kurbo/simplify.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
// Copyright 2022 the Kurbo Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT
//! Simplification of a Bézier path.
//!
//! This module is currently experimental.
//!
//! The methods in this module create a `SimplifyBezPath` object, which can then
//! be fed to [`fit_to_bezpath`] or [`fit_to_bezpath_opt`] depending on the degree
//! of optimization desired.
//!
//! The implementation uses a number of techniques to achieve high performance and
//! accuracy. The parameter (generally written `t`) evenly divides the curve segments
//! in the original, so sampling can be done in constant time. The derivatives are
//! computed analytically, as that is straightforward with Béziers.
//!
//! The areas and moments are computed analytically (using Green's theorem), and
//! the prefix sum is stored. Thus, it is possible to analytically compute the area
//! and moment of any subdivision of the curve, also in constant time, by taking
//! the difference of two stored prefix sum values, then fixing up the subsegments.
//!
//! A current limitation (hoped to be addressed in the future) is that non-regular
//! cubic segments may have tangents computed incorrectly. This can easily happen,
//! for example when setting a control point equal to an endpoint.
//!
//! In addition, this method does not report corners (adjoining segments where the
//! tangents are not continuous). It is not clear whether it's best to handle such
//! cases here, or in client code.
//!
//! [`fit_to_bezpath`]: crate::fit_to_bezpath
//! [`fit_to_bezpath_opt`]: crate::fit_to_bezpath_opt
use alloc::vec::Vec;
use core::ops::Range;
#[cfg(not(feature = "std"))]
use crate::common::FloatFuncs;
use crate::{
fit_to_bezpath, fit_to_bezpath_opt, BezPath, CubicBez, CurveFitSample, Line, ParamCurve,
ParamCurveDeriv, ParamCurveFit, PathEl, PathSeg, Point, QuadBez, Vec2,
};
/// A Bézier path which has been prepared for simplification.
///
/// See the [module-level documentation] for a bit more discussion of the approach,
/// and how this struct is to be used.
///
/// [module-level documentation]: crate::simplify
pub struct SimplifyBezPath(Vec<SimplifyCubic>);
struct SimplifyCubic {
c: CubicBez,
// The inclusive prefix sum of the moment integrals
moments: (f64, f64, f64),
}
/// Options for simplifying paths.
pub struct SimplifyOptions {
/// The tangent of the minimum angle below which the path is considered smooth.
angle_thresh: f64,
opt_level: SimplifyOptLevel,
}
/// Optimization level for simplification.
pub enum SimplifyOptLevel {
/// Subdivide; faster but not as optimized results.
Subdivide,
/// Optimize subdivision points.
Optimize,
}
impl Default for SimplifyOptions {
fn default() -> Self {
let opt_level = SimplifyOptLevel::Subdivide;
SimplifyOptions {
angle_thresh: 1e-3,
opt_level,
}
}
}
#[doc(hidden)]
/// Compute moment integrals.
///
/// This is exposed for testing purposes but is an internal detail. We can
/// add to the public, documented interface if there is a use case.
pub fn moment_integrals(c: CubicBez) -> (f64, f64, f64) {
let (x0, y0) = (c.p0.x, c.p0.y);
let (x1, y1) = (c.p1.x - x0, c.p1.y - y0);
let (x2, y2) = (c.p2.x - x0, c.p2.y - y0);
let (x3, y3) = (c.p3.x - x0, c.p3.y - y0);
let r0 = 3. * x1;
let r1 = 3. * y1;
let r2 = x2 * y3;
let r3 = x3 * y2;
let r4 = x3 * y3;
let r5 = 27. * y1;
let r6 = x1 * x2;
let r7 = 27. * y2;
let r8 = 45. * r2;
let r9 = 18. * x3;
let r10 = x1 * y1;
let r11 = 30. * x1;
let r12 = 45. * x3;
let r13 = x2 * y1;
let r14 = 45. * r3;
let r15 = x1.powi(2);
let r16 = 18. * y3;
let r17 = x2.powi(2);
let r18 = 45. * y3;
let r19 = x3.powi(2);
let r20 = 30. * y1;
let r21 = y2.powi(2);
let r22 = y3.powi(2);
let r23 = y1.powi(2);
let a = -r0 * y2 - r0 * y3 + r1 * x2 + r1 * x3 - 6. * r2 + 6. * r3 + 10. * r4;
// Scale and add chord
let lift = x3 * y0;
let area = a * 0.05 + lift;
let x = r10 * r9 - r11 * r4 + r12 * r13 + r14 * x2 - r15 * r16 - r15 * r7 - r17 * r18
+ r17 * r5
+ r19 * r20
+ 105. * r19 * y2
+ 280. * r19 * y3
- 105. * r2 * x3
+ r5 * r6
- r6 * r7
- r8 * x1;
let y = -r10 * r16 - r10 * r7 - r11 * r22 + r12 * r21 + r13 * r7 + r14 * y1 - r18 * x1 * y2
+ r20 * r4
- 27. * r21 * x1
- 105. * r22 * x2
+ 140. * r22 * x3
+ r23 * r9
+ 27. * r23 * x2
+ 105. * r3 * y3
- r8 * y2;
let mx = x * (1. / 840.) + x0 * area + 0.5 * x3 * lift;
let my = y * (1. / 420.) + y0 * a * 0.1 + y0 * lift;
(area, mx, my)
}
impl SimplifyBezPath {
/// Set up a new Bézier path for simplification.
///
/// Currently this is not dealing with discontinuities at all, but it
/// could be extended to do so.
pub fn new(path: impl IntoIterator<Item = PathEl>) -> Self {
let (mut a, mut x, mut y) = (0.0, 0.0, 0.0);
let els = crate::segments(path)
.map(|seg| {
let c = seg.to_cubic();
let (ai, xi, yi) = moment_integrals(c);
a += ai;
x += xi;
y += yi;
SimplifyCubic {
c,
moments: (a, x, y),
}
})
.collect();
SimplifyBezPath(els)
}
/// Resolve a `t` value to a cubic.
///
/// Also return the resulting `t` value for the selected cubic.
fn scale(&self, t: f64) -> (usize, f64) {
let t_scale = t * self.0.len() as f64;
let t_floor = t_scale.floor();
(t_floor as usize, t_scale - t_floor)
}
fn moment_integrals(&self, i: usize, range: Range<f64>) -> (f64, f64, f64) {
if range.end == range.start {
(0.0, 0.0, 0.0)
} else {
moment_integrals(self.0[i].c.subsegment(range))
}
}
}
impl ParamCurveFit for SimplifyBezPath {
fn sample_pt_deriv(&self, t: f64) -> (Point, Vec2) {
let (mut i, mut t0) = self.scale(t);
let n = self.0.len();
if i == n {
i -= 1;
t0 = 1.0;
}
let c = self.0[i].c;
(c.eval(t0), c.deriv().eval(t0).to_vec2() * n as f64)
}
fn sample_pt_tangent(&self, t: f64, _: f64) -> CurveFitSample {
let (mut i, mut t0) = self.scale(t);
if i == self.0.len() {
i -= 1;
t0 = 1.0;
}
let c = self.0[i].c;
let p = c.eval(t0);
let tangent = c.deriv().eval(t0).to_vec2();
CurveFitSample { p, tangent }
}
// We could use the default implementation, but provide our own, mostly
// because it is possible to efficiently provide an analytically accurate
// answer.
fn moment_integrals(&self, range: Range<f64>) -> (f64, f64, f64) {
let (i0, t0) = self.scale(range.start);
let (i1, t1) = self.scale(range.end);
if i0 == i1 {
self.moment_integrals(i0, t0..t1)
} else {
let (a0, x0, y0) = self.moment_integrals(i0, t0..1.0);
let (a1, x1, y1) = self.moment_integrals(i1, 0.0..t1);
let (mut a, mut x, mut y) = (a0 + a1, x0 + x1, y0 + y1);
if i1 > i0 + 1 {
let (a2, x2, y2) = self.0[i0].moments;
let (a3, x3, y3) = self.0[i1 - 1].moments;
a += a3 - a2;
x += x3 - x2;
y += y3 - y2;
}
(a, x, y)
}
}
fn break_cusp(&self, _: Range<f64>) -> Option<f64> {
None
}
}
#[derive(Default)]
struct SimplifyState {
queue: BezPath,
result: BezPath,
needs_moveto: bool,
}
impl SimplifyState {
fn add_seg(&mut self, seg: PathSeg) {
if self.queue.is_empty() {
self.queue.move_to(seg.start());
}
match seg {
PathSeg::Line(l) => self.queue.line_to(l.p1),
PathSeg::Quad(q) => self.queue.quad_to(q.p1, q.p2),
PathSeg::Cubic(c) => self.queue.curve_to(c.p1, c.p2, c.p3),
}
}
fn flush(&mut self, accuracy: f64, options: &SimplifyOptions) {
if self.queue.is_empty() {
return;
}
if self.queue.elements().len() == 2 {
// Queue is just one segment (count is moveto + primitive)
// Just output the segment, no simplification is possible.
self.result
.extend(self.queue.iter().skip(!self.needs_moveto as usize));
} else {
let s = SimplifyBezPath::new(&self.queue);
let b = match options.opt_level {
SimplifyOptLevel::Subdivide => fit_to_bezpath(&s, accuracy),
SimplifyOptLevel::Optimize => fit_to_bezpath_opt(&s, accuracy),
};
self.result
.extend(b.iter().skip(!self.needs_moveto as usize));
}
self.needs_moveto = false;
self.queue.truncate(0);
}
}
/// Simplify a Bézier path.
///
/// This function simplifies an arbitrary Bézier path; it is designed to handle
/// multiple subpaths and also corners.
///
/// The underlying curve-fitting approach works best if the source path is very
/// smooth. If it contains higher frequency noise, then results may be poor, as
/// the resulting curve matches the original with G1 continuity at each subdivision
/// point, and also preserves the area. For such inputs, consider some form of
/// smoothing or low-pass filtering before simplification. In particular, if the
/// input is derived from a sequence of points, consider fitting a smooth spline.
///
/// We may add such capabilities in the future, possibly as opt-in smoothing
/// specified through the options.
pub fn simplify_bezpath(
path: impl IntoIterator<Item = PathEl>,
accuracy: f64,
options: &SimplifyOptions,
) -> BezPath {
let mut last_pt = None;
let mut last_seg: Option<PathSeg> = None;
let mut state = SimplifyState::default();
for el in path {
let mut this_seg = None;
match el {
PathEl::MoveTo(p) => {
state.flush(accuracy, options);
state.needs_moveto = true;
last_pt = Some(p);
}
PathEl::LineTo(p) => {
let last = last_pt.unwrap();
if last == p {
continue;
}
this_seg = Some(PathSeg::Line(Line::new(last, p)));
}
PathEl::QuadTo(p1, p2) => {
let last = last_pt.unwrap();
if last == p1 && last == p2 {
continue;
}
this_seg = Some(PathSeg::Quad(QuadBez::new(last, p1, p2)));
}
PathEl::CurveTo(p1, p2, p3) => {
let last = last_pt.unwrap();
if last == p1 && last == p2 && last == p3 {
continue;
}
this_seg = Some(PathSeg::Cubic(CubicBez::new(last, p1, p2, p3)));
}
PathEl::ClosePath => {
state.flush(accuracy, options);
state.result.close_path();
state.needs_moveto = true;
last_seg = None;
continue;
}
}
if let Some(seg) = this_seg {
if let Some(last) = last_seg {
let last_tan = last.tangents().1;
let this_tan = seg.tangents().0;
if last_tan.cross(this_tan).abs()
> last_tan.dot(this_tan).abs() * options.angle_thresh
{
state.flush(accuracy, options);
}
}
last_pt = Some(seg.end());
state.add_seg(seg);
}
last_seg = this_seg;
}
state.flush(accuracy, options);
state.result
}
impl SimplifyOptions {
/// Set optimization level.
pub fn opt_level(mut self, level: SimplifyOptLevel) -> Self {
self.opt_level = level;
self
}
/// Set angle threshold.
///
/// The tangent of the angle below which joins are considered smooth and
/// not corners. The default is approximately 1 milliradian.
pub fn angle_thresh(mut self, thresh: f64) -> Self {
self.angle_thresh = thresh;
self
}
}
#[cfg(test)]
mod tests {
use crate::BezPath;
use super::{simplify_bezpath, SimplifyOptions};
#[test]
fn simplify_lines_corner() {
// Make sure lines are passed through unchanged if there is a corner.
let mut path = BezPath::new();
path.move_to((1., 2.));
path.line_to((3., 4.));
path.line_to((10., 5.));
let options = SimplifyOptions::default();
let simplified = simplify_bezpath(path.clone(), 1.0, &options);
assert_eq!(path, simplified);
}
}