resvg/filter/iir_blur.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
// An IIR blur.
//
// Based on http://www.getreuer.info/home/gaussianiir
//
// Licensed under 'Simplified BSD License'.
//
//
// Implements the fast Gaussian convolution algorithm of Alvarez and Mazorra,
// where the Gaussian is approximated by a cascade of first-order infinite
// impulsive response (IIR) filters. Boundaries are handled with half-sample
// symmetric extension.
//
// Gaussian convolution is approached as approximating the heat equation and
// each timestep is performed with an efficient recursive computation. Using
// more steps yields a more accurate approximation of the Gaussian. A
// reasonable default value for `numsteps` is 4.
//
// Reference:
// Alvarez, Mazorra, "Signal and Image Restoration using Shock Filters and
// Anisotropic Diffusion," SIAM J. on Numerical Analysis, vol. 31, no. 2,
// pp. 590-605, 1994.
// TODO: Blurs right and bottom sides twice for some reason.
use super::ImageRefMut;
use rgb::ComponentSlice;
struct BlurData {
width: usize,
height: usize,
sigma_x: f64,
sigma_y: f64,
steps: usize,
}
/// Applies an IIR blur.
///
/// Input image pixels should have a **premultiplied alpha**.
///
/// A negative or zero `sigma_x`/`sigma_y` will disable the blur along that axis.
///
/// # Allocations
///
/// This method will allocate a 2x `src` buffer.
pub fn apply(sigma_x: f64, sigma_y: f64, src: ImageRefMut) {
let buf_size = (src.width * src.height) as usize;
let mut buf = vec![0.0; buf_size];
let buf = &mut buf;
let d = BlurData {
width: src.width as usize,
height: src.height as usize,
sigma_x,
sigma_y,
steps: 4,
};
let data = src.data.as_mut_slice();
gaussian_channel(data, &d, 0, buf);
gaussian_channel(data, &d, 1, buf);
gaussian_channel(data, &d, 2, buf);
gaussian_channel(data, &d, 3, buf);
}
fn gaussian_channel(data: &mut [u8], d: &BlurData, channel: usize, buf: &mut Vec<f64>) {
for i in 0..data.len() / 4 {
buf[i] = data[i * 4 + channel] as f64 / 255.0;
}
gaussianiir2d(d, buf);
for i in 0..data.len() / 4 {
data[i * 4 + channel] = (buf[i] * 255.0) as u8;
}
}
fn gaussianiir2d(d: &BlurData, buf: &mut Vec<f64>) {
// Filter horizontally along each row.
let (lambda_x, dnu_x) = if d.sigma_x > 0.0 {
let (lambda, dnu) = gen_coefficients(d.sigma_x, d.steps);
for y in 0..d.height {
for _ in 0..d.steps {
let idx = d.width * y;
// Filter rightwards.
for x in 1..d.width {
buf[idx + x] += dnu * buf[idx + x - 1];
}
let mut x = d.width - 1;
// Filter leftwards.
while x > 0 {
buf[idx + x - 1] += dnu * buf[idx + x];
x -= 1;
}
}
}
(lambda, dnu)
} else {
(1.0, 1.0)
};
// Filter vertically along each column.
let (lambda_y, dnu_y) = if d.sigma_y > 0.0 {
let (lambda, dnu) = gen_coefficients(d.sigma_y, d.steps);
for x in 0..d.width {
for _ in 0..d.steps {
let idx = x;
// Filter downwards.
let mut y = d.width;
while y < buf.len() {
buf[idx + y] += dnu * buf[idx + y - d.width];
y += d.width;
}
y = buf.len() - d.width;
// Filter upwards.
while y > 0 {
buf[idx + y - d.width] += dnu * buf[idx + y];
y -= d.width;
}
}
}
(lambda, dnu)
} else {
(1.0, 1.0)
};
let post_scale =
((dnu_x * dnu_y).sqrt() / (lambda_x * lambda_y).sqrt()).powi(2 * d.steps as i32);
buf.iter_mut().for_each(|v| *v *= post_scale);
}
fn gen_coefficients(sigma: f64, steps: usize) -> (f64, f64) {
let lambda = (sigma * sigma) / (2.0 * steps as f64);
let dnu = (1.0 + 2.0 * lambda - (1.0 + 4.0 * lambda).sqrt()) / (2.0 * lambda);
(lambda, dnu)
}