skrifa/outline/glyf/hint/engine/outline.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
//! Managing outlines.
//!
//! Implements 87 instructions.
//!
//! See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#managing-outlines>
use super::{
super::{
graphics::CoordAxis,
zone::{PointDisplacement, ZonePointer},
},
math, Engine, F26Dot6, HintErrorKind, OpResult,
};
impl<'a> Engine<'a> {
/// Flip point.
///
/// FLIPPT[] (0x80)
///
/// Pops: p: point number (uint32)
///
/// Uses the loop counter.
///
/// Flips points that are off the curve so that they are on the curve and
/// points that are on the curve so that they are off the curve. The point
/// is not marked as touched. The result of a FLIPPT instruction is that
/// the contour describing part of a glyph outline is redefined.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#flip-point>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L5002>
pub(super) fn op_flippt(&mut self) -> OpResult {
let count = self.graphics.loop_counter as usize;
self.graphics.loop_counter = 1;
// In backward compatibility mode, don't flip points after IUP has
// been done.
if self.graphics.backward_compatibility
&& self.graphics.did_iup_x
&& self.graphics.did_iup_y
{
for _ in 0..count {
self.value_stack.pop()?;
}
return Ok(());
}
let zone = self.graphics.zone_mut(ZonePointer::Glyph);
for _ in 0..count {
let p = self.value_stack.pop_usize()?;
zone.flip_on_curve(p)?;
}
Ok(())
}
/// Flip range on.
///
/// FLIPRGON[] (0x81)
///
/// Pops: highpoint: highest point number in range of points to be flipped (uint32)
/// lowpoint: lowest point number in range of points to be flipped (uint32)
///
/// Flips a range of points beginning with lowpoint and ending with highpoint so that
/// any off the curve points become on the curve points. The points are not marked as
/// touched.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#flip-range-on>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L5056>
pub(super) fn op_fliprgon(&mut self) -> OpResult {
self.set_on_curve_for_range(true)
}
/// Flip range off.
///
/// FLIPRGOFF[] (0x82)
///
/// Pops: highpoint: highest point number in range of points to be flipped (uint32)
/// lowpoint: lowest point number in range of points to be flipped (uint32)
///
/// Flips a range of points beginning with lowpoint and ending with
/// highpoint so that any on the curve points become off the curve points.
/// The points are not marked as touched.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#flip-range-off>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L5094>
pub(super) fn op_fliprgoff(&mut self) -> OpResult {
self.set_on_curve_for_range(false)
}
/// Shift point by the last point.
///
/// SHP\[a\] (0x32 - 0x33)
///
/// a: 0: uses rp2 in the zone pointed to by zp1
/// 1: uses rp1 in the zone pointed to by zp0
///
/// Pops: p: point to be shifted
///
/// Uses the loop counter.
///
/// Shift point p by the same amount that the reference point has been
/// shifted. Point p is shifted along the freedom_vector so that the
/// distance between the new position of point p and the current position
/// of point p is the same as the distance between the current position
/// of the reference point and the original position of the reference point.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#shift-point-by-the-last-point>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L5211>
pub(super) fn op_shp(&mut self, opcode: u8) -> OpResult {
let gs = &mut self.graphics;
let PointDisplacement { dx, dy, .. } = gs.point_displacement(opcode)?;
let count = gs.loop_counter;
gs.loop_counter = 1;
for _ in 0..count {
let p = self.value_stack.pop_usize()?;
gs.move_zp2_point(p, dx, dy, true)?;
}
Ok(())
}
/// Shift contour by the last point.
///
/// SHC\[a\] (0x34 - 0x35)
///
/// a: 0: uses rp2 in the zone pointed to by zp1
/// 1: uses rp1 in the zone pointed to by zp0
///
/// Pops: c: contour to be shifted
///
/// Shifts every point on contour c by the same amount that the reference
/// point has been shifted. Each point is shifted along the freedom_vector
/// so that the distance between the new position of the point and the old
/// position of that point is the same as the distance between the current
/// position of the reference point and the original position of the
/// reference point. The distance is measured along the projection_vector.
/// If the reference point is one of the points defining the contour, the
/// reference point is not moved by this instruction.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#shift-contour-by-the-last-point>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L5266>
pub(super) fn op_shc(&mut self, opcode: u8) -> OpResult {
let gs = &mut self.graphics;
let contour_ix = self.value_stack.pop_usize()?;
if !gs.is_pedantic && contour_ix >= gs.zp2().contours.len() {
return Ok(());
}
let point_disp = gs.point_displacement(opcode)?;
let start = if contour_ix != 0 {
gs.zp2().contour(contour_ix - 1)? as usize + 1
} else {
0
};
let end = if gs.zp2.is_twilight() {
gs.zp2().points.len()
} else {
gs.zp2().contour(contour_ix)? as usize + 1
};
for i in start..end {
if point_disp.zone != gs.zp2 || point_disp.point_ix != i {
gs.move_zp2_point(i, point_disp.dx, point_disp.dy, true)?;
}
}
Ok(())
}
/// Shift zone by the last point.
///
/// SHZ\[a\] (0x36 - 0x37)
///
/// a: 0: uses rp2 in the zone pointed to by zp1
/// 1: uses rp1 in the zone pointed to by zp0
///
/// Pops: e: zone to be shifted
///
/// Shift the points in the specified zone (Z1 or Z0) by the same amount
/// that the reference point has been shifted. The points in the zone are
/// shifted along the freedom_vector so that the distance between the new
/// position of the shifted points and their old position is the same as
/// the distance between the current position of the reference point and
/// the original position of the reference point.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#shift-zone-by-the-last-pt>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L5318>
pub(super) fn op_shz(&mut self, opcode: u8) -> OpResult {
let _e = ZonePointer::try_from(self.value_stack.pop()?)?;
let gs = &mut self.graphics;
let point_disp = gs.point_displacement(opcode)?;
let end = if gs.zp2.is_twilight() {
gs.zp2().points.len()
} else if !gs.zp2().contours.is_empty() {
*gs.zp2()
.contours
.last()
.ok_or(HintErrorKind::InvalidContourIndex(0))? as usize
+ 1
} else {
0
};
for i in 0..end {
if point_disp.zone != gs.zp2 || i != point_disp.point_ix {
gs.move_zp2_point(i, point_disp.dx, point_disp.dy, false)?;
}
}
Ok(())
}
/// Shift point by a pixel amount.
///
/// SHPIX (0x38)
///
/// Pops: amount: magnitude of the shift (F26Dot6)
/// p1, p2,.. pn: points to be shifted
///
/// Uses the loop counter.
///
/// Shifts the points specified by the amount stated. When the loop
/// variable is used, the amount to be shifted is put onto the stack
/// only once. That is, if loop = 3, then the contents of the top of
/// the stack should be point p1, point p2, point p3, amount. The value
/// amount is expressed in sixty-fourths of a pixel.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#shift-point-by-a-pixel-amount>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L5366>
pub(super) fn op_shpix(&mut self) -> OpResult {
let gs = &mut self.graphics;
let in_twilight = gs.zp0.is_twilight() || gs.zp1.is_twilight() || gs.zp2.is_twilight();
let amount = self.value_stack.pop()?;
let dx = F26Dot6::from_bits(math::mul14(amount, gs.freedom_vector.x));
let dy = F26Dot6::from_bits(math::mul14(amount, gs.freedom_vector.y));
let count = gs.loop_counter;
gs.loop_counter = 1;
let did_iup = gs.did_iup_x && gs.did_iup_y;
for _ in 0..count {
let p = self.value_stack.pop_usize()?;
if gs.backward_compatibility {
if in_twilight
|| (!did_iup
&& ((gs.is_composite && gs.freedom_vector.y != 0)
|| gs.zp2().is_touched(p, CoordAxis::Y)?))
{
gs.move_zp2_point(p, dx, dy, true)?;
}
} else {
gs.move_zp2_point(p, dx, dy, true)?;
}
}
Ok(())
}
/// Move stack indirect relative point.
///
/// MSIRP\[a\] (0x3A - 0x3B)
///
/// a: 0: do not set rp0 to p
/// 1: set rp0 to p
///
/// Pops: d: distance (F26Dot6)
/// p: point number
///
/// Makes the distance between a point p and rp0 equal to the value
/// specified on the stack. The distance on the stack is in fractional
/// pixels (F26Dot6). An MSIRP has the same effect as a MIRP instruction
/// except that it takes its value from the stack rather than the Control
/// Value Table. As a result, the cut_in does not affect the results of a
/// MSIRP. Additionally, MSIRP is unaffected by the round_state.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#move-stack-indirect-relative-point>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L5439>
pub(super) fn op_msirp(&mut self, opcode: u8) -> OpResult {
let gs = &mut self.graphics;
let distance = self.value_stack.pop_f26dot6()?;
let point_ix = self.value_stack.pop_usize()?;
if !gs.is_pedantic && !gs.in_bounds([(gs.zp1, point_ix), (gs.zp0, gs.rp0)]) {
return Ok(());
}
if gs.zp1.is_twilight() {
*gs.zp1_mut().point_mut(point_ix)? = gs.zp0().original(gs.rp0)?;
gs.move_original(gs.zp1, point_ix, distance)?;
*gs.zp1_mut().point_mut(point_ix)? = gs.zp1().original(point_ix)?;
}
let d = gs.project(gs.zp1().point(point_ix)?, gs.zp0().point(gs.rp0)?);
gs.move_point(gs.zp1, point_ix, distance.wrapping_sub(d))?;
gs.rp1 = gs.rp0;
gs.rp2 = point_ix;
if (opcode & 1) != 0 {
gs.rp0 = point_ix;
}
Ok(())
}
/// Move direct absolute point.
///
/// MDAP\[a\] (0x2E - 0x2F)
///
/// a: 0: do not round the value
/// 1: round the value
///
/// Pops: p: point number
///
/// Sets the reference points rp0 and rp1 equal to point p. If a=1, this
/// instruction rounds point p to the grid point specified by the state
/// variable round_state. If a=0, it simply marks the point as touched in
/// the direction(s) specified by the current freedom_vector. This command
/// is often used to set points in the twilight zone.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#move-direct-absolute-point>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L5487>
pub(super) fn op_mdap(&mut self, opcode: u8) -> OpResult {
let gs = &mut self.graphics;
let p = self.value_stack.pop_usize()?;
if !gs.is_pedantic && !gs.in_bounds([(gs.zp0, p)]) {
gs.rp0 = p;
gs.rp1 = p;
return Ok(());
}
let distance = if (opcode & 1) != 0 {
let cur_dist = gs.project(gs.zp0().point(p)?, Default::default());
gs.round(cur_dist) - cur_dist
} else {
F26Dot6::ZERO
};
gs.move_point(gs.zp0, p, distance)?;
gs.rp0 = p;
gs.rp1 = p;
Ok(())
}
/// Move indirect absolute point.
///
/// MIAP\[a\] (0x3E - 0x3F)
///
/// a: 0: do not round the distance and don't use control value cutin
/// 1: round the distance and use control value cutin
///
/// Pops: n: CVT entry number
/// p: point number
///
/// Moves point p to the absolute coordinate position specified by the nth
/// Control Value Table entry. The coordinate is measured along the current
/// projection_vector. If a=1, the position will be rounded as specified by
/// round_state. If a=1, and if the device space difference between the CVT
/// value and the original position is greater than the
/// control_value_cut_in, then the original position will be rounded
/// (instead of the CVT value.)
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#move-indirect-absolute-point>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L5526>
pub(super) fn op_miap(&mut self, opcode: u8) -> OpResult {
let gs = &mut self.graphics;
let cvt_entry = self.value_stack.pop_usize()?;
let point_ix = self.value_stack.pop_usize()?;
let mut distance = self.cvt.get(cvt_entry)?;
if gs.zp0.is_twilight() {
// Special behavior for twilight zone.
// <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L5548>
let fv = gs.freedom_vector;
let z = gs.zp0_mut();
let original_point = z.original_mut(point_ix)?;
original_point.x = F26Dot6::from_bits(math::mul14(distance.to_bits(), fv.x));
original_point.y = F26Dot6::from_bits(math::mul14(distance.to_bits(), fv.y));
*z.point_mut(point_ix)? = *original_point;
}
let original_distance = gs.project(gs.zp0().point(point_ix)?, Default::default());
if (opcode & 1) != 0 {
let delta = (distance.wrapping_sub(original_distance)).abs();
if delta > gs.control_value_cutin {
distance = original_distance;
}
distance = gs.round(distance);
}
gs.move_point(gs.zp0, point_ix, distance.wrapping_sub(original_distance))?;
gs.rp0 = point_ix;
gs.rp1 = point_ix;
Ok(())
}
/// Move direct relative point.
///
/// MDRP\[abcde\] (0xC0 - 0xDF)
///
/// a: 0: do not set rp0 to point p after move
/// 1: do set rp0 to point p after move
/// b: 0: do not keep distance greater than or equal to minimum_distance
/// 1: keep distance greater than or equal to minimum_distance
/// c: 0: do not round distance
/// 1: round the distance
/// de: distance type for engine characteristic compensation
///
/// Pops: p: point number
///
/// MDRP moves point p along the freedom_vector so that the distance from
/// its new position to the current position of rp0 is the same as the
/// distance between the two points in the original uninstructed outline,
/// and then adjusts it to be consistent with the Boolean settings. Note
/// that it is only the original positions of rp0 and point p and the
/// current position of rp0 that determine the new position of point p
/// along the freedom_vector.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#move-direct-relative-point>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L5610>
pub(super) fn op_mdrp(&mut self, opcode: u8) -> OpResult {
let gs = &mut self.graphics;
let p = self.value_stack.pop_usize()?;
if !gs.is_pedantic && !gs.in_bounds([(gs.zp1, p), (gs.zp0, gs.rp0)]) {
gs.rp1 = gs.rp0;
gs.rp2 = p;
if (opcode & 16) != 0 {
gs.rp0 = p;
}
return Ok(());
}
let mut original_distance = if gs.zp0.is_twilight() || gs.zp1.is_twilight() {
gs.dual_project(gs.zp1().original(p)?, gs.zp0().original(gs.rp0)?)
} else {
let v1 = gs.zp1().unscaled(p);
let v2 = gs.zp0().unscaled(gs.rp0);
let dist = gs.dual_project_unscaled(v1, v2);
F26Dot6::from_bits(math::mul(dist, gs.unscaled_to_pixels()))
};
let cutin = gs.single_width_cutin;
let value = gs.single_width;
if cutin > F26Dot6::ZERO
&& original_distance < value + cutin
&& original_distance > value - cutin
{
original_distance = if original_distance >= F26Dot6::ZERO {
value
} else {
-value
};
}
// round flag
let mut distance = if (opcode & 4) != 0 {
gs.round(original_distance)
} else {
original_distance
};
// minimum distance flag
if (opcode & 8) != 0 {
let min_distance = gs.min_distance;
if original_distance >= F26Dot6::ZERO {
if distance < min_distance {
distance = min_distance;
}
} else if distance > -min_distance {
distance = -min_distance;
}
}
original_distance = gs.project(gs.zp1().point(p)?, gs.zp0().point(gs.rp0)?);
gs.move_point(gs.zp1, p, distance.wrapping_sub(original_distance))?;
gs.rp1 = gs.rp0;
gs.rp2 = p;
if (opcode & 16) != 0 {
gs.rp0 = p;
}
Ok(())
}
/// Move indirect relative point.
///
/// MIRP\[abcde\] (0xE0 - 0xFF)
///
/// a: 0: do not set rp0 to point p after move
/// 1: do set rp0 to point p after move
/// b: 0: do not keep distance greater than or equal to minimum_distance
/// 1: keep distance greater than or equal to minimum_distance
/// c: 0: do not round distance and do not look at control_value_cutin
/// 1: round the distance and look at control_value_cutin
/// de: distance type for engine characteristic compensation
///
/// Pops: n: CVT entry number
/// p: point number
///
/// A MIRP instruction makes it possible to preserve the distance between
/// two points subject to a number of qualifications. Depending upon the
/// setting of Boolean flag b, the distance can be kept greater than or
/// equal to the value established by the minimum_distance state variable.
/// Similarly, the instruction can be set to round the distance according
/// to the round_state graphics state variable. The value of the minimum
/// distance variable is the smallest possible value the distance between
/// two points can be rounded to. Additionally, if the c Boolean is set,
/// the MIRP instruction acts subject to the control_value_cut_in. If the
/// difference between the actual measurement and the value in the CVT is
/// sufficiently small (less than the cut_in_value), the CVT value will be
/// used and not the actual value. If the device space difference between
/// this distance from the CVT and the single_width_value is smaller than
/// the single_width_cut_in, then use the single_width_value rather than
/// the outline or Control Value Table distance.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#move-indirect-relative-point>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L5731>
pub(super) fn op_mirp(&mut self, opcode: u8) -> OpResult {
let gs = &mut self.graphics;
let n = (self.value_stack.pop()? + 1) as usize;
let p = self.value_stack.pop_usize()?;
if !gs.is_pedantic
&& (!gs.in_bounds([(gs.zp1, p), (gs.zp0, gs.rp0)]) || (n > self.cvt.len()))
{
gs.rp1 = gs.rp0;
if (opcode & 16) != 0 {
gs.rp0 = p;
}
gs.rp2 = p;
return Ok(());
}
let mut cvt_distance = if n == 0 {
F26Dot6::ZERO
} else {
self.cvt.get(n - 1)?
};
// single width test
let cutin = gs.single_width_cutin;
let value = gs.single_width;
let mut delta = cvt_distance.wrapping_sub(value).abs();
if delta < cutin {
cvt_distance = if cvt_distance >= F26Dot6::ZERO {
value
} else {
-value
};
}
if gs.zp1.is_twilight() {
let fv = gs.freedom_vector;
let point = {
let d = cvt_distance.to_bits();
let p2 = gs.zp0().original(gs.rp0)?;
let p1 = gs.zp1_mut().original_mut(p)?;
p1.x = p2.x + F26Dot6::from_bits(math::mul(d, fv.x));
p1.y = p2.y + F26Dot6::from_bits(math::mul(d, fv.y));
*p1
};
*gs.zp1_mut().point_mut(p)? = point;
}
let original_distance = gs.dual_project(gs.zp1().original(p)?, gs.zp0().original(gs.rp0)?);
let current_distance = gs.project(gs.zp1().point(p)?, gs.zp0().point(gs.rp0)?);
// auto flip test
if gs.auto_flip && (original_distance.to_bits() ^ cvt_distance.to_bits()) < 0 {
cvt_distance = -cvt_distance;
}
// control value cutin and round
let mut distance = if (opcode & 4) != 0 {
if gs.zp0 == gs.zp1 {
delta = cvt_distance.wrapping_sub(original_distance).abs();
if delta > gs.control_value_cutin {
cvt_distance = original_distance;
}
}
gs.round(cvt_distance)
} else {
cvt_distance
};
// minimum distance test
if (opcode & 8) != 0 {
let min_distance = gs.min_distance;
if original_distance >= F26Dot6::ZERO {
if distance < min_distance {
distance = min_distance
};
} else if distance > -min_distance {
distance = -min_distance
}
}
gs.move_point(gs.zp1, p, distance.wrapping_sub(current_distance))?;
gs.rp1 = gs.rp0;
if (opcode & 16) != 0 {
gs.rp0 = p;
}
gs.rp2 = p;
Ok(())
}
/// Align relative point.
///
/// ALIGNRP[] (0x3C)
///
/// Pops: p: point number (uint32)
///
/// Uses the loop counter.
///
/// Reduces the distance between rp0 and point p to zero. Since distance
/// is measured along the projection_vector and movement is along the
/// freedom_vector, the effect of the instruction is to align points.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#align-relative-point>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L5882>
pub(super) fn op_alignrp(&mut self) -> OpResult {
let gs = &mut self.graphics;
let count = gs.loop_counter;
gs.loop_counter = 1;
for _ in 0..count {
let p = self.value_stack.pop_usize()?;
let distance = gs.project(gs.zp1().point(p)?, gs.zp0().point(gs.rp0)?);
gs.move_point(gs.zp1, p, -distance)?;
}
Ok(())
}
/// Move point to intersection of two lines.
///
/// ISECT[] (0x0F)
///
/// Pops: b1: end point of line 2
/// b0: start point of line 2
/// a1: end point of line 1
/// a0: start point of line 1
/// p: point to move.
///
/// Puts point p at the intersection of the lines A and B. The points a0
/// and a1 define line A. Similarly, b0 and b1 define line B. ISECT
/// ignores the freedom_vector in moving point p.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#moves-point-p-to-the-intersection-of-two-lines>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L5934>
pub(super) fn op_isect(&mut self) -> OpResult {
let gs = &mut self.graphics;
let b1 = self.value_stack.pop_usize()?;
let b0 = self.value_stack.pop_usize()?;
let a1 = self.value_stack.pop_usize()?;
let a0 = self.value_stack.pop_usize()?;
let point_ix = self.value_stack.pop_usize()?;
// Lots of funky fixed point math so just map these to i32 to avoid
// a bunch of wrapping/unwrapping.
// To shreds you say!
let [pa0, pa1] = {
let z = gs.zp1();
[z.point(a0)?, z.point(a1)?].map(|p| p.map(F26Dot6::to_bits))
};
let [pb0, pb1] = {
let z = gs.zp0();
[z.point(b0)?, z.point(b1)?].map(|p| p.map(F26Dot6::to_bits))
};
let dbx = pb1.x - pb0.x;
let dby = pb1.y - pb0.y;
let dax = pa1.x - pa0.x;
let day = pa1.y - pa0.y;
let dx = pb0.x - pa0.x;
let dy = pb0.y - pa0.y;
use math::mul_div;
let discriminant = mul_div(dax, -dby, 0x40) + mul_div(day, dbx, 0x40);
let dotproduct = mul_div(dax, dbx, 0x40) + mul_div(day, dby, 0x40);
// Useful context from FreeType:
//
// "The discriminant above is actually a cross product of vectors
// da and db. Together with the dot product, they can be used as
// surrogates for sine and cosine of the angle between the vectors.
// Indeed,
// dotproduct = |da||db|cos(angle)
// discriminant = |da||db|sin(angle)
// We use these equations to reject grazing intersections by
// thresholding abs(tan(angle)) at 1/19, corresponding to 3 degrees."
//
// See <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L5986>
if 19 * discriminant.abs() > dotproduct.abs() {
let v = mul_div(dx, -dby, 0x40) + mul_div(dy, dbx, 0x40);
let x = mul_div(v, dax, discriminant);
let y = mul_div(v, day, discriminant);
let point = gs.zp2_mut().point_mut(point_ix)?;
point.x = F26Dot6::from_bits(pa0.x + x);
point.y = F26Dot6::from_bits(pa0.y + y);
} else {
let point = gs.zp2_mut().point_mut(point_ix)?;
point.x = F26Dot6::from_bits((pa0.x + pa1.x + pb0.x + pb1.x) / 4);
point.y = F26Dot6::from_bits((pa0.y + pa1.y + pb0.y + pb1.y) / 4);
}
gs.zp2_mut().touch(point_ix, CoordAxis::Both)?;
Ok(())
}
/// Align points.
///
/// ALIGNPTS[] (0x27)
///
/// Pops: p1: point number
/// p2: point number
///
/// Makes the distance between point 1 and point 2 zero by moving both
/// along the freedom_vector to the average of both their projections
/// along the projection_vector.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#align-points>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L6030>
pub(super) fn op_alignpts(&mut self) -> OpResult {
let p2 = self.value_stack.pop_usize()?;
let p1 = self.value_stack.pop_usize()?;
let gs = &mut self.graphics;
let distance = F26Dot6::from_bits(
gs.project(gs.zp0().point(p2)?, gs.zp1().point(p1)?)
.to_bits()
/ 2,
);
gs.move_point(gs.zp1, p1, distance)?;
gs.move_point(gs.zp0, p2, -distance)?;
Ok(())
}
/// Interpolate point by last relative stretch.
///
/// IP[] (0x39)
///
/// Pops: p: point number
///
/// Uses the loop counter.
///
/// Moves point p so that its relationship to rp1 and rp2 is the same as it
/// was in the original uninstructed outline. Measurements are made along
/// the projection_vector, and movement to satisfy the interpolation
/// relationship is constrained to be along the freedom_vector. This
/// instruction is not valid if rp1 and rp2 have the same position on the
/// projection_vector.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#interpolate-point-by-the-last-relative-stretch>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L6065>
pub(super) fn op_ip(&mut self) -> OpResult {
let gs = &mut self.graphics;
let count = gs.loop_counter;
gs.loop_counter = 1;
if !gs.is_pedantic && !gs.in_bounds([(gs.zp0, gs.rp1), (gs.zp1, gs.rp2)]) {
return Ok(());
}
let in_twilight = gs.zp0.is_twilight() || gs.zp1.is_twilight() || gs.zp2.is_twilight();
let orus_base = if in_twilight {
gs.zp0().original(gs.rp1)?
} else {
gs.zp0().unscaled(gs.rp1).map(F26Dot6::from_bits)
};
let cur_base = gs.zp0().point(gs.rp1)?;
let old_range = if in_twilight {
gs.dual_project(gs.zp1().original(gs.rp2)?, orus_base)
} else {
gs.dual_project(gs.zp1().unscaled(gs.rp2).map(F26Dot6::from_bits), orus_base)
};
let cur_range = gs.project(gs.zp1().point(gs.rp2)?, cur_base);
for _ in 0..count {
let point = self.value_stack.pop_usize()?;
if !gs.is_pedantic && !gs.in_bounds([(gs.zp2, point)]) {
continue;
}
let original_distance = if in_twilight {
gs.dual_project(gs.zp2().original(point)?, orus_base)
} else {
gs.dual_project(gs.zp2().unscaled(point).map(F26Dot6::from_bits), orus_base)
};
let cur_distance = gs.project(gs.zp2().point(point)?, cur_base);
let new_distance = if original_distance != F26Dot6::ZERO {
if old_range != F26Dot6::ZERO {
F26Dot6::from_bits(math::mul_div(
original_distance.to_bits(),
cur_range.to_bits(),
old_range.to_bits(),
))
} else {
original_distance
}
} else {
F26Dot6::ZERO
};
gs.move_point(gs.zp2, point, new_distance.wrapping_sub(cur_distance))?;
}
Ok(())
}
/// Interpolate untouched points through the outline.
///
/// IUP\[a\] (0x30 - 0x31)
///
/// a: 0: interpolate in the y-direction
/// 1: interpolate in the x-direction
///
/// Considers a glyph contour by contour, moving any untouched points in
/// each contour that are between a pair of touched points. If the
/// coordinates of an untouched point were originally between those of
/// the touched pair, it is linearly interpolated between the new
/// coordinates, otherwise the untouched point is shifted by the amount
/// the nearest touched point is shifted.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#interpolate-untouched-points-through-the-outline>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L6391>
pub(super) fn op_iup(&mut self, opcode: u8) -> OpResult {
let gs = &mut self.graphics;
let axis = if (opcode & 1) != 0 {
CoordAxis::X
} else {
CoordAxis::Y
};
let mut run = true;
// In backward compatibility mode, allow IUP until it has been done on
// both axes.
if gs.backward_compatibility {
if gs.did_iup_x && gs.did_iup_y {
run = false;
}
if axis == CoordAxis::X {
gs.did_iup_x = true;
} else {
gs.did_iup_y = true;
}
}
if run {
gs.zone_mut(ZonePointer::Glyph).iup(axis)?;
}
Ok(())
}
/// Untouch point.
///
/// UTP[] (0x29)
///
/// Pops: p: point number (uint32)
///
/// Marks point p as untouched. A point may be touched in the x direction,
/// the y direction, both, or neither. This instruction uses the current
/// freedom_vector to determine whether to untouch the point in the
/// x-direction, the y direction, or both. Points that are marked as
/// untouched will be moved by an IUP (interpolate untouched points)
/// instruction. Using UTP you can ensure that a point will be affected
/// by IUP even if it was previously touched.
///
/// See <https://learn.microsoft.com/en-us/typography/opentype/spec/tt_instructions#untouch-point>
/// and <https://gitlab.freedesktop.org/freetype/freetype/-/blob/57617782464411201ce7bbc93b086c1b4d7d84a5/src/truetype/ttinterp.c#L6222>
pub(super) fn op_utp(&mut self) -> OpResult {
let p = self.value_stack.pop_usize()?;
let coord_axis = match (
self.graphics.freedom_vector.x != 0,
self.graphics.freedom_vector.y != 0,
) {
(true, true) => Some(CoordAxis::Both),
(true, false) => Some(CoordAxis::X),
(false, true) => Some(CoordAxis::Y),
(false, false) => None,
};
if let Some(coord_axis) = coord_axis {
self.graphics.zp0_mut().untouch(p, coord_axis)?;
}
Ok(())
}
/// Helper for FLIPRGON and FLIPRGOFF.
fn set_on_curve_for_range(&mut self, on: bool) -> OpResult {
// high_point is inclusive but Zone::set_on_curve takes an exclusive
// range
let high_point = self.value_stack.pop_usize()? + 1;
let low_point = self.value_stack.pop_usize()?;
// In backward compatibility mode, don't flip points after IUP has
// been done.
if self.graphics.backward_compatibility
&& self.graphics.did_iup_x
&& self.graphics.did_iup_y
{
return Ok(());
}
self.graphics
.zone_mut(ZonePointer::Glyph)
.set_on_curve(low_point, high_point, on)
}
}
#[cfg(test)]
mod tests {
use super::{super::MockEngine, math, CoordAxis, Engine, ZonePointer};
use raw::{
tables::glyf::{bytecode::Opcode, PointMarker},
types::{F26Dot6, Point},
};
#[test]
fn flip_point() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
// Points all start as off-curve in the mock engine.
// Flip every odd point in the first 10
let count = 5;
// First, set the loop counter:
engine.value_stack.push(count).unwrap();
engine.op_sloop().unwrap();
// Now push the point indices
for i in (1..=9).step_by(2) {
engine.value_stack.push(i).unwrap();
}
assert_eq!(engine.value_stack.len(), count as usize);
// And flip!
engine.op_flippt().unwrap();
let flags = &engine.graphics.zones[1].flags;
for i in 0..10 {
// Odd points are now on-curve
assert_eq!(flags[i].is_on_curve(), i & 1 != 0);
}
}
/// Backward compat + IUP state prevents flipping.
#[test]
fn state_prevents_flip_point() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
// Points all start as off-curve in the mock engine.
// Flip every odd point in the first 10
let count = 5;
// First, set the loop counter:
engine.value_stack.push(count).unwrap();
engine.op_sloop().unwrap();
// Now push the point indices
for i in (1..=9).step_by(2) {
engine.value_stack.push(i).unwrap();
}
assert_eq!(engine.value_stack.len(), count as usize);
// Prevent flipping
engine.graphics.backward_compatibility = true;
engine.graphics.did_iup_x = true;
engine.graphics.did_iup_y = true;
// But try anyway
engine.op_flippt().unwrap();
let flags = &engine.graphics.zones[1].flags;
for i in 0..10 {
// All points are still off-curve
assert!(!flags[i].is_on_curve());
}
}
#[test]
fn flip_range_on_off() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
// Points all start as off-curve in the mock engine.
// Flip 10..=20 on
engine.value_stack.push(10).unwrap();
engine.value_stack.push(20).unwrap();
engine.op_fliprgon().unwrap();
for (i, flag) in engine.graphics.zones[1].flags.iter().enumerate() {
assert_eq!(flag.is_on_curve(), (10..=20).contains(&i));
}
// Now flip 12..=15 off
engine.value_stack.push(12).unwrap();
engine.value_stack.push(15).unwrap();
engine.op_fliprgoff().unwrap();
for (i, flag) in engine.graphics.zones[1].flags.iter().enumerate() {
assert_eq!(
flag.is_on_curve(),
(10..=11).contains(&i) || (16..=20).contains(&i)
);
}
}
/// Backward compat + IUP state prevents flipping.
#[test]
fn state_prevents_flip_range_on_off() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
// Prevent flipping
engine.graphics.backward_compatibility = true;
engine.graphics.did_iup_x = true;
engine.graphics.did_iup_y = true;
// Points all start as off-curve in the mock engine.
// Try to flip 10..=20 on
engine.value_stack.push(10).unwrap();
engine.value_stack.push(20).unwrap();
engine.op_fliprgon().unwrap();
for flag in engine.graphics.zones[1].flags.iter() {
assert!(!flag.is_on_curve());
}
// Reset all points to on
for flag in engine.graphics.zones[1].flags.iter_mut() {
flag.set_on_curve();
}
// Now try to flip 12..=15 off
engine.value_stack.push(12).unwrap();
engine.value_stack.push(15).unwrap();
engine.op_fliprgoff().unwrap();
for flag in engine.graphics.zones[1].flags.iter() {
assert!(flag.is_on_curve());
}
}
#[test]
fn untouch_point() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
// Touch all points in both axes to start.
let count = engine.graphics.zones[1].points.len();
for i in 0..count {
engine.graphics.zones[1].touch(i, CoordAxis::Both).unwrap();
}
let mut untouch = |point_ix: usize, fx, fy, marker| {
assert!(engine.graphics.zp0().flags[point_ix].has_marker(marker));
// Untouch axis is based on freedom vector:
engine.graphics.freedom_vector.x = fx;
engine.graphics.freedom_vector.y = fy;
engine.value_stack.push(point_ix as i32).unwrap();
engine.op_utp().unwrap();
assert!(!engine.graphics.zp0().flags[point_ix].has_marker(marker));
};
// Untouch point 0 in x axis
untouch(0, 1, 0, PointMarker::TOUCHED_X);
// Untouch point 1 in y axis
untouch(1, 0, 1, PointMarker::TOUCHED_Y);
// untouch point 2 in both axes
untouch(2, 1, 1, PointMarker::TOUCHED);
}
#[test]
fn shp() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
set_test_vectors(&mut engine);
engine.graphics.backward_compatibility = false;
engine.graphics.zp0 = ZonePointer::Glyph;
engine.graphics.zp2 = ZonePointer::Glyph;
engine.graphics.rp2 = 1;
let point = engine.graphics.zones[1].point_mut(1).unwrap();
point.x = F26Dot6::from_bits(132);
point.y = F26Dot6::from_bits(-256);
engine.value_stack.push(1).unwrap();
engine.op_shp(0).unwrap();
let point = engine.graphics.zones[1].point(1).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(136, -254));
}
#[test]
fn shc() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
set_test_vectors(&mut engine);
engine.graphics.backward_compatibility = false;
engine.graphics.zp0 = ZonePointer::Glyph;
engine.graphics.zp2 = ZonePointer::Glyph;
engine.graphics.rp2 = 1;
let point = engine.graphics.zones[1].point_mut(1).unwrap();
point.x = F26Dot6::from_bits(132);
point.y = F26Dot6::from_bits(-256);
engine.value_stack.push(0).unwrap();
engine.op_shc(0).unwrap();
let points = engine.graphics.zones[1]
.points
.iter()
.map(|p| p.map(F26Dot6::to_bits))
.take(3)
.collect::<Vec<_>>();
assert_eq!(
points,
&[Point::new(4, 2), Point::new(132, -256), Point::new(4, 2),]
);
}
#[test]
fn shz() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
set_test_vectors(&mut engine);
engine.graphics.backward_compatibility = false;
engine.graphics.zp0 = ZonePointer::Glyph;
engine.graphics.zp2 = ZonePointer::Glyph;
engine.graphics.rp2 = 1;
let point = engine.graphics.zones[1].point_mut(1).unwrap();
point.x = F26Dot6::from_bits(132);
point.y = F26Dot6::from_bits(-256);
engine.value_stack.push(0).unwrap();
engine.op_shz(0).unwrap();
let points = engine.graphics.zones[1]
.points
.iter()
.map(|p| p.map(F26Dot6::to_bits))
.take(3)
.collect::<Vec<_>>();
assert_eq!(
points,
&[Point::new(4, 2), Point::new(132, -256), Point::new(4, 2),]
);
}
#[test]
fn shpix() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
set_test_vectors(&mut engine);
engine.graphics.backward_compatibility = false;
engine.graphics.zp2 = ZonePointer::Glyph;
let point = engine.graphics.zones[1].point_mut(1).unwrap();
point.x = F26Dot6::from_bits(132);
point.y = F26Dot6::from_bits(-256);
// point index
engine.value_stack.push(1).unwrap();
// amount to move in pixels along freedom vector
engine.value_stack.push(42).unwrap();
engine.op_shpix().unwrap();
let point = engine.graphics.zones[1].point(1).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(170, -237));
}
#[test]
fn msirp() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
set_test_vectors(&mut engine);
engine.graphics.backward_compatibility = false;
engine.graphics.zp0 = ZonePointer::Glyph;
engine.graphics.zp1 = ZonePointer::Glyph;
let point = engine.graphics.zones[1].point_mut(1).unwrap();
point.x = F26Dot6::from_bits(132);
point.y = F26Dot6::from_bits(-256);
// point index
engine.value_stack.push(1).unwrap();
// amount to move in pixels along freedom vector
engine.value_stack.push(-42).unwrap();
engine.op_msirp(0).unwrap();
let point = engine.graphics.zones[1].point(1).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(91, -277));
assert_eq!(engine.graphics.rp0, 0);
// opcode with bit 0 set changes rp0 to point_ix
engine.value_stack.push(4).unwrap();
engine.value_stack.push(0).unwrap();
engine.op_msirp(1).unwrap();
assert_eq!(engine.graphics.rp0, 4);
}
#[test]
fn mdap() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
set_test_vectors(&mut engine);
engine.graphics.backward_compatibility = false;
engine.graphics.zp0 = ZonePointer::Glyph;
// with rounding
engine.set_point_f26dot6(1, 1, (132, -256));
engine.value_stack.push(1).unwrap();
engine.op_mdap(1).unwrap();
let point = engine.graphics.zones[1].point(1).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(128, -258));
// without rounding
engine.set_point_f26dot6(1, 2, (132, -256));
engine.value_stack.push(2).unwrap();
engine.op_mdap(0).unwrap();
let point = engine.graphics.zones[1].point(2).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(132, -256));
}
#[test]
fn miap() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
set_test_vectors(&mut engine);
engine.graphics.backward_compatibility = false;
engine.graphics.zp0 = ZonePointer::Glyph;
// set a CVT distance
engine.cvt.set(1, F26Dot6::from_f64(0.75)).unwrap();
// with rounding
engine.set_point_f26dot6(1, 1, (132, -256));
engine.value_stack.push(1).unwrap();
engine.value_stack.push(1).unwrap();
engine.op_miap(1).unwrap();
let point = engine.graphics.zones[1].point(1).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(186, -229));
// without rounding
engine.set_point_f26dot6(1, 2, (132, -256));
engine.value_stack.push(2).unwrap();
engine.value_stack.push(1).unwrap();
engine.op_miap(0).unwrap();
let point = engine.graphics.zones[1].point(2).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(171, -236));
}
/// Tests bit 'a' of MDRP which just sets rp0 to the adjusted point
/// after move.
#[test]
fn mdrp_rp0() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
engine.graphics.rp0 = 0;
// Don't change rp0
engine.value_stack.push(1).unwrap();
engine.op_mdrp(Opcode::MDRP00000 as _).unwrap();
assert_eq!(engine.graphics.rp0, 0);
// Change rp0
engine.value_stack.push(1).unwrap();
engine.op_mdrp(Opcode::MDRP10000 as _).unwrap();
assert_eq!(engine.graphics.rp0, 1);
}
/// Test bit "b" which controls whether distances are adjusted
/// to the minimum_distance field of GraphicsState.
#[test]
fn mdrp_mindist() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
set_test_vectors(&mut engine);
engine.graphics.backward_compatibility = false;
engine.graphics.zp0 = ZonePointer::Glyph;
// without min distance check
engine.set_point_f26dot6(1, 1, (132, -256));
engine.value_stack.push(1).unwrap();
engine.op_mdrp(Opcode::MDRP00000 as _).unwrap();
let point = engine.graphics.zones[1].point(1).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(128, -258));
// with min distance check
engine.set_point_f26dot6(1, 2, (132, -256));
engine.value_stack.push(2).unwrap();
engine.op_mdrp(Opcode::MDRP01000 as _).unwrap();
let point = engine.graphics.zones[1].point(2).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(186, -229));
}
/// Test bit "c" which controls whether distances are rounded.
#[test]
fn mdrp_round() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
set_test_vectors(&mut engine);
engine.graphics.backward_compatibility = false;
engine.graphics.zp0 = ZonePointer::Glyph;
engine.op_rthg().unwrap();
// without rounding
engine.set_point_f26dot6(1, 1, (132, -231));
engine.value_stack.push(1).unwrap();
engine.op_mdrp(Opcode::MDRP00000 as _).unwrap();
let point = engine.graphics.zones[1].point(1).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(119, -238));
// with rounding
engine.set_point_f26dot6(1, 2, (132, -231));
engine.value_stack.push(2).unwrap();
engine.op_mdrp(Opcode::MDRP00100 as _).unwrap();
let point = engine.graphics.zones[1].point(2).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(147, -223));
}
/// Tests bit 'a' of MIRP which just sets rp0 to the adjusted point
/// after move.
#[test]
fn mirp_rp0() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
engine.graphics.rp0 = 0;
// Don't change rp0
engine.value_stack.push(1).unwrap();
engine.value_stack.push(1).unwrap();
engine.op_mirp(Opcode::MIRP00000 as _).unwrap();
assert_eq!(engine.graphics.rp0, 0);
// Change rp0
engine.value_stack.push(1).unwrap();
engine.value_stack.push(1).unwrap();
engine.op_mirp(Opcode::MIRP10000 as _).unwrap();
assert_eq!(engine.graphics.rp0, 1);
}
/// Test bit "b" which controls whether distances are adjusted
/// to the minimum_distance field of GraphicsState.
#[test]
fn mirp_mindist() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
set_test_vectors(&mut engine);
engine.graphics.backward_compatibility = false;
engine.graphics.zp0 = ZonePointer::Glyph;
// set a CVT distance
engine.cvt.set(1, F26Dot6::from_f64(0.75)).unwrap();
// without min distance check
engine.set_point_f26dot6(1, 1, (132, -256));
engine.value_stack.push(1).unwrap();
engine.value_stack.push(1).unwrap();
engine.op_mirp(Opcode::MIRP00000 as _).unwrap();
let point = engine.graphics.zones[1].point(1).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(171, -236));
// with min distance check
engine.set_point_f26dot6(1, 2, (132, -256));
engine.value_stack.push(2).unwrap();
engine.value_stack.push(1).unwrap();
engine.op_mirp(Opcode::MIRP01000 as _).unwrap();
let point = engine.graphics.zones[1].point(2).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(186, -229));
}
/// Test bit "c" which controls whether distances are rounded.
#[test]
fn mirp_round() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
set_test_vectors(&mut engine);
engine.graphics.backward_compatibility = false;
engine.graphics.zp0 = ZonePointer::Glyph;
// set a CVT distance
engine.cvt.set(1, F26Dot6::from_f64(0.75)).unwrap();
engine.op_rthg().unwrap();
// without rounding
engine.set_point_f26dot6(1, 1, (132, -231));
engine.value_stack.push(1).unwrap();
engine.value_stack.push(1).unwrap();
engine.op_mirp(Opcode::MIRP00000 as _).unwrap();
let point = engine.graphics.zones[1].point(1).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(162, -216));
// with rounding
engine.set_point_f26dot6(1, 2, (132, -231));
engine.value_stack.push(2).unwrap();
engine.value_stack.push(1).unwrap();
engine.op_mirp(Opcode::MIRP00100 as _).unwrap();
let point = engine.graphics.zones[1].point(2).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(147, -223));
}
#[test]
fn alignrp() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
set_test_vectors(&mut engine);
engine.graphics.backward_compatibility = false;
engine.graphics.zp0 = ZonePointer::Glyph;
engine.graphics.zp1 = ZonePointer::Glyph;
engine.graphics.rp0 = 0;
engine.set_point_f26dot6(1, 0, (132, -231));
engine.set_point_f26dot6(1, 1, (-72, 109));
engine.value_stack.push(1).unwrap();
engine.op_alignrp().unwrap();
let point = engine.graphics.zones[1].point(1).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(-45, 122));
}
#[test]
fn isect() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
engine.graphics.zp0 = ZonePointer::Glyph;
engine.graphics.zp1 = ZonePointer::Glyph;
engine.graphics.rp0 = 0;
// Two points for line 1
engine.set_point_f26dot6(1, 0, (0, 0));
engine.set_point_f26dot6(1, 1, (100, 100));
// And two more for line 2
engine.set_point_f26dot6(1, 2, (0, 100));
engine.set_point_f26dot6(1, 3, (100, 0));
// Push point numbers: first is the point where the
// intersection should be stored.
for ix in [4, 0, 1, 2, 3] {
engine.value_stack.push(ix).unwrap();
}
engine.op_isect().unwrap();
let point = engine.graphics.zones[1].point(4).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(50, 50));
}
#[test]
fn alignpts() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
set_test_vectors(&mut engine);
engine.graphics.backward_compatibility = false;
engine.graphics.zp0 = ZonePointer::Glyph;
engine.graphics.zp1 = ZonePointer::Glyph;
engine.set_point_f26dot6(1, 0, (132, -231));
engine.set_point_f26dot6(1, 1, (-72, 109));
engine.value_stack.push(0).unwrap();
engine.value_stack.push(1).unwrap();
engine.op_alignpts().unwrap();
let p1 = engine.graphics.zones[1].point(0).unwrap();
let p2 = engine.graphics.zones[1].point(1).unwrap();
assert_eq!(p1.map(F26Dot6::to_bits), Point::new(119, -238));
assert_eq!(p2.map(F26Dot6::to_bits), Point::new(-59, 116));
}
#[test]
fn ip() {
let mut mock = MockEngine::new();
let mut engine = mock.engine();
set_test_vectors(&mut engine);
engine.graphics.backward_compatibility = false;
engine.graphics.zp0 = ZonePointer::Glyph;
engine.graphics.zp1 = ZonePointer::Glyph;
engine.graphics.zp2 = ZonePointer::Glyph;
engine.graphics.rp1 = 2;
engine.graphics.rp2 = 3;
engine.set_point_f26dot6(1, 2, (72, -109));
engine.set_point_f26dot6(1, 1, (132, -231));
engine.value_stack.push(1).unwrap();
engine.op_ip().unwrap();
let point = engine.graphics.zones[1].point(1).unwrap();
assert_eq!(point.map(F26Dot6::to_bits), Point::new(147, -223));
}
#[test]
fn iup_flags() {
// IUP shift and interpolate logic is tested in ../zone.rs so just
// check the flags here.
let mut mock = MockEngine::new();
let mut engine = mock.engine();
assert!(!engine.graphics.did_iup_x);
assert!(!engine.graphics.did_iup_y);
// IUP[y]
engine.op_iup(0).unwrap();
assert!(!engine.graphics.did_iup_x);
assert!(engine.graphics.did_iup_y);
// IUP[x]
engine.op_iup(1).unwrap();
assert!(engine.graphics.did_iup_x);
assert!(engine.graphics.did_iup_y);
}
fn set_test_vectors(engine: &mut Engine) {
let v = math::normalize14(100, 50);
engine.graphics.proj_vector = v;
engine.graphics.dual_proj_vector = v;
engine.graphics.freedom_vector = v;
engine.graphics.update_projection_state();
}
impl Engine<'_> {
fn set_point_f26dot6(&mut self, zone_ix: usize, point_ix: usize, xy: (i32, i32)) {
let p = self.graphics.zones[zone_ix].point_mut(point_ix).unwrap();
p.x = F26Dot6::from_bits(xy.0);
p.y = F26Dot6::from_bits(xy.1);
}
}
}