan = last.tangents().1;
                let this_tan = seg.tangents().0;
                if last_tan.cross(this_tan).abs()
                    > last_tan.dot(this_tan).abs() * options.angle_thresh
                {
                    state.flush(accuracy, options);
                }
            }
            last_pt = Some(seg.end());
            state.add_seg(seg);
        }
        last_seg = this_seg;
    }
    state.flush(accuracy, options);
    state.result
}

impl SimplifyOptions {
    /// Set optimization level.
    pub fn opt_level(mut self, level: SimplifyOptLevel) -> Self {
        self.opt_level = level;
        self
    }

    /// Set angle threshold.
    ///
    /// The tangent of the angle below which joins are considered smooth and
    /// not corners. The default is approximately 1 milliradian.
    pub fn angle_thresh(mut self, thresh: f64) -> Self {
        self.angle_thresh = thresh;
        self
    }
}

#[cfg(test)]
mod tests {
    use crate::BezPath;

    use super::{simplify_bezpath, SimplifyOptions};

    #[test]
    fn simplify_lines_corner() {
        // Make sure lines are passed through unchanged if there is a corner.
        let mut path = BezPath::new();
        path.move_to((1., 2.));
        path.line_to((3., 4.));
        path.line_to((10., 5.));
        let options = SimplifyOptions::default();
        let simplified = simplify_bezpath(path.clone(), 1.0, &options);
        assert_eq!(path, simplified);
    }
}